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O. Introduction 

The study of the causal structure of space-time in the theory of relativity led 
a series of authors to the study of partially ordered Lie groups (cf. [Pa 81, 84], [O1 81, 
82], [Gu 76], [Le 84], [Se 76], [Vi 80]). We restrict ourselves to orders that satisfy 
a certain compatibility condition between the order and the algebraic structure: 

Definition 0.1. Let G be a group and ~ be a partial order on G, then <= is 
called an invariant order if the following monotonicity law holds: 

(M) gl <-- gz then hglk <= hg~k for all h, k, gl, g2EG. 

We can associate with an order <_- on G its positive cone P~_= {gEG: g_>l} where 
1 is the identity of G. It is an easy exercise to see that an invariant order is completely 
determined by  its positive cone: 

Remark 0.2. Let G be a group and P a subset of G. Define a relation NcG>(G 
on G by setting g~Ng~, if and only if g2g[~EP. Then N is an invariant order with 
Pe = P if and only if the following conditions hold: 

(i) P n P -  1 = {e}. 

(ii) PPc P, i.e. P is a semigroup. 
(iii) gPg-XcP for all gEG. [] 

An invariant order <= on a group G will be called directed if for any two gl, 
g2EG there exist hl, h2EG such that  h~<=gl, g2<=h2. Again we can translate this 
property of the order <_- into a property of its positive cone P~_ by a standard 
argument: 

Remark 0,3. Let G be a group and <- be an invariant ordering of G. Then the 
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following statements are equivalent: 

(1) The order ~_ is directed. 
(2) P~_ generates G as a group. [] 

I f  we now let G be a Lie group the orders that are of most interest are the conti- 
nuous (Vinberg's notation) or infinitesimally generated (our notation) ones. We will 
shortly explain what this means: If  S is a subsemigroup of a Lie group G such that 
S generates G as a group, we may associate with S a tangent object L ( S ) =  
{xCL(G): exp R + x c S }  where L(G) is the Lie algebra of G with exponential 
function exp: L(G)-*G, and S is the closure of S in G. It is well known (cf. [HL 83], 
[Vi 80] etc.) that L(S)  is a wedge, i.e. a closed convex set which is also closed under 
addition and multiplication by positive scalars. Moreover it satisfies (cf. Loc. cit.): 

(L) eadxL(S)=L(S) for all x~L(S)N(-L(S)) .  

The semigroup S is called infinitesimally generated if S and the semigroup T, alge- 
braically generated by exp (_L_(S)), satisfy: 

(IG) exp__L(S) ~ S c T; L(S) -L (S )  generates L(G) as Lie algebra. 

Now we can state what we mean by an infinitesimally generated order: 

Definition 0.4. Let G be a Lie group and <= be a directed, invariant order on G, 
then <= is called infinitesimally generated if P~_ is an infinitesimally generated sub- 
semigroup of G. 

If  _<- is a directed, infinitesimaily generated, invariant order on the Lie group 
G then L(P~) satisfies a condition that is even stronger than (L): 

Proposition 0.5. Let G be a Lie group and <= be a directed, infinitesimally 
generated, invariant order then L(P~) is a generating invariant cone, i.e. it satisfies 

(i) L(P~)-L(P~)=LfG). 
(ii) eadxL(P~)=L(P~) for all xCL(G). 

(iii) _L(P~)m(--L(P~))= {0}. 

Pro@ Note first that the semigroup P~ generates G as a group since <= is 
directed. I f  S=P~ and xEL(P~) then e x p R + x ~ S  so that expR+eadYx= 
(expy)(exp R+x)(expy) - lC_(expy)S(expy) - lc=S for all yCL(G) by property 
0.2(iii) and the continuity of inner automorphisms. Thus e"dYxEL(P~) and (ii) 
is satisfied. But then L(P~)-L(P~) is an ideal, as we see by differentiating (ii). 
Hence, by (IG) it is equal to L(G). Finally note that O~xEL(P~)m(-L(P~)) 
would imply exp Rx~P~ so that P~mP~ ~ couldn't be trivial. [] 

Naturally the question arises whether for any 'generating invariant cone W 
in a Lie algebra L there exists an invariant ordering <= of the connected Lie group 
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G with L ( G ) = L  such that L(P~_)=W. The answer is no in general even if we 
assume that G is simply connected as was shown by Ol'shanskii [O1 82b]. But if 
one makes additional hypotheses on the geometry of  the cone W the answer turns 
out to be yes. The kind of  cones we want to consider - -  and again this is motivated 
by the study of  causal structures (cf. [Le 84]) - -  are those which are given by a 
quadratic form q in L in the sense that {x~L: q(x, x)<-0} is a double cone 
(i.e. that q has signature ( +  . . . . .  + ,  - ) )  and W is one half of  this double cone. 
Such cones and the corresponding forms we call Lorentzian. Then our main result is: 

Theorem 0.6. Let G be a simply connected Lie group and W be an invariant 
Lorentzian cone in L(G) then there exists a directed, infinitesimally generated, invari- 
ant order <= on G such that W is the tangent object of  its positive cone P~_. 

We will proceed as follows: In Section 1 we give some general lemmas which 
turn out to be useful later on. In Section 2 we will state a classification theorem 
for invariant Lorentzian cones (cf. [HH 85c]), prove the main result for important 
special cases like the oscillator algebra (cf. w 2 for a definition) and finally put  the 
results together to show Theorem 0.6. 

1. On the existence of semigroups with prescribed tangent objects 

Let L be a Lie algebra and W be a generating invariant cone in L. If  G is the 
simply connected Lie group with L ( G ) = L  and S is any subsemigroup of  G such 
that exp W a S  then S has interior points and hence generates G as a group. There- 
fore we may consider the tangent object L ( S )  of S and find that W a L ( S ) .  If  
L ( S ) = W ,  then consider the semigroup T generated algebraically by exp W. The 
inclusion exp W a T a S  implies that T generates G as a group and that L ( T ) =  
L ( S )  since L ( S ) = L ( S ) = W .  But now Theorem 5.9 [HL 83] implies that T ea T - l=  
{1}. Moreover, since L ( T ) = W  is invariant and exp L = e x p  ( W - W )  generates 
G we know that g T g - l a T  for all g~G. This yields 

Proposition 1.1. Let G be a simply connected Lie group and W be a generating 
invariant cone in L(G). Then the following two statements are equivalent: 
(1) There exist a directed, infinitesimally generated, invariant order <= such that 

L_ = w .  

(2) There exist a subsemigroup S of  G which generates G as a group and satisfies 
L ( S ) = W .  [] 

Proposition 1.1 reduces the problem of proving the existence of a directed, 
infinitesimally generated, invariant order to the problem of showing the existence 
of  a subsemigroup with a prescribed tangent cone. This problem has been studied 
in [Hi 86], [Vi 80], [O1 82a, b]. 
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Before we can describe some methods to construct semigroups with a pre- 
scribed tangent cone we have to study the situation if we already know that we 
have a semigroup: 

Lemma 1.2. Let S be an infinitesimally generated subsemigroup of a Lie group 
G such that L(S) is a generating cone in L(G). Then there exist arbitrary small neigh- 
borhoods ql ofl  in G such that S'x,(Sn~//) is a right semigroup ideal, i.e. sgE S~(Snq / )  
for all sES'x,(SnOg) and gES. 

Proof. Let Wo be a cone (note here that in our terminology a cone is a wedge 
containing no nontrivial subspace) in L(G) such that W0\{0}c in t  W, where 
W---L(S). Now we can find a norm II II on L(G) and a linear functional w: L(G)-~R 
such that llxll =w(x) for all xEWo (cf. [HL 84]). 

Moreover, by [HL 83] we can find a neighborhood B0 of zero in L(G) such that 
exp IBo is a diffeomorphism onto its image and exp -1 (Snexp Bo)cWo. Moreover 
since W o is a cone we may assume that for all xEB o we have d2o• (x) (1) W ____ 
dexp (x)Wo where we identify all the tangent spaces of the (fiat) manifold L(G) 
and 2~ denotes the left translation by g on G. 

We call a path 7 : [0, 1] ~G admissible for W if, up to Cl-parameter transforma- 
tions it is of the form 7: [0, n] ~ G  with m-1 7(/)=--//k=l (exp Xk)(ex p (t--m-'}-l)Xm) for 
tE[m-l,m], m<=n where XkEW for k=l . . .n .  If  now 7: [0, 1]-~G is admissible 
with 7(to)Eexp B0 and 7 is differentiable at t o then 7(0  and hence also ur ( t )=  
exp -1 (7(t)) is differentiable in a neighborhood of to and we obtain 

du,..at (t)= d exp -~ (r(t))(dr(t))Ed exp -1 (7(t)) d2~fo(1)(W\{0}) c W0\{0} 

since y is admissible and exp In, is invertible. But then Ilue(t)H=w(ur(t)) is dif- 
d 

ferentiable with respect to t and we have d-~ Jlurll ( t )>0.  Thus u is strictly increasing 

on any intervall I c [0 ,  1] such that y ( I ) cexp  B 0. If  now B~ is any open ball in 
Bo and Ux=expB1 then any admissible T: [0, 1]---G such that ~(1)EU~ must 
satisfy 7([0, 1])cU1 since otherwise there exists a toE]0, 1[ such that to= 
sup {tE[0, 1]: T(t)EG',xexp B1} and [Iur(t0)II >llu~(1)l[ which contradicts the strict 
monotonicity of }lur}l on [to, 1]. 

Now consider the subsemigroup T of G generated by exp W and let gx, g2ET. 
Suppose g2g~EU~ then we find an admissible path 7: [0, 1]-~G such that 7(0)=1 
and T(1)=g2g~. Moreover there exists a toE[0, 1] such that 7(to)=g2. But since 
y(1)EU~ it follows that g,,=y(to)EU~. Thus sET\TnUx implies sgET\TnU~ 
for all gET. 

Finally note that T is dense in S so that sE S',,,Sn U~ implies sgE S \ S n  U1 
for all gES since S'N(SnU~) is closed in S. [] 
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We will now use this lemma to show that under certain circumstances it suffices 
to establish the existence of subsemigroups on a quotient group of G." 

Lemma 1.3. Let G be a Lie group and N be a closed normal subgroup of G. 
I f  re: G~G/N is the canonical projection and W is a generating cone in L(G) such 
that dzr(1)(W) is a cone in L(G/N) for which there exists a subsemigroup S~ of  
G/N with L(S~)=dzr(1)(W), then there exists a subsemigroup S of  G such that 

Proof. Note first that by the theory of local semigroups [HL 83] we can find 
a neighborhood B of 0 in L(G), a relatively closed set $ c  U=exp B and a cone 
W0 in L(G) such that the following statements are true: 

(i) exp IB is a diffeomorphism onto its image. 
(ii) drc(1)W0 is a cone. 

(iii) W',,,{0}cint W0. 
(iv) exp- 1 ~ ~ Wo. 
(v) 2:2:nUc~. 

(vi) W={xEL(G): exp (R+xc~B)c~}. 

Since Wo is a cone there exists a neighborhood V,~ of 0 in L(G/N) such 
that drc(1)(x)E V, and xEW o imply xEB1, where B1 is an open neighborhood of 0 
in L(G) such that (exp B1)Zc U. Moreover we may assume that S, is infinitesimally 
generated, and by Lemma 1.2 we find a neighborhood V~ of 0 inside V~ such that 
S,~\(S,,nexp~/N 1I') is a right semigroup ideal in S~. Making V, smaller we may 
just as well assume that V,= 1I' and that expGm]v, is a diffeomorphism onto its 
image. 

Now let S be the subsemigroup of G generated by exp W and suppose 
g=II~=lexpxkEU,=expB2 where xkEWnB1 for k = l . . . n  and B2 is a neigh- 
borhood of 0 in B1 such that n(Uz)cexp~ m V,. Then we calculate: 

re(g) = [/~=~ (~ exp xk) = f/~=~ (expom drc(1)(xk))ES, n expG/N V. 

so that for g . ,= / /k~(expxk)  we have z~(g.,)ES,,nexpG/NV,,. Let us assume 
that g.,EZ. Then y.,=exp-Xg.,EWo and n(g,.)ES,~nexp~/~cV,, imply that y,.EB~ 
so that g.,+a=g,, exp x,.+lE(exp B~)*cU and hence g.,+xE~. Thus we have shown 
that gE~: since clearly gl=expxaE~. But this means that S n U 2 c ~  so that 
_L(S)=W by (vi). [] 

One important point in the proof of Theorem 0.6 is a good knowledge ofinvariant 
cones in the so called oscillator algebra (of. w 2 for definitions) and their images 
under the exponential map in the oscillator group. Even though these images can 
be described very explicitly we need to resort to the following general lemma which 
helps us to get around Very messy calculations. 
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The lemma can be obtained from [HH 85b] using the technique of analytic 
continuation. We will only sketch the proof which will appear in [HHL 87] with 
all details. 

Lemma 1.4. Let G be a Lie group and W be an invariant generating wedge in 
L=L(G). Let D be an open subset of L X L  with the following properties 

(i) I f  (x,y)ED, then (rx, O),(ry, O)ED for all 0<: r< l  and (x, sy)ED for all 
0<--s<:l. 

(ii) There is an analytic function m: D ~ L  such that (x, y), (y, z), (m(x, y), z)ED 

implies (x, re(y, z))ED and m(m(x, y), z ) :  re(x, re(y, z)), and that exp (re(x, y))= 
(exp x)(exp y) for all sufficiently small x, yE L. 

l f  we set D'={(x,y)ED: (m(x, ty), O)ED for all tel0, 1]} then m ( W X W n D ' ) ~ W .  

Sketch of proof. We remark first that this really is a lemma about semialgebras 
(cf. [HH 85b] for definitions). Let E =  {xEL: (x, 0)ED}. For xEE we define 

Ux={yEL:  (x,y)ED} and Ax: U ~ L  by A~(y )=m(x ,y ) .  

Then dA~ (0) turns out to be an analytic continuation of g (ad x) where g is the power- 
T 

series given by the function g(T)=  l _ e r .  Moreover the map u(t)=m(x, ty) 

for tE {tER: (x, ty)ED} is the maximal solution of the initial value problem u'(t)= 
dAu~t)(O)(y), u(0)=x. Now one can show as in [HH 85b] that dA,(O)(W)~ 
( W - R + x )  - .  Finally the convexity properties (i) allow us to use the methods of 
[HH 85b] to derive the desired result: [] 

2. The main results 

We star t by discribing the classification of invariant Lorentzian cones. Con- 
sider h,.-~R2m• R, the 2m+ 1-dimensional Heisenberg algebra with bracket 

[(v, z) ,  (v', z')]  = (0, (dvlv')) 
where ~l) denotes the scalarproduct on R ~m and d: R~m~R ~m is a skewsymmetric 
automorphism with spectrum {i, - i} .  We denote hm• with the bracket 

[(v, z,  r), (v', z' ,  r')] = (rdv'-r'dv, (dvlv'), O) 

by 0m and call it the oscillator algebra of dimension 2m + 2. Then 

q,((v, z, r ), (v', z', r')) = rz" + r' z + (vlv") 

is an invariant Lorentzian form on Or~. The following theorem is proved in [HH 85c] : 
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Theorem 2.1. Let L be a finite dimensional real Lie algebra and W be an invariant 
Lorentzian cone in L, then W is defined by a Lorentzian form q: L •  L - - R  such 
that (L, q) is isomorphic to the orthogonal direct sum of  a compact Lie algebra (K, p) 
with a positive definite form p and a Lie algebra (L1, q~) which is isomorphic to one 
of  the following types: 

(i) Lz = R, qz (x, y) = - x y .  
(ii) Lz = sl (2, R), ql is the Killing form. 

(iii) Lz =0,., ql = q,. for some m = 1, 2, 3 . . . . .  

Moreover all the forms are invariant in the sense that q([x, y], z)=q(x,  [y, z]) for 
all x, y, zE L. [] 

Theorem 2.1 tells us that we only need to consider three types of groups in 
order to prove Theorem 0.6. Moreover it shows that the projection of the invariant 
cone along the compact subalgebra is again a proper cone. If  the subgroup corre- 
sponding to this algebra is closed Lemma 1.3 applies as soon as we have established 
the existence of subsemigroups of the groups corresponding to R, sl (2, R) and 
r with the right tangent object. For R and sl (2, R) we know (cf. [HH 85a]) that 
this can be done if and only if the corresponding groups are simply connected, 

i.e. R and SL (2, R) respectively. It remains to check the case (0=, qm): 

Lemma 2.2. Let G be a Lie group such that L(G) =O,, and let W be an invariant 
cone in Om defined by q,,. Then there exists a subsemigroup S of  G with L ( S ) = W  
i f  and only i f  G is simply connected. 

Proof. If  G is simply connected we may view it as R ~" • R • R with the product 

(v, z, r)(v', z', r') = (v+e'av ', z + z" +�88 (dvl e'dv'), r +r'). 

We denote this group by O,, and call it the oscillator group. Note that the exponential 
map exp: 0, ,~O,,  is given by 

Rv, z,O) if r = 0 .  

From this we see immediately that exp is a diffeomorphism onto its image when 
restricted to B = R ~ = • 2 1 5  2zc[. Moreover for 

D = {((v, z, r), (v', z', r '))E0.,• -2r t  < r+r" < 2r~} 

and m(x, y)=exp  -1 ((exp x)(exp y)) we see that the hypotheses of Lemma 1.4 are 
satisfied. Hence we know that 

(exp (v, z, r) exp (v', z', r'))Eexp W for all (v, z, r), (v', z', r')EW 
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with - 2 ~ z < r + r ' < 2 r c .  We may assume that W ~ h , , X R  + replacing W by - W  
if necessary. Now note that (R 2m X R X [2rc, ~[) is a semigroup ideal in R 2r" X R X R +. 
Hence S = ( e x p  W)u(R2mNRX[2~,  co[) is a subsemigroup of O,,. But clearly 
L ( S ) = W  so that the first implication is proved. 

In order to show the converse note first that the tangent space of OW at any 
point (0, z, 0) for z # 0  is equal to h2mx{0 }. Since exp [B is a diffeomorphism 
this shows that for F = Z z  we have 

{xC~,,: x = lira nx,; expx, ,E(expW)/ '}  = R2mXRXR +. 

I f  now G =  Ore~F1 where F1 is any discrete nonzero central subgroup of O. and 
S is a closed subsemigroup of G with L ( S ) = W  then exp W c S  and by [HL 83] 
we have 

L(S) = {xEO,,: x = lim nx,; exp~x,  ES}. 

But since expG is just exp followed by the quotient map re: O, ,~) ,~/F this means 

L(S)={X~Om: xClim,~= nx,; exp XnCTC-I(S)}2{xEO,,: x~limn_ = nx,; exp x,C 
(exp W)F}=  RZmx R X  R +. 

This contradiction shows that F~= {0}, i.e. that G is simply connected. [] 

Thus we have proved the following result which together with Proposition 1.1 
implies Theorem 0.6. 

Proposition 2.3. Let G be a Lie group and W be an invariant Lorentzian cone 
in L (G). I f  L (G) = Li | Lz is the decomposition provided by Theorem 2.1 and G = G~ @ G2 
where G1 and G2 are the analytic subgroups of G corresponding to L~ and L,~ then the 
following statements are equivalent: 

(i) GI is simply connected. 
(ii) There exists a subsemigroup S of G such that L ( S ) = W .  [] 
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