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1. Introduction 

The aim of this paper is to obtain global classical solutions for classes of  
equations 

[ (O~-Ax)u = f ( t ,  x,  u), xER s, t > 0, 
(1) ]uh=o = ~o, 

[0,uh=0 = r 

using the method with subsolutions and supersolutions. In particular, we want to 
study the case with superlinear growth o f f  in u. 

Our main results are 

( 2 )  

and 

Theorem 1.1. Let g E C o ( R  a) and assume that 

Ig(x)l <-- ] / - -  1 / ~  , xER s, 
[ l+Alxl ~ 

for  some ~,>0. Then there exists a unique global classical solution u to 

[ ( O ~ - A x ) u = t - 4 u  5, xER a, t > O ,  
u]t=o = O, 
0tu[,=o = g. 

Theorem 1.2. Let g E C o ( R  a) and assume that k is an odd integer greater than 

5, or that k i s  an even integer greater than 5 and that g (x) is nonnegative. Then there 

exists a unique global classical solution u to 

[ (O~-Ax)u = ?-kuk,  xER 8, t > 0 ,  

(3) lUl,=o = o, 
tO, uh=o = g, 
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provided that 
tg(x)l ~- v(x), x~R 3, 

where v (x)  is a solution to the Lane--Emden equation of index k. 

These results should be compared with the following known facts for problem 
(1) with compactly supported smooth data ~p and ~/. 

1) i f  f ( t , x , u ) = - [ u [ Q - l u  a n d  1 < 0 < 5 ,  then there exists a unique global 
classical solution (see Jrrgens [9])~ 

2) If f ( t ,  x ,  u)=-[u[e- lu  and Q=5 and if (~0, ~) is sufficiently small in 
(H~r~Lr))<L ~, then there exists a unique global classical solution (see 
Rauch [14]). 

3) If f ( t ,  x, u) >= [u[ p, where 1 <p  < 1 + I/2, then every nontrivial solution blows 
up in finite time (see John [6]). 

4) If f ( t ,  x,  u) >= lul p, where p > 1 + 1/2, then there exists a unique global classical 
solution for data small enough in C 2 •  1 (see John [6]). 

We refer to Glassey [5], Kato [10], Kumlin [12] and von Wahl [15] for similar results. 
In particular, our result fits in between 1)and 2) on one side and 4) on the other 
side. The difference with 4) is that we don't have to impose smallness of data in a 
so strong norm, but in comparison with 1) and 2) we have a factor in the nonlinear 
term that decays in time. Moreover, we note that, according to [5], Theorem 1.1 
and Theorem 1.2 will be false i f  the nonlinearities there are replaced by u 5 and u k 
respectively. 

In deriving result 1), where no restriction is put on the size of data, energy 
methods are used. This sets a sign constraint on the nonlinear term in the equa- 
tion which our nonlinearity violates. We note that the only methods that have been 
used to obtain the global existertce results above are energy methods and perturba- 
tion teeNfiques. 

The method with subsolutions and supersolutions is very old and suitable for 
nonlinear elliptic and parabolic equations, since in these cases there are appropriate 
maximum principles and apriori estimates. Our report is inspired by a paper by 
Korman [11], where he treats some noncoercive elliptic and hyperbolic problems. 

Finally, we note that our result can't be generalized tomore  space dimensions 
than 3 since the Riemann function for the wave operator is no longer positive in 
those cases. 

We organize the paper as follows. In Section 2 we give the solution of  the linear 
wave equation and introduce the Euler--Poisson--Darboux equation that will be 
used in the succeeding Sections, In Section 3 we give a we/tk maximality principle 
and explicit subsolutions and supersolutions used in the proof  of Theorem 1.1. 
Section 4 contains energy estimates and a local existence result for classical solu- 
tions and in Section 5 we conclude the proof of Theorem 1.2. 
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2. The E u l e r - - P o i s s o n - - D a r b o u x  equation and the wave equation 

For our problem the solution can be represented by 

u(x, t) =(Eo  c") (t)9)(x)-F(E} ") (t)~k)(x) 

f' + (E[")( t -x) f (x , . ,u( . ,x) ) ) (x)dx,  xER n, t>=O, 
0 

where ECo")(t) and ECt")(t) correspond t o  the Fourier multipliers cos (till) and 
I~1-1 sin (till) respectively. Moreover from Courant/Hilbert [2] we note that 

(Eg~(t) q,)(x) ,yc.-~ :v+ 0 v 1 
= ~-~,=o - 1)a , . .~;  If2,1 fo~o(x+tOdr 

3 -'("-z)/2a,t" 0 v+l 1 f q~(x+t~)d~, 
Ot "+1 IQ, I ate. 

5-,(.-z)/2 0' 1 
(E~") (t) O) (x) = t~" '=~  a'tV at" If~.l fn$(x+tOd~ 

for n odd (greater than 1) and 

(Eo (") (t) cp) (x) = S '("-z)/~ (v + 1) b~ O" 
~..~ ,=o Ot" 

n + l  ] 

Otv+l [7[/" (2) t .-I f: ''n'(/2m/"2)I/2 :'n~"+r')d'dr ) 

(El(") (t) O)(x) = t Z.~--~ )12 b,t" at" 

I ] t g "-I 
•  fo f .  ~,(x + rr dr 

. r  [21 ._. ,..,(:-..)... 

for n even. Hence we conclude(at  least afte r recalling the formulas for E(ol)(t) and  
Et~)(t)) that E~)(t) is a positive operator for n =  1 and E(~)(t) is a positive operator 
for n = 1, 2 and 3. Since this positivity is used for ou r  weak maximality principle 
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we are reduced to the cases n~3 .  In the course of  the proof  we consider the Euler--  
Poisson--Darboux equation below, which is related to the wave equation with a 
simple transformation. 

<~ denote the singular differential operator 07 + 2 0 t -  A,~ Let and consider the 

equation 

[<) u = f ,  
(4) /ul,=o = uo, 

[a, uh=o = O. 
Comparing (4) with 

n u  = tf, 
(5) /ul,=0 = 0, 

" ta, ul,=o = Uo, 

we observe that if v is a C2-solution of (4), then u=tv is a C~-solution of  (5), and 
if u is a C~-solution of  (5), then v=t - lu  is a C~-solution of  (4). 

3. A weak maximality principle, subsolutions and supersolutions 

Define the operator E~ (t) by 

(el(t)~)(x)= C t f ~p(x+t~)dr xER z, t-->0, 
I~Z31 - -  Oa 

where ~3 = {xERS: Ixl = 1}. Hence the solution of  (5) is given by 

u(x, 0 = (e~CO~o)Cx) +f~ (E~ (t -- z) +f(% .))(x) dz 

and we conclude from Section 2 that 

Lemma 3.1. If 
~ v = < 0 ,  xER 8, 

|vl,=o ~- O, 
[a,  vl,=0 = 0, 

then v<=O in RSX[0, co). 

if 

t_>0, 

Define a partial ordering on the real-valued functions defined o n  R 3 • [0, oo) b y  

U~___ V, 

u(x, t )<-v(x , t ) ,  x E R L  t - > 0 ,  

O,u(x, o) = O,v(x, o) = o, xEn' .  
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Moreover, let v =  Tw denote the solution of  

[<) v = w 5, 

(6) " /vlt=o = g, 
/ t0 ,v l ,=o  = 0.  

Using the definition we see that ut'<u2 yields Tul"<Tu2. This follows easily from 
Lemma 3.1 since 

0 (r .1  - T.2) = . ~ -  .~ --< o. 

We say that V is a supersolution if 

[O V >- V 5, 

(7)  iVl,:0 --> g ,  
[O, Vl,=o = 0, 

and v is a subsolutlon if  v satisfies (7) with the inequalities reversed. In particular, 
we see that v = - V  is a subsolution. Moreover we recall f rom [3] that 

satisfies 

V(x) = ]// t/52 
l + ~ l x ?  

- A V  = V s, 

x ~ R  ~ 

and thus provides a supersolution. From the definition 
Lemma 3.1 it follows that 

TV~< V 
since 

O (TV-V) <- VS-V s = O. 

Hence we get a nonincreasing sequence (un)~'=o, where 

of  supersolution and 

u0 = IT, 

u,+l = T u . ,  

Furthermore using v '<Tv we obtain 

n = 0 , 1 , 2  . . . . .  

lu.I ~ v, n = 0 , 1 , 2  . . . . .  

and hence the sequence (u~)7= o converges pointwise to a function u. 
Finally (tun),~=o converges pointwise to the function tu, which we claim has the 

desired smoothness and thus provides a solution to our original problem (2). 
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4. Energy estimates and local existence of  classical solutions 

In this section we show that the limit function tu is a global classical solution 
to (2), i.e. that tu has the desired smoothness and Tu=u.  Let To be an arbitrary 
large number and let e > 0  be a small number. Moreover for mEN, let H '~ denote 
the m-th Sobolev space in (x, t)-space (with respect to L2-norm) with norm tl �9 lira.  

Lemma 4.1. Consider the equation 

/Du=s(t,x?jC , xCR , t t ,ro], 
(8) /ul,=, = gE Cd, 

/a, ul,=  = h E C6 ~. 

Then there exists a constant C=C(m,  e, To) such that 

IIu[Im+1 <-- C(llfllm+ fig[Ira+l+ Ilhllm). 
The proof of this is well-known so we just sketch the main idea. For m=O, 

standard energy estimates together with compactness of support of data and the  
finiteness of speed of propagation give the result. Higher order estimates are obtained 
by differentiating the equation [] u =f(t ,  x) and perlbrming the same type of opera- 
tions. The reason for e>0  in Lemma 4.1 is the fact that the nonlinearity t-4uS(t, x) 
is singular at t =0.  

Let us assume that for some e>0  tu is a classical solution of (2) for tE[0, ~]. 
Then it follows easily that tu is a global classical solution from the argument below. 
We recall that H m is a Banach algebra under pointwise multiplication, provided m 
is greater than half the dimension of the underlying space, i.e. rn->3 in our case, 
and that we have the interpolation inequality 

[]f]j ~ Cllfll~llfllg -~ o ~_ o =- - -  j < 1. m 

Now by applying Lemma 4.1 inductively we obtain that (tu,)~'= o is uniformly bounded 
for m = 6  and by the interpolation inequality above that (tu,)~~ is a Cauchy sequence 
in H ' - '  for any gE(0, 1) and thus in C~(RSX(e, To))c~C2(Ra• by embedding 
and trace theorems for Sobolev spaces. Hence we can pass to the limit in 

E3(tU,+x) = t - ' ( tu , )  s, tE[z, To]. 

Here To is arbitrary so we have the global result since we have uniqueness for classical 
solutions (see [7]). 

Now it remains to prove what was assumed above: The sequence (tu,)~=o has 
a limit function tu that is a weak solution of  (2), i.e. 

tuE ~ ' ( R  3 X[0, oo)) ffl L~ ([0, To], L ~  (R3)) 
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for:all T0>0. Moreover we have 

tu.+x = Ex(t)g+f~ El(t-Oz-'(ru.(z, .))5 dr 

for n=O, 1 . . . . .  By standard contraction methods we can show that (2) possesses 
a classical solution v for tE[O, g] for some g>O and 

v = E~(t)g+ E~(t-z)z-'(v(z, .))dr, 
Hence we get 

]v(t t' ")-Un+l(t ,  ")I ~- f:  t E'(t-z) l ( ~ )  s-u#('' ")'l dr, 

where the positivity of the operator E~(t) has been used. Furthermore we note that 

s u p { l [ v ( x ,  t)[+lu,(x,  t)[: nEN, xER',  tE(0, ' ]} <= C, 

and it follows that 

] ~ - u , + , ( t ,  .)1 ~_C f: E,(t-z)lv(r: "> -u#(,, ">l dr. 

Taking the L4-norm with respect to x and applying the L p estimates due to Miyachi 
(see [13]) we obtain 

lit-Iv(t, .)-un+l(t, .)l[ ~ C f' o tit-1 v(r,  .) - -  u . (r) l  [ dz 

for tE[O, ~]. Let n tend to infinity and apply Gronwall's lemma. This yields 

v(t, x) = tuft, x), tE[0, ~], 

which proves our claim. 

5. The  case  k_-> 6 

In Sections 2 to 4 we have assumed the nonlinearity to be u 5 in the Euler--  
Poisson--Darboux equation. The advantage in this case is that we can give explicit, 
analytic expressions for subsolutions and supersolutions. However, the same argu- 
ments work for the case u k, k>=6, with the obvious modifications for k being even, 
once we have the corresponding subsolufions and supersohitions. Moreover, since, 
given a positive supersohition V, - -V is a subsolution when k is an odd integer 
and the constant function 0 i s  a subgoiUti6n when k is an even integer, we confine 
the discussion to supersolutions. 
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It is natural to look for supersolutions that are independent of t or x. In partic- 
ular, we restrict ourselves to t-independent supersolutions, i.e. solutions to the dif- 
ferential inequality 

A u + u  k ~_ O, x E R  s, 

(9) / u  > o, 
[ u E C  ~. 

We first observe from Gidas/Spruck [4] that for k---2, 3 or 4 there are no such u 
so that (9) is satisfied with equality instead of inequality. We also observe that if u is 
a positive supersolution then the radially symmetric function we obtain by introducing 
polar coordinates around an arbitrary point x0 and taking averages over spherical 
shells with respect to the point xo is a positive supersolution. This follows easily 
from H/51der's inequality. Here of course the supersolution need not be t-inde- 
pendent. 

Inspired by the observation above we consider radially symmetric solutions to 

A u + u  k = O ,  xER 3, 

i.e. we study the equation 

(lO) 

1 d 

u'(0) = 0, 
.// ~" 0. 

= 0, r > 0, 

This equation is known as the Lane--Emden equation of index k and is studied in 
the context of stellar structure in astrophysics. The only known explicit solution 
apart from the linear cases k---0 and k = l ,  is the one we have given for k = 5 .  
However for k > 5  it is known that (10) has a one-parameter family 2zJtk-1)u(2.v), 
2 >0, of solutions, which are positive, strictly decreasing with decay-rate r -c~/~k-~)) 

as r - * ~  and with u '(0)=0 and u(0)>0. This follows from a phase plane analysis 
of the equation (10) after performing a so called Emden transformation (see Chandra- 
sekhar [1] and Joseph/Lundgren [8]). These solutions have the regularity needed to 
serve as supersolutions. 

Finally we note that Theorem 1.1 and Theorem 1.2 cannot be improved using 
scaling arguments. 
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