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1. Introduction 

where 

Let H n+l denote the (N+ 1)-dimensional hyperbolic space and let G--Con (N) 
denote the group of isometrics of H N+I. We shall take BN+I= {xERN+I: Ilxll <1}, 
where [[ .--11 denotes the euclidean norm, as a model for Hn+~; then G is the group 
of diffeomorphisms g: Bn+l-,-Bn+~ so that for all x, x'EB n+~ 

L(g(x), g(x')) = L(x, x') 

L(x, x') = 1 +( [ Ix -x 'p / (1  - I txp)(1 -Ilx'f[2)). 

Let F a G  be a discrete subgroup with limit set 

L ( r )  c s N = {x~RN+I: I[xll = 1}. 

Let 6 (F) denote the exponent of convergence of F. For such groups the basic lattice- 
point problem consists in determining the asymptotic behaviour of 

N(X; x, x') : Card {yEF: L(x, yx') _-< X} 

as X-~oo. This function counts the namber of "lattice-points" y(x') (the orbit 
of x' under F) which lie in a large sphere with centre x, the word "sphere" being 
used in the sense of hyperbolic geometry. There are further analogous problems where 
the family of spheres is replaced by other increasing sequences of domains but we 
shall not be concerned with these here. 

There have been several investigations into such questions. The most com- 
prehensive and precise results are those obtained by Lax and Phillips [2] under the 
assumptions that F is geometrically finite and 6(F)>N/2. To explain their result 
we need some further concepts. Let for w6B ~+~, [ES N 

P(w, 0 = (1-llwP)/llw-~P 
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be the Poisson kernel. Then, under the assumption that F is geometrically finite, 
there exists a unique probability measure # supported on L(F) so that 

F(w) = fP(w,  0'( r, a (o 
satisfies 

~v(rCw)) = Ffw) (r~r); 
see [5], [7], [10]. (Such a measure exists even without the assumption that F be geo- 
metrically finite, but it will not be unique in general.) The function F is an eigen- 
function of the Laplace operator on H N+ 1 with eigenvalue -~5 ( F ) ( N - ~  (F)). Then, 
under the assumptions made above, Lax and Phillips show that there exist c, r />0 
so that 

N(X; x, x') = c. F(x) F(x') �9 X ~ (r) + O (X 6 (r)- ~) 

as X-~oo; in fact they prove an even sharper result. 
If  we relax the condition that F be geometrically finite but continue to assume 

that ~(F)>N/2 then one can still prove a positive result. There exists, in fact, a 
measure z supported on IN~2, fi(F)], and a function pr(x, x ' ; s )  defined for 
sE]N/2,~(F)] and x ,x ' 6B  N+I so that for some r/>0 

N ( X ;  x, x ' )  = f p r ( x ,  x ' ;  s). X s. dz(s)+O(Xa(r) -~) 

as X~oo. In this the principal term dominates X a for all a<3(F) .  The function 
s,-~pr(x, x';  s) is z-measurable and is z-almost everywhere smooth as a function 
of x and x';  in either of these two variables it is an eigenfunction of the Laplace 
operator with eigenvalue - s (N-s ) .  One also has that 

pr(x, x ' ;  s) ~ <= Pr(X, x; s)pr(x', x';  s) 

and that pr(x, x; s )>0  z-almost everywhere. See [6] for a discussion of the case 
N =  1 ; the general case is analogous. The result of Lax and Phillips discussed above 
is equivalent to z having, when F is geometrically finite, an atom at fi (F) which is 
isolated and pr(x, x';  ~(F))=F(x)F(x'). 

All of these results are based on the spectral theory of the Laplace operator 
and for this reason use heavily the assumption that ~(F)>N/2. The objective 
of this paper is to obtain analogous results when 3(F)<=N/2. We shall prove 

Theorem 1. Suppose F is convex cocompact; then there exists c>0,  so that 

N(X; x, x ' )  ~ c .  F (x )  F (x ' )  �9 X ~(r~ 
as X~oo. 

For the notion of "convex cocompact" see [7] or [10]; it is a geometrical con- 
dition stronger than "geometrically finite", and excludes the possibility that F has 
parabolic elements. The assertion of Theorem 1 is almost certainly also valid under 
the assumption that F be geometrically finite but our proof will be based on some 
results about spectral theory which are not yet available in this generality. Note 
that in the theorem we have no information about the "error term". 
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Theorem 1 will be deduced from another theorem which we shall now describe. 
The Laplace operator A possesses a resolvent operator ( - A - - s ( N - s ) )  -~ on 
L2(H N+~, o% where cr is the measure derived from the hyperbolic metric, with 
kernel 

r(x, x'; s) = 

2-1 - 2s  g --  N / 2  iF ( S )  

r ( s - N / 2 + l )  
L(x, x')-S2Fl(s, s - ( N -  I)/2; 2 s - ( N -  1); L(x, x ')-l) ,  

where 
Since 

r(x, x ' ;  s )~2  - 1 - ~  

as L(x, x ' ) ~ o  the series 

Re (s)>N/2 (but we shall use r(x, x' ;  s) without this restriction on s). 

- N/~r(s) L(x, x ' ) - '  
r(s-N/2+l) 

rr(x, x ' ;  s) = z ~ r  r(x, ?x';  s) 

converges absolutely when Re (s)>5(F).  It has been proved recently by Mazzeo 
and Melrose [3] that under the assumption that F be convex cocompact rr(x, x';  s) 
has an analytic continuation as a meromorphic function to the entire plane (see 
[1] for a simpler treatment of the case N =  1). Moreover, by a theorem of Sullivan 
([10], see [7] Lecture 3, Theorem 1 for a formulation in the language we are using 
here) r ( s - N / 2 + l ) r r ( X ,  x ' ; s )  has at most a simple pole at 6(1"). We shall now 
prove: 

Theorem 2. Suppose that F is such that rr (x, x' ;  s) has an analytic continuation 
to a neighbourhood of {sCC: Re (s)>-6(F)} as a meromorphic function, and that 
F is infinite. Then F ( s - N / 2 +  1)rr(X, x ' ;  s) has a simple pole at 5(F) and no further 
poles on {sC C: Re (s)=5(F)}. There exists a probability measure # supported on 
L (F) and a constant cl (F) > O, so that the residue of  F ( s -  N/2 + 1). rr (x, x"; s) is 
cI(F)F(x)F(x'),  where F ( x ) = f  P(x, ~)~(o d#(;). 

Note that # is, in Sullivan's terminology [10], a conformal density of dimen- 
sion 6(F). The assumption on F is, as we noted above, satisfied when F is geo- 
metrically finite. It seems very likely that it is only satisfied for geometrically finite 
groups. 

We shall now deduce Theorem 1 from Theorem 2. If  F is geometrically finite 
it follows from the remarks above and Theorem 2 that Z r c r  L(x, Vx') -s has 
an analytic continuation to a neighbourhood of {s~ C: Re (s)=>6(F)} as a mero- 
morphic function with a simple pole at 6(1"). The residue at this pole is of the form 
c2(F)F(x) F(x') for a certain constant c2(F)>0. Theorem 1 follows from this and 
the Wiener--Ikehara Tauberian theorem. 
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The proof of Theorem 2 is based on ideas from ergodic theory although these 
might not be too evident. It was suggested by work of Nicholls [4] on the hyperbolic 
lattice-point problem, and by that of Ruelle [9] and of Parry and Pollicot [8] on 
the Ruelle zeta-function and its geometric applications. The question as to whether 
poles could exist on the abscissa of convergence was posed in [1] and [7]. 

2. Proof of  Theorem 2 

As we have already remarked F(s--N/2+l)rr(X, x';  s) can have at most a 
simple pole at fi(F). As fi(F) is the abscissa of convergence of a Dirichlet series 
with positive terms, it follows from Landau's theorem that 6(F) must be a sin- 
gularity of F(s-N/2+ 1)rr(x, x ' ;  s), and hence J(F) is a pole of order 1. 

In particular it follows that F is of divergence type. By a theorem of Aaronson 
and Sullivan (see [11], Theorem 4) it follows that, if # is a conformat density of dimen- 
sion fi(F), then both # and the measure on {(~,~'): ~,~'CSN,~r '} given by 
II~-~ql - ~ ( ~  d/t (0 .  d/t (~') are ergodic. The construction of / t  given in [5], [7] and [10] 
now shows that the residue of F(s-N/2+l)rr(X, x';  s) has the form stated. 

We now have to show that there are no further poles on (fi(F))= 
{s~ C: Re (s) = ~ (F)}. Suppose that so were such a pole, Re (so) = fi (F), so ~ fi (F). Since 
6(F) is a simple pole it follows that so cannot be of order greater than 1, and is there- 
fore again a simple pole. Now consider for a sequence (sj), sj~so, Re (sj)>fi(F) 
the sequence of measures 

(s;t-so) z~r~r L(x, 7x')-sJ fir(x') 

where fi, is the Dirac measure supported at u. The total mass of elements of this 
sequence is bounded above since 6(F) is a simple pole. Thus by Helly's theorem 
there exists a subsequence on which this converges weakly to a measure/t  0. We can 
apply this measure to the constant function 1 and we see that, because so is a simple 
pole,/~o is non-zero, at least for almost all x, x'. We take, for convenience, x ' = 0 ;  
the argument of [5], [7], Lecture 2 now shows that 

f e(w, r176 a/to( ) 
is a F-invariant eigenfunction of the Laplace operator with eigenvalue -so (N-so). 
In particular,/to is a conformal density of dimension So. 

The measure/~ referred to above was constructed by the same process with So 
replaced by ~(F). Since the elements in the sequence used to construct/to can be 
dominated by those used to construct/t ,  we see that /to is absolutely continuous 
with respect to/l .  Thus 1[r162 d/~o(r d/zo(r which is F-invariant, is absolutely 
continuous with respect to [1ff-~'l[ -2*(r) d#(~).d#(~'). But this latter measure is 
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ergodic and so, as #o~0 it follows that there is a c r  so that 

I[~-~'ll-~0 d/t0(f) d#0 (~') = c. l l~-~ ' l l -~(r )d#(()  d# (~'). 

Let now q)=d#o/d#. Then we have for #-almost all ~, ~' 

Note that the right-hand side is continuous on L(F)• it follows that 
q~ can be taken to be continuous and the equation ( . )  is valid on L(F)• 
diagonal. This follows as every non-trivial open subset of  L(F)• has posi- 
tive measure, this itself being a consequence of  the ergodicity of the invariant measure. 

We shall derive a contradiction from ( . ) .  To do this it is convenient to pass 
to the upper half-space model of hyperbolic space. We do this so that OER n and 

are the fixed points o f a  loxodromic element ? of F. Let so--6(F)=it. From ( . )  
and ergodicity it follows that I~01 is constant; in particular we may assume that 
~o (O)~ 0. We note also that the form that ( . )  takes in the upper half-space model 
is exactly the same as ( . )  and we shall therefore introduce no new notations. Set 
~'=0; we see that there exists a constant c~ so that for ~EL(F)-{O}, we have 

~o(~) = c~ .  11~11 ~' .  

We substitute this into ( . )  and obtain 

(lift -ff'P/llffll ~ llff'll~) " = c~lc. 

Let ?(x)=2A(x) where AEO(N) and 2ER+ x. Then 

I l r ( f ) - ~ ( f f ' ) l l  ~ _ 2 _ 3  I L f - f ' l l  ~ 

and it follows that 2 ~it= 1. Next one has 

(**) 
llrkWll ~ I[~'P 

Suppose that 2 > 1  and that k . . . .  Then the only way that ( . . )  can be sat- 
isfied for sufficiently negative k is that for such k one has 

Since A k returns infinitely often to a neighbourhood of the identity in O(N) it 
follows that (~', ( )=0 .  Thus ( and ( '  are orthogonal. The only assumption that 
we made on f and ~' was that f, ('EL(F), ~ ' ,  ~, ~'~0, ~. It would now follow 
that Card (L(F)-{0})-< N. This is a contradiction if F is non-elementary. This com- 
pletes the proof  of  the theorem. 
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