On star polynomials of complements of graphs

E. J. Farrell and C. M. De Matas

1. Introduction

The graphs considered here will be finite, undirected, and will contain no loops nor multiple edges. Let G be such a graph. An m-star in G is a subgraph of G which is a tree with $m+1$ nodes and containing a node of valency m, called the centre of the m-star. A 1 -star is an edge and a 0 -star, a node. A star cover of G is a spanning subgraph of G, in which every component is a star.

Let us associate with every m-star S_{m} in G, an indeterminate or weight w_{m+1}, and with each star cover C in G with r components; $S_{m_{1}}, S_{m_{2}}, \ldots, S_{m_{r}}$ - the weight

$$
w(C)=\prod_{i=1}^{r} w_{m_{i}}
$$

Then, the star polynomial of G is

$$
E(G ; \underline{w})=\sum w(C)
$$

where the summation is taken over all the star covers C of G, and \underline{w} is a vector of indeterminates w_{1}, w_{2}, etc.

The star polynomial of a graph was introduced in Farrell [1]. The basic properties of $E(G ; \underline{w})$ are given in [1]. In this paper, we will obtain a formula for the star polynomial of the complement \bar{G} of a graph G, in terms of the star polynomial of G. This will yield a useful result on costar graphs (graphs with the same star polynomial). We will then derive various formulae for certain coefficients of $E(\bar{G} ; w)$. A formula will also be deduced for the number of spanning stars in \bar{G}. Finally, we will use our results to deduce analogous results for the matching polynomial of the complement of a graph.

Throughout this paper, we will assume that a graph has p nodes and q edges, unless otherwise specified. We will denote the complete graph with p nodes by K_{p}. The number of spanning stars in G will be denoted by $\Gamma(G)$. Since the same weight vector $\underline{w}=\left(w_{1}, w_{2}, \ldots\right)$ will be used throughout the paper, we will abbreviate $E(G ; \underline{w})$ to $E(G)$.

2. The main theorem

Theorem 1. Let

$$
E(G)=\sum_{k} A_{k} w_{1}^{n_{1}, k} w_{2}^{n_{2}, k} \ldots w_{r}^{n_{r}, k},
$$

where $\sum_{i=1}^{r} i_{i, k}=p$ - the number of nodes in G. Let $N_{k}=\sum_{i=1}^{r}(i-1) n_{i, k}$. Then

$$
E(\bar{G})=\sum_{k} A_{k}(-1)^{N_{k}} \sum\binom{n_{1, k}}{s} E\left(K_{s}\right) \prod_{i=2}^{r}\left(\prod_{j=1}^{n_{1}, k} \varepsilon_{i, j} w_{i+\delta_{i, j}}\right)
$$

where the second summation is taken over all non-negative integral solutions of $s+\sum_{u=2}^{r} \sum_{j=1}^{n_{u, k}} \delta_{u, j}=n_{1, k}$ and

$$
\varepsilon_{i, j}= \begin{cases}1 & \text { if } i \neq 2 \\ 2 & \text { otherwise }\end{cases}
$$

Proof. The result can be established, by using the Principle of Inclusion and Exclusion. Let the edge set of G be $\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$. We will consider G to be a subgraph of K_{p}. A cover of K_{p} will have property i if it contains the edge e_{i}. The covers of \bar{G} will then be those covers with none of the q properties.

Consider a cover C of G defined by the monomial $w_{1}^{n_{1, k}} W_{2}^{n_{2, k}} \ldots w_{r}^{n_{r}, k}$. A cover C^{*} of K_{p} having C as a subgraph will contain $N_{k}=\sum_{i=1}^{r}(i-1) n_{i, k}$ edges of G, and therefore N_{k} properties. We can construct all such possible covers C^{*} of K_{p} as follows. Take a subset of s of the $n_{1, k}$ isolated nodes and form all possible combinations of stars. The remaining $n_{1, k}-s$ nodes can then be used to form (possibly) bigger stars from the existing stars in C.

The weight of all the possible combinations of stars formed with the s isolated nodes is $E\left(K_{s}\right)$, and the s nodes can be chosen in $\binom{n_{1, k}}{s}$ ways. For any 1 -star in C, we may either (i) leave it unchanged or (ii) choose one of the two nodes as a centre, then join it to $\delta_{2, j}$ of the remaining nodes to form the star with weight $w_{2+\delta_{2, j}}$. The contribution of these stars to weight of C^{*} will be

$$
\prod_{j=1}^{n_{2, k}} \varepsilon_{i, j} w_{2+\delta_{2}, j}
$$

where $\varepsilon_{i, j}=1$, if the 1 -star is unchanged and
$\varepsilon_{i, j}=2$, if nodes are added to it, to create larger star. For the proper star (i.e. an i-star when $i>1$) with i nodes, we can join its centre to any number $\delta_{i, j}$ of isolated nodes, to form a larger star with weight $w_{i+\delta_{i, j}}$. The contribution of these new stars to the weight of C^{*} will be

$$
\prod_{j=1}^{n_{i, j}} \varepsilon_{i, j} w_{i+\delta_{i, j}}
$$

where

$$
\varepsilon_{i, j}=1
$$

The cover C^{*} of K_{p} will have N_{k} properties. Therefore we multiply the weight $W\left(C^{*}\right)$ by $(-1)^{N} k$ in accordance with the Principle. It is clear that the result follows from the Principle of Induction.

An illustration

Let G be the cycle with 5 nodes. Then it can be easily verified that

$$
E(G)=w_{1}^{5}+5 w_{1}^{3} w_{2}+5 w_{1}^{2} w_{3}+5 w_{1} w_{2}^{2}+5 w_{2} w_{3} .
$$

We will tabulate the contributions of the various covers of G.

Term in $E(G)$	Contribution to $E(\bar{G})$
w_{1}^{5}	$E\left(K_{5}\right)=w_{1}^{5}+10 w_{1}^{3} w_{2}+30 w_{1}^{2} w_{3}+15 w_{1} w_{2}^{2}+20 w_{1} w_{4}+30 w_{2} w_{3}+5 w_{5}$
$5 w_{1}^{3} w_{2}$	$-5\left\{\left(w_{1}^{3}+3 w_{1} w_{2}+3 w_{3}\right) w_{2}+\binom{3}{2} 2\left(w_{1}^{2}+w_{2}\right) w_{3}+\binom{3}{3} 2 \cdot w_{1} w_{4}+2 w_{5}\right\}$
$5 w_{1}^{2} w_{3}$	$5\left\{\left(w_{1}^{2}+w_{2}\right) w_{3}+\binom{2}{1} w_{1} w_{4}+w_{5}\right\}$
$5 w_{1} w_{2}^{2}$	$5\left(w_{1} w_{2}^{2}+2 \cdot 2 w_{2} w_{3}\right)$
$5 w_{2} w_{3}$	$-5 w_{2} w_{3}$

Hence $E(\bar{G})=w_{1}^{5}+5 w_{1}^{3} w_{2}+5 w_{1}^{2} w_{3}+5 w_{1} w_{2}^{2}+5 w_{2} w_{3}$.
The following corollary gives a useful result for costar graphs. It confirms an observation made during a computer generation of catalogues of star polynomials of graphs with up to 7 nodes [3].

Corollary 1.1. If two graphs are costar, then so also are their complements.
Proof. This is immediate from the theorem.

3. Some deductions for the coefficients of $E(\bar{G})$

The following definitions will be relevant to this section.
Definitions. Let G be a graph with p nodes. A simple m-cover of G is a star cover consisting of an m-star and $p-m-1$ isolated nodes. It is clear that the cover consisting of p isolated nodes (i.e. a 0 -star and $p-1$ isolated nodes) and the cover
consisting of a spanning star i.e. a ($p-1$)-star together with 0 isolated nodes) are simple covers. The weight of a simple m-cover i.e. $w_{1}^{p-m-1} w_{m+1}$ will be called a simple term of $E(G)$. The number of simple m-covers, or the coefficient of $w_{1}^{p-m-1} w_{m+1}$, will be called a simple coefficient and will be denoted by $c_{m}(G)$ (or simply by c_{m}, when G is understood).

It is clear that for any graph $G, c_{0}(G)=1$ and $c_{1}(G)=q$, the number of edges in G. The following lemmas give some properties of c_{m}. They can be easily proved.

Lemma 1. Let G be a graph with p nodes. Let the partition of G be

$$
\left(n^{b_{n}}, \ldots, 2^{b_{2}}, 1^{b_{1}}, 0^{b_{0}}\right)
$$

where $k^{b_{k}}$ denotes $b_{k}, b_{k}, \ldots, b_{k}(k$ times $)(0 \leqq n \leqq p-1)$. Then for $m>1$,

$$
c_{m}=\sum_{r=m}^{n}\binom{r}{m} b_{r}
$$

Lemma 2. Let n be the highest valency of a node in G. Then $E(G)$ contains all the simple terms $w_{1}^{p-r-1} w_{r+1}(0 \leqq r \leqq n)$, with non-zero coefficients i.e. $c_{r} \neq 0$, for $0 \leqq r \leqq n$.

Lemma 3.

$$
c_{0}\left(K_{p}\right)=1, c_{1}\left(K_{p}\right)=\binom{p}{2} \quad \text { and } \quad c_{m}\left(K_{p}\right)=p\binom{p-1}{m}, \quad \text { for } \quad m>1
$$

It is clear from Theorem 1 , that a simple term in $E(\bar{G})$ can only result from a simple term in $E(G)$. Let $c_{k}(G) w_{1}^{p-k-1} w_{k+1}$ be a simple term in $E(G)$. The associated terms in $E(\bar{G})$ will be

$$
c_{k}(G)(-1)^{k} \sum_{r=0}^{p-k-1}\binom{p-k-1}{r} E\left(K_{p-k-r-1}\right) \varepsilon_{k, r} w_{k+r+1} \quad(k>0)
$$

The resulting contribution to the simple terms in $E(\bar{G})$ will therefore be

$$
\begin{equation*}
\gamma_{k}=c_{k}(G)(-1)^{k} \sum_{r=0}^{p-k-1}\binom{p-k-1}{r} \varepsilon_{k, r} w_{1}^{p-k-r-1} w_{k+r+1} \quad(k>0) \tag{1}
\end{equation*}
$$

For $k=0$, the contribution of the simple term w_{1}^{p} of $E(G)$ will be $E\left(K_{p}\right)$. Therefore the contribution to the simple terms of $E(\bar{G})$ will be (from Lemma 3),

$$
\begin{equation*}
w_{1}^{p}+\binom{p}{2} w_{1}^{p-2} w_{2}+\sum_{j=1}^{p-1} p\binom{p-1}{j} w_{1}^{p-j-1} w_{j+1}=\sum_{s=0}^{p} \varepsilon_{0, s} w_{1}^{p-s-1} w_{s+1} \tag{2}
\end{equation*}
$$

where $\varepsilon_{0,0}=1, \varepsilon_{0,1}=\binom{p}{2}$ and $\varepsilon_{0, s}=p\binom{p-1}{s}$, for $s>1$.
We can combine the contributions given in Equations (1) and (2), to obtain the following lemma.

Lemma 4.

$$
\gamma_{k}=c_{k}(G)(-1)^{k} \sum_{r=0}^{p-k-1}\binom{p-k-1}{r} \varepsilon_{k, r} w_{1}^{p-k-r-1} w_{k+r+1}
$$

where

$$
\begin{gathered}
\varepsilon_{0,0}=1 ; \varepsilon_{0,1}=\binom{p}{2} ; \varepsilon_{0, s}=p\binom{p-1}{s}, \text { for all } s>1 ; \varepsilon_{1,0}=1, \\
\varepsilon_{1, r}=2, \text { for } r>0 ; \varepsilon_{k, r}=1, \text { for } k>1
\end{gathered}
$$

By considering all the simple terms of $E(G)$, we can obtain the total contribution; which is $\sum_{k=0}^{n} r_{k}$, where n is the highest valency of a node in G. In order to obtain $c_{i}(\bar{G})$, we put $k+r+1=i+1 . \Rightarrow r=i-k$. We note also that no monomial of a simple cover in G, with an m-star, for $m>i$ can contribute to $c_{i}(\bar{G})$. Thus we have the following theorem.

Theorem 2.

$$
c_{i}(\bar{G})=\sum_{k=0}^{i}(-1)^{k} c_{k}(G)\binom{p-k-1}{i-k} \varepsilon_{k, i-k}
$$

where $\varepsilon_{k, j}$, for all k and j, are as defined in Lemma 4.
The above theorem can be used to obtain a formula for the number of spanning stars in \bar{G}. We simply put $i=p-1$ to obtain the following corollary.

Corollary 2.1.

$$
\Gamma(\bar{G})=\sum_{k=0}^{n}(-1)^{k} C_{k}(G) \varepsilon_{k},
$$

where $\varepsilon_{0}=p ; \varepsilon_{1}=2$ and $\varepsilon_{r}=1$, for all $r>2$.

4. Applications to Matching Polynomials

A matching is a star cover containing nodes and edges only. The matching polynomial of a graph G, written as $M(G ; \underline{w})$, was introduced in Farrell [2]. The following lemma gives in a formal manner, the relation between $M(G ; \underline{w})$ and $E(G ; \underline{w})$.

Lemma 6.

$$
M(G ; \underline{w})=E\left(G ;\left(w_{1}, w_{2}, 0,0, \ldots, 0\right)\right)
$$

We can use Theorem 1 in order to obtain an analogous result for the matching polynomial of the complement of a graph. In this case, we will assume that

$$
M(G ; \underline{w})=\sum_{k=0}^{[p / 2]} a_{k} w_{1}^{p-2 k} w_{2}^{k}
$$

Using Theorem 1 with $N_{1, k}=p-2 k, N_{2, k}=k$ and $r=2$, we get

$$
N_{k}=\sum_{i=1}^{2}(i-1) n_{i, k}=n_{2, k}=k .
$$

Also $\delta_{2, j}=0$, for all \dot{j}, since the largest subscript of w must be $2 . \Rightarrow \varepsilon_{i, j}=1$, for all i. Finally, $s=n_{1, k}=p-2 k . \Rightarrow\binom{n_{1, k}}{s}=1$. Hence we obtain the following result.

Lemma 7. Let

$$
M(G)=\sum_{k=0}^{[p / 2]} a_{k} w_{1}^{p-2 k} w_{2}^{k}
$$

Then

$$
M(\bar{G})=\sum_{k=0}^{[p / 2]} a_{k}(-1)^{k} M\left(K_{p-2 k}\right) w_{2}^{k}
$$

By using the explicit formula for $M\left(K_{p}\right)$ given in Theorem 18 of [2] and the above lemma, we obtain the following theorem.

Theorem 3.

$$
M(\bar{G})=\sum_{k=0}^{[p / 2]} a_{k}(-1)^{k} \sum_{m=k}^{[p / 2]} \frac{(p-2 k)!w_{1}^{p-2 m} w_{2}^{m}}{(p-2 m)!(m-k)!2^{m-k}}
$$

References

1. Farrell, E. J., On Introduction to Matching Polynomials, J. Comb. Theory, Ser B. 27 (1979), 75-86.
2. Farrell, E. J., On a Class of Polynomials Associated With the Stars of a Graph and its Application to Node-disjoint Decompositions of Complete Graphs and Complete Bipartite Graphs Into Stars, Canad. Math. Bull. Vol. 22 (1) (1979), 35-46.
3. Farrell, E. J. and Dematas, C. M., On the Characterizing Properties of Star Polynomials, Utilitas Mathematica (to appear).
