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Classes of  non-quasianalytic functions on Rn are usually defined by imposing 
conditions on the derivatives of  the functions. For example, if (Mp)pEN0 is an ap- 
propriate sequence of  positive numbers, one defines 

8 (~) (R") :={fEC~(R") [  for each compact set K in R" and each h > 0  

sup sup If(') (x)l(h I'IMI~t)-I < ~}; 

d~ ") is defined similarly (replacing the all quantifier over h by an existence 
quantifier). Continuing the classical work of  E. Borel [5] many authors (see Bron- 
shtein [7], Bruna [8], Carleson [9], Dzanasija [10], Ehrenpreis [11], Komatsu [15], Mi- 
tyagin [22], Petzsche [24] and Wahde [30]) have investigated conditions on (Mp)g~N ~ 
and on sequences (a~)~N~ implying the existence of  fCg~u~)(R ") (resp. N{M~} (R") 
with 

f ~ ' ) ( 0 ) = a ~  for all ~CN~+ 

In the present note we study this question and a version of  Whitney's extension 
theorem for the non-quasianalytic classes doo,(R ") which have been introduced by 
Beurling [2] and Bj/Srck [3] using the Fourier transform. Most  familiar function 
classes, like the Gevrey classes, can be obtained by both methods (Mp=(pI)  s or 
o9(x)= ]x] l/s, s >  1). However, in general, the two definitions lead to different classes. 

To define d%(R") we vary Beurling's approach a bit. We assume that 
o9: R+[0 ,  ~,[ is a continuous function having the following properties: 

.. o9(2t) ,o ,. log t  
(i) nm s u p - -  < and n m - -  = 0; 

'+*+ o9 (t) t+ 09 (t) 

ogCt) 
(ii) f s :  1 + at < = ;  

(iii) q3: t~og(e t) is a convex function on R. 
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By qg* we denote the Young conjugate of ~o1[0, o~[, and we put 

g'~(R"):={ fEC~(R")tsup~CN~,~j=<msup , f (~)(x)]exp(-mg*(J~-)} <:co for all mEN}. 

Then the main result of the present paper states that the following assertions 
are equivalent: 

(1) For each compact convex set K in R ~ with I( # 0 a Whitney field f = ( f~), ~ r ~  C (K)N~ 
is of  the form f=(g(')lK),~N~ for some gEgo(R") iff for each mEN 

sup sup,f~(x)}exp['m9*([--~--)l<oo. 
~EN~ x E K  

(2) The characterization in (1) holds for each set K= s ~, where s is a bounded 
open set with real-analytic boundary. 

(3) A sequence (a~,)~cN~ECN~ is of the form B~(g):=(g(~)(O))~cN3 for some gEgo(R ~) 
iff for each mEN 

sup ]a~] exp(-mcp* ( M  1] <oo. 

(4) There exist K > I  and t0>0 with o~(Kt)<-Ko~(t) for all t ~ t  o. 

. o ~ ( s )  
(5) There exists C > 0  with t j~- -~ds<=Cco( t )+C for all t>0.  

Moreover, we show that for every continuous increasing function co: [0, ~[-~ 
[0, ~[ with m(0)=0 and limt~ooco(t)=oo which satisfies (5), the function 

. ~  ~0(s) 
�9 :: t~-~tJt ~ d s  is an increasing concave function with z(0)---0 which sat- 

isfies (5) and 
o2(0 <= ~(t) <= Cco(t)+C for all t > 0. 

This implies that the class g(M~) coincides with a class of type ~,o as soon as the 
sequence (Mp)pEN0 satisfies the conditions (M1), (M2) and (M3) of Komatsu [14]. 
As a consequence, our main theorem extends previous results of Ehrenpreis [11] 
and Komatsu [15]. 

The proof of our main result is based on the methods which were introduced 
by Carleson [9] and Ehrenpreis [11]. To sketch the idea, let 6~,o(K) denote the space 
of Whitney fields on K defined by the estimates in (1). Then we use an argument 
of Taylor [26] and Whitney's extension theorem to show that 6~,(K)~, the dual 
space of go(K) equipped with the topology of uniform convergence on the bounded 
subsets of go(K), is isomorphic to a weighted space AI, x(C ") of entire functions 
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by the Fourier--Laplace transform. Since go,(R"); is also isomorphic to a weighted 
space Ap(C") of entire functions, a theorem of Dieudonn6 and Schwartz implies 
that the restriction map Qr: go,(R")-* go,(K) is surjective if and only if the in- 
clusion map J:  Ap,,(C")--,-Ap(C") is an injective topological homomorphism. 
Because of this characterization one can use the Phragm6n--Lindel6f principle and 
estimates of the harmonic extension P,o of~o to show that Qr is surjective if Po, = O(o9), 
which is equivalent to (4) and (5). If this condition does not hold then one can use 

Hfrmander 's  L~-estimates for the solutions of 0-problems to show that J is not a 
topological homomorphism. 

To indicate a further consequence of  our main theorem, assume that to sat- 
isfies (i)--(iii) and (4) and let go,({0}, R") denote the Fr6chet space of all sequences 
(a~),eN~ in CN~ which are defined by the estimates in (3). Then one would like to 
know whether the Borel map B,: go, (R") ~ go, ({0}, R ~) admits a continuous linear 
right inverse E,.  Using a result of [19] we show that the condition 

for each C > I  there exist 6 > 0  and R0>0 with 

( * )  ~o-I(CR)o)-I(6R) <= (o)-X(R)) ~ for all R -> Ro 

is necessary for the existence of E,.  In [21] we show that ( , )  is also sufficient. 

Acknowledgement. The first named author gratefully acknowledges research 
support from the Deutsche Forschungsgemeinschaft. The research of the second 
author was supported in part by a grant from the National Science Foundation. 

1. Weight functions 

In this section we fix some notation and introduce the weight functions 09 
which will be used subsequently. Without further reference we shall use the stan- 
dard notation from complex analysis (see H6rmander [12])and from functional 
analysis (see e.g. Schaefer [25]). 

1.1. Weight functions 09. Let 09 : R-~[0, ~[ be a continuous even function which 
is increasing on [0, ~[ and satisfies co(0)=0 and limt~= og(t)=oo. We consider 
the following conditions on co: 

(~)' 0 = o9(0) <- co(s+t)<-og(s)+ o~(t) for all s, tEN; 

(~) co(2t)=0(o9(0) as t tends to 0% 

o~(t) dt < ~ ;  
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(y) l o g ( l + l t i ) = O ( w ( t ) )  as t tends to ~o; 

,. log t 
(r)' : , r a m _  o~(0 = 0; 

(6) r t ,-,- co (d) is convex on R;  

(~) there exists C > 0 with f~ 09@0 dt <- Ce) (y )+C for all y >- O. 
t z 

1.2. Remark. (a) The conditions 1.1 (~)', (fl) and (y) are basically those which 
are used in Bj6rck [3] (see also Beurling [2]) to develop a theory of ultradifferentiable 
functions and ultradistributions. 

(b) Note that a function o) which satisfies the general conditions in 1.1 and 

1.1(fl) has the property l i r n t . ~ = 0 ,  since for t->l 
t 

,o(o = , -  r ds. 
t d t  S 2 = J t  S 2 

1.3. Proposition. Let co : [0, o~[~[0, oo[ be a continuous increasing function with 
co(O)=O and limt_~, og(t)= ~o. Then the following conditions are equivalent: 

(1) lira lira sup ew(t) ~.~o t-.o ~ = 0 ;  

(2) there exists K > 1 with 

(3) there exists C > 0 with 

~ofKt) 
lira sup-----Tzv- < K; 

f~ r dt < CoJ(y)+C for all y > 0 ;  
1 t ~ = 

(4) there exists an increasing concave function z: [0, oo[-~[0, ~o[ with ~(0)=0 and 

(i) co(y)< (y)<co~(y)+c = - X  = 

(ii) f~* x(y t )  dt <= Cx(y )+C.  
J 1 t ~ 

eco(0 
Proof. (1)=*(2): By (1) there is 0 < s < l  with l i m s u p t . ~ - - - - . < l .  

o~(~0 
1 

(2) holds with K = - - .  
8 

(2)=*(3): From (2) we get the existence of  T > 0  and 0 < ~ < 1  with 

Hence 

o)(Kt) --<- CK-e)og(O for all t _~ T. 
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This implies that for each y~_T we have 

o~(yt) ~o(KJ+ly) 
dt f 

= J=O/K~ t~ K~J 
f~ t 2 Z~o -r,+, o)(yt) dt <- 2 f = o  ( K j + I - K i )  

K(K-  1) co o e 

Hence (3) holds. 
(3)::*(4): We define ~ by 

,~(y) := f [  ~(yOt 2 dt = y f ;  _~=s) ds. 

Then (i) and (ii) follow easily from (3) and the fact that m is increasing. It is also 
obvious that ~ is increasing and satisfies x(0)=0. 

To show that x is concave, note that z is differentiable on ]0, ~[ with x ' (y )=  
din(s) 

J~'--~as--" re(s) , m(y)y =f" - - ' s  Hence x'  is decreasing, so z is concave. 

~x(0 
(4)=*(1): Because of (4) (i) it suffices to show lira,, 0 lim supt~.  --z(et-----S=0" To 

prove this, note that z satisfies z(2y)_<_:e(y) and hence 
2 

x(2"y) -< n(2"-Xy) 
2" -- 2 "-1 

for each n ( N  and each y->0. Since x is increasing, this implies by (4) (ii) 

(2"y) -< . ~ (2@) 
2-------r ~ j ~ l  2"--'-7---- 

. [~J+~ ~( t y )  d t  
<= 4 ~ j=~ J2J t 2 

fS ~(yt) ( )<  0,) < 4 -----i-i~dt < 4C x ( y ) + l  8C• 

1 1 1 
for Y>=Yo. Next let 0<e<-~  - be given and choose nCN with 2 .+ l<=e<- f f  -. 

Then we have for all large t > 0  and t=2"+ ly  

1 
en(t) < 2 -'h-• _ 2~(2"+1y) -< 16C 
~ ( 8 t ) -  ( 1 "~ 2R+lx(y)  n 

x 2 ~ ; r  t l, J 

which proves lim,~ o lira supt_~ 
~x(t) 

~----0. 
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Remark. I f  in Proposition 1.3 the function 09 has the additional property that 
t-*ok(e t) is convex on R then the function x in 1.3 (4) has this property, too, 

1.4. Corollary. I f  Ok satisfies one o f  the equivalent conditions in 1.3, then there 
exists 0 < ~ < 1  with Ok(t)=O(t~), 

Proof By 1.3 (1) there exist K > I  and t0>0 with 

o~(Kt) K 
Ok(t) ' < - 2 "  for all t_->t o . 

Hence there exist 0 < ~ < 1  and m->0 with 

o~(Kt) <_ K~ for all t >-- Km. 
~o(0 

This implies for all nCNo 
Ok(K m) 

co(K re+n) ~ K~n~o(K m) : K~Cm+ n) K~ m 

Since o~ is increasing, we get from this for all t6[K re+n, K m+n+~] 

CO (K  m) co (K  m) t~ co (K  m) 
ok(t) ~ ok(g m+a+l) ~ K ~(m+a+l) Kctm -- K (m+n)~ Ka(m_l-------- ~ ~ KaCm_l ) . 

1.5. Definition. Assume that co satisfies the general conditions in 1.1 as well 
a s  1.1 (fl). 
(a) The harmonic extension Po,: C-~[0, ~[ of  Ok is defined by 

[lyl f+~ ~o(t) 
P~,(x+iy):= ~ -.o ( t - x ) Z + y  ~ dt for (Yl :- 0; 

o9(x) for y = 0. 

(b) The radial extension (3: C'-~[0, ~[ of  Ok is defined by r3(z)=ok(Izl). 

1.6. Remark. (a) It is well-known that P~, is continuous on C and harmonic 
in the (open) upper and lower half plane. 

(b) I f  co satisfies the general conditions in 1.1 as well as 1.1(6) then ~3 is a 
continuous plurisubharmonic function on C n. In this case we have rh-<P,, for 
n =  1, provided that co satisfies 1.1(fl), too. 

1.7. Proposition. Assume that o9 satisfies the general conditions o f  1.1 as well 
as 1.1(fl). Then the conditions (1)--(4) in 1.3 are equivalent to 

(*) e~(z)=O(~o(z)) as Izl tends to ~.  
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Proof. If  ( . )  holds then there exists C > 0  with 

Po,(z) <- Cth (z) + C for all zE C. 

Since o) is increasing on [0, ~[, this implies for y > 0  

CO(t) 
C+Cog(.y) = C+Cd~(iy)  >= P,o(iy) >- Y f dt 

[t[>=y t2 + y ~ 

2 r ~  co@t)dt  > 1 f ?  co(yt) dt. -~ -1  t 2 + 1 = t z 

Hence co satisfies 1.3 (3). 
Next assume that co satisfies one of  the equivalent conditions (1)--(4) of  Prop- 

osition 1.3. qhen it follows easily from 1.3(2) that co satisfies condition 1.1(e). 
~Ihis and 1.3(3) implies the existence of  positive numbers C1 and C~ such that for 
z = x + i y  with x->O, y->O and x + y - > l  we have 

y f ~ ~( t )  d t + Y  f co(t) P (z) dt 
n- l t l_x+y ( t - x ) ~ +  y ~ rc Jttl>~+y ( t - x ) 2 +  y ~ 

2  o(x+sy)d,<co(x+y)+2f? o4 (x+y)) 
co--+Y)+-~-I(x: 1+s2 = _ _  l + s '  ds 

-< co(x+ y) + (71(1 +co(x+ y)) < C2(I +eh(z)) ~ �9 

By the symmetry properties of  co and the Poisson kernel, this implies ( , ) .  

1.8. Examples. (a) It is easy to check that the following functions co satisfy 
the general conditions in 1.1 and 1.1 (~), (y), (6) and (e) (after a suitable change on 
[-- A, A] for some A > 0). 

By Proposition 1.3 they are equivalent (in the sense of  1.3 (4) (i)) to an increasing 
concave function having the same properties 

(I) co(t) = 0og( l+ l t ] ) )  ~, s -> I; 

(2) co(t) = (log (1 + It[)) q exp ((log (1 + Itl))0, 0 < p < 1, 0 ~ q < 0% 

(3) co(t)=lt lP(log(l+lt[))  q, 0 < p < l ,  0<_-q<~o. 

(b) For a > i  there exists co satisfying the general conditions of  1.1 as well 
as 1.1(~)', (fl), (y)' and (6) such that for all large [tl we have ~o(t)=ltl(log [tl) -~ 
By Corollary 1.4 this function does not satisfy condition 1.2(e). 

In Section 2 we shall use the following lemma: 

1.9. Lemma. For co as in 1,1 assume that 1.1 (~) and (fl) are satisfied. Then there 
exists A > 0  such that for  all zCC we have 

Po,(z+w) <- AP,~(z)+A for  all wEC with lwl <= 1. 
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Proof. It is easy to check that 1,1 (~) implies the existence of K=  > 1 with 

(1) o)(t+x) <= K(1 +o)(t)+ro(x)) for all t, xER 

(see Braun, Meise and Taylor [6], 1.2). Hence there exists KI->I with e)(t+x) <- 
Kl (l + e) (x)) for all xCR and tCR with Itl<= 1. By the properties of the Poisson 
kernel, this implies 

(2) Po,(z+t) <= KIPo,(z)+K~ for all z~C and all t~R, It[ <= 1. 

Furthermore, (1) implies for all y ~0  

P~,(x+iy) = lY---LI f+_S m(t+x) dt <- K(1 +og(x))+KPo~(iy). t2+y 2 

Then there exists Ks -> 1 with 

(3) P~(z+iy)<=K2P,o(z)+K2 for all zEC and all y~R, [ y [ ~ l .  

Now the result is an obvious consequence of (2) and (3). 

2. Spaces of entire functions 

In this section we prove the main results of the present article, formulated in 
terms of entire functions. To state them in an appropriate way, we first introduce 
the (DF)-spaces which we are going to use. In doing this, we denote by A(C") the 
algebra of all entire functions on C". 

2.1. Definition. Let P=(PJ)jEN be an increasing sequence of continuous func- 
tions on C" with limlzl~.~ (pj+l(z)-pj(z))= ~ for all jCN. Then we put 

Ap(C n) : =  {fEA(C")[ there exists jEN with [If fly :=  sup If(z)] exp (-pj(z))  < oo}, 
z s  n 

and we endow Ax,(C n) with its natural inductive limit topology. If  P=(.iP)j~N for 
some function p on C", then we write Ap(C") instead of Ap(C"). 

Remark. From Montel's theorem it follows easily that At(C" ) is a (DFS)-space, 
i.e. the strong dual of a Fr6chet--Schwartz space. 

2.2. Proposition. For o9 as in 1.1 assume that 1.1(c~) and (fl) are satisfied. Let 
g, h: R"-* [0, oo[ be continuous positive homogeneous functions with h<= Mg .['or some 
M > 0  and define p and P=(Pj)jCN by 

p(z) :=  g(Imz)+th(z),  pj(z):= h(Imz)+jN(z),  j~N, zCC ~. 
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I f  P,~(z)=O((9(z)) then the inclusion map 

y: Ap(c  n) -~ A~(C") 

is a topological homomorphism, i.e. d is a linear topological isomorphism between 
Ap(C") and im (J). 

Proof. Since h<=Mg, it follows easily that Y is a continuous linear map. Since 
Ae(C" ) and Ap(C") are (DFS)-spaces, the lemma of  Baernstein [1], p. 29, implies 
that d is a topological homomorphism iff for each bounded set B in Ap(C") the set 
Y-I (B)  is bounded in Ae(C" ). To show that this holds, let B be fixed. Without loss 
of  generality we can assume that for suitable A, D > 0  we have 

(1) B={fEA~,(C")]lf(z)l<--Aexp(Dg(Imz)+DCo(z)) fora l l  zEC"}. 

J-I(B) will be bounded in Ae(C" ) i f  we show that there are positive numbers A' 
and D' with 

(2) J-~(B) c {f<Ae(C")l[f(z)t <=A" exp(h(Imz)+D'~(z)) for all zEC}. 

To prove (2) let fEJ-~(B)<Ae(C" ) be given. Then there exist positive num- 
bers A;  and D~r with 

(3) If(z)[ ~ A, exp(h(Imz)+D,~h(z)) for all z<C". 

Next fix z=(z l  . . . . .  z,)=(x~+iy~ ..... x.+iy,)CC" with I m z = ( y l ,  . . : , y , )#0 .  
Then choose an orthonormal basis {e~ . . . . .  e,} of  R" with (yt ..... y,)=17e, for 
some q > 0  and note that (x~, ,,-1 . .-x .... x,)=~'~= 1 cjej+~e,. Now put a . = ~ ' j =  1 cje 3, 
b:=e,, ~:=~+ir/  and note that 

F: C ~ C, F(w);=f(a+wb) 

is an entire function of  exponential type and that 

V({) = f(a +{b) = f(z) .  

The definition of  a and b implies 

la+wbl  ~ = lal=+lwl e - Z T - ~  c~+lwl 2 :=  c~+  Iwl =- 

Since co satisfies 1.1(c0, we can assume w.l.o.g, that o~(2t)<=Kco(t) for all t>0 .  
Then the definition of  c3 implies 

~(a + wb) = o~((c~+lwl~) ~/~) <= o~(c+ Iwl) <= g(~o(c)+~(W)). 

Hence the choice of  a and b and the properties of  h and g together with (1)and  (3) 
imply that F satisfies the following estimates for all wCC with Im w > 0 :  

(4) IF(w)l <= A exp [D(Imw) g(b)+DKog(c)+DK~(w)]. 

(5) [F(w)[ -< A j- exp [(Im w) h (b) +D~ Kco (c) + D$ K~(w)J. 
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Since co satisfies 1.1(fl) and 
Boas [4], 6.5.4) implies 

v f_+[ loglF(t)[ 
(6) log IF(u+ iv)l <= -~ .(u_t)~ +v ~ dt +vd 

o_ f+[ DK o(t)+DKco(c)+|og A 
- r~ ( u - t ) ~ + v  ~ 

where 

1.2(b), the Phragm6n--Lindel6f principle (see 

dt +vd 

= DKPo, (u + iv) + DKco (c) + log A + vd, 

(7) 

because of 1.2(b). 

d = lira 2 1  f .  log IF(re'~ sin OdO 
r ~  7~ r a o  

2 l f ~  ~- lira ~- r ~0 (log A s + h (b)r sin O + D s K(co (c) + 09 (r))) sin OdO 

= li~ (2 h(b) fo'~ sin' OdO ~" 2. D'Kco(r) f'sinOdO) =h(b)'r o 

Now note that by hypothesis there exists E -> _ 1 with 

(8) Po,(w) <- E~o(w)+E for all wEC. 

Hence we get from (6), (7) and (8) 

IF(w) l -<- A exp ((Ira w) h (b) + DKE~5 (w) + DKE  + DKco (c)) 

<- Ae ~ exp (h (Im (a + wb)) + D K E ( ~  (w) + co (c))) 

<- Ae DKe exp (h (Im (a + wb)) + 2DEKd9 (a + wb)) 

and consequently 

If(z)[ ~ A' exp (h(Im z) + B 'N(z ) ) ,  

where A' :=Ae  ~  and D':=2DEK. This proves that (2) holds and completes 
the proof. 

2.3. Proposition. For o~ as in 1.1 assume that 1.1 (cO, ([3), (~), (6) are satisfied. 
Let h :  R"~[0, oo[ be a continuous positive homogeneous function and define p and 
P =  (Pj).,'E N by 

p(z) := I lmzl+~(z) ,  p~(z):--- h ( I m z ) + j N ( z ) ,  jCN, zEC". 

I f  sup~:~ [z]~l /=oo then the continuous inclusion map 
t cotz) �9 J 

J: Ap(c") a.(c") 
is not a topological homomorphism. 
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Proof. Obviously, the result follows from: 

(1) There exists an unbounded sequence (gj)j~N in Av(C n) for which (J(gj))jcN is 
bounded in Ap(Cn). 

To prove this, we use the hypothesis to find a sequence (ai)jc N in C with 
P~(aj) 

limj_oo (5(aj) ~o. Without loss of  generality we can assume that Im a j > 0  for 

all j~N. We claim that the following holds: 

Claim. There exist a sequence (fj)jCN in C[z] and C, D > 0  with 

(2) sup sup If~(z)l exp (-DPo,(z)) = C <co. 
js zs 

(3) f j (a j )  = exp(P~,(aj)) for each jCN. 

To show that our claim implies (1), we assume without loss of  generality that 
h(1,0  . . . . .  0 )=min  {h(y)ly~R", lYl=l}. Then, for jEN, we define gjCA(C n) by 

gj (zl . . . .  , Zn) := f j  (zl) exp ( -  h (1, 0, ..., 0) izt). 

By Braun, Meise and Taylor [6], 2.2, there exists A =  > 1 with 

P,o(z) <= I lmz l+  A~o(z) for all z~C. 

Hence (2) implies for each jCN and all zCC ~ 

[gj (z) l <= C exp ((D + 1 + h (1, 0, ..., 0)) [Im zl + AD~o (z)) 

<---- C exp (AD'p (z)), 

which proves that (J(gj)jcN) is bounded in Ap(C~). 
To see that gj is in Ap(C ~) for all j~N,  note that j~ is a polynomial and that 

our choice of  the direction (1, 0 . . . . .  O) implies 

lexp ( -  h(1, 0, . . . ,  0)izl)l <= exp (h(Im zl , . . . ,  Im z~)) 

for all z =  (zl . . . . .  z~) g C ~. Next note that (3) and our choice of the sequence (a~)j ~ N 
imply that for each mCN and all sufficiently large jCN we have 

[g~(aj, 0 . . . . .  0)l exp (-pro(a j ,  0, . . . ,  0)) 

= [fj (a j)[ exp ( -  m~ (a j)) = exp Po, (a j) - m~5 (a j)) 

-~ exp Po~(aj) 1 Po~(aj) )) ~= exp ~-P~(aj)  . 

This shows that (gj)jeN is unbounded in At(On), since lim~_~ lajl= ~,. 

Proof o f  the claim. Since the function t--~o~(d) is convex and since o~ satis- 
fies 1.1(fl) by hypothesis, we can choose an increasing sequence (Rj)le N in ]0, ~[ 
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as well as sequences (.Aj)jE N in ]0, ~[ and (Bj)jE N in R such that the following con- 
ditions (4) and (5) are satisfied. 

(4) For each jEN the function t~ogj(e t) is continuous, strictly increasing and 
convex and satisfies coj~og, where ogj: R~-[0, oo[ is defined by 

ogj(t) := ~'og(t) if It[ -< Rj 
tAjloglt l+Bj if Itl > Rj. 

(5) For each jEN we have 
1 

sup 7" Iz-aj[~l 
Then we choose cpE~(C) with supp r 0-<~o-<1 and q~(z)=l 

for lzl_<-~ and we define ujE~(C) by 

(6) uj(z) := [1-----~-z ] -x exp (P,o(aj)) ~q)(z" ag). 
k aj / 

Since 09 satisfies 1.1(7) we get from (5) and Lemma 1.9: 
There exist L=>I and M > 0  such that for all jEN 

(7) -ast-~x Iuj(z)l 2 exp (-2LPo, s(z)) d2(z) -< M. 

Now note that wj: C~[0, ,~[, defined by 

~[Po, j(z) if Im z > 0; 
(8) wj(z) := [~j(z) if Im z <= O; 

is a continuous subharmonic function because of (4). From Lemma 1.9 it follows 
that we can assume w.l.o.g, that Imaj->l  for all jEN. Hence (6) and (8) imply 
by (7) 

f (9) c luJ(z)]2 exp (--2Zwj(z)) d2(z) <- M for all jEN. 

Since ~uj=0, it follows from H6rmander [12], 4.4.2, that there exist vjEC~(C) 
with ~vj=uj satisfying the estimate 

(10) fc Ivj(z)12exp(-2Lwj(z)-21~ <= M for all jEN. 
2 

Now note that the function f i :  C~C,  defined by 

( Z)I)J (Z) fjCz) := q~(z--aj) exp (Pa~(aj))-- 1 ----~j 
is holomorphic and that (10) implies: 
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There exists D ' ~  1 and M'>O such that for all j ( N  

(11) fc lfJ (z)l= exp ( -2D '  wj(z)-  5 log (1 + Izl=)) d,Z(z) <= M'. 

Since wj= O(log (1 + Izl =) it follows by standard arguments that f j  is a polynomial. 
By (4) and 1.6(b) we have wj<=Po for each jCN. Hence it follows from (11) and 
Lemma 1.9 that (fa)j~N satisfies condition (2). Since f j (aj)=exp (Po,(aj)), condi- 
tion (3) also holds. 

3. Extension of  ultradifferentiable functions 

In this section we introduce the classes Ro,(R") (resp. 8,o(K)) of r 
ferentiable functions of Beurling type on R" (resp. on a compact subset of R"). 
Then we use the results of the preceding section to derive necessary and sufficient 
conditions on o~ for the restriction map OK: go, (R")-+ go, (K) to be surjective. 

3.1. Definition. (a) A function a): R+[0, co[ will be called a weight func- 
tion if it satisfies the general conditions in 1.1 as well as 1.1 (~), (fl), (7)' and (a). 

(b) For a weight function co let q~ denote the function defined by 1.1(a). We 
define its Young conjugate (p*: [0, ~[~[0, ~[ by 

~o*(x) :---- sup {xy--~o(y)[y >-- 0}. 

3.2. Definition. Let o~ be a weight function and let [2cR" be open. Then 
we define 

g,~(O):={fCC=(~a)Jfor each m~N and each compact set K c O :  

o~6N~ xEK 

where f(~) denotes the ~-th derivative off .  We endow ~'o,(~2) with the l.c. topology 
which is given by the system of seminorms {pr, mlKC cO,  mEN}. 

Furthermore we define 

~,(~2) := in___dd ~,o(K),  
K c c f a  

where for a compact set K in R" we put 

~,~(K) := {fCRo~(R")I supp (f)  c K}, 

endowed with the induced topology. 
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3.3. Remark. Note that in Braun, Meise and Taylor [6], the following was 
shown : 
(1) 8o,(f2) and 9,o(K) are nuclear Fr6chet spaces and 9~,(f2) is non-trivial. 
(2) For p:  C"-*-[0,~[, p(z):=llmzl+ch(z), the Fourier--Laplace transform 

o~-: 8,o(R")~Ap(C"), ~ ( p ) : p :  z~(Izx, e-i(~l~)), is a linear topological iso- 
morphism. 

(3) I f  the weight function co satisfies also 1.1 (~)" then the spaces ~,o(g2) and g,~(f2) 
in 3.2 coincide with those which were introduced by Beurling [2] and Bj6rck [3]. 

(4) Without restriction we can assume that for all ~ENg and all mEN we have 

nmqO*,nm)-  j = 1 (P* {--~}--<-- mq0* {-~1 �9 

3.4. Definition. Let co be a weight function and K c R "  a compact set. 
(a) I f  K is the closure of its interior, then we define 

a . ( K )  := { f  = (L).eNaE C(K) ~ I.f(0)l/CE C ~176 (/~), 

(f(0)l/()(~) = f  j / (  for each uENg and for each mEN: 

I f  I,, := sup sup If~(x)l exp (-m~o*(Ic~l/m)) <~,}. 
aEN~ xEK 

(b) I f  K =  {a} then we define 

~'.({a}) := { f =  (f.).eNeeCN~ := sup IZI exp (-- m~*(l~l/m)) < co 
aEN~ 

for each mEN}. 

Both spaces are endowed with the 1.c. topology which is induced by the norm- 
system (I Ira)meN. From 3.3(4) it follows easily, that (1 Im)mEN is equivalent to 
([I IIr,),,cN, where 

?l $ 
IIflI. := sup sup IL(x)l exp ( -  m~j=x~o (~j/m)). 

aEN' d x E K  

(c) For  K as in (a) or (b) we define the restriction map 

~ : = g o , ( R  ") ~$~,o(K) by e ~ ( f ) : =  (f(')lK)~cNg. 

Obviously, Q~ is continuous and linear. 

3.5. Lemma. Let co be a weight function and let K be a compact convex subset 
o f  R ~ with ~2~ O. Then ex: 8,o (R") ~ 8,o (K) has dense range. 

Proof. Without loss of generality we can assume 0EK. Then for each 0 ~  

fEd',o(K) and 0 < t < l  we define f :  x~-~f(o)(tx) for x E ~ / ( .  By the definition of  
t 
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8o~(K) we have for each eEN" 

(1) ft(=)(x) = tMf[~)(tx)= tl~If~(tx), xE+/~,  

which impliesftE 8,o ( +  k ) .  By Braun, Meise and Taylor [6], there exists ztE !~, ( +  k )  

with zt lK~l so that )~,ftES~,(R"). This implies that (ftc~lK), isin im OK for 
each 0 < t <  1. Hence it suffices to show go,(K)-limmftlK= f. 

To do this, first note that 1.1(c~) implies the existence of AEN with og(x) ~ - 

A m ( x )  for all large x~-0. Hence we have ~o(t)<-Aq)(t-1) for large t>0  and 
~ m 

consequently 

(p* (y) -> y + Aqo* ( y )  for all large y :~0 .  

This implies: 
For each mEN there exist IEN and C > 0  such that for all jENo: 

(2) exp(-mq~*(--~)J<-Ce-Jexp[-l~o*(-~)).  

Since K is convex and contains the origin it follows easily from (1) that ft converges 
t o f o n  K with all its derivatives as t tends to 1. Hence (2) implies that for each mEN 
and jEN we have 

<_ Ce-Slf-f~l, <_ 2Ce-Jlflt, 

which completes the proof. 

3.6. Proposition. Let o) be a weight function and let K be a compact convex sub- 
set of  R ~ with 0E/f. Let Hk: R"-~[0, ~'[ 

HK(X) = sup {(xl~)l~Eg} 
denote the support functional of  K and put P:=(Pm)meN, where pm: C"~[0, o~[ is 
defined by pm(z):=HK(Im z)+ mCo(z). Then the map c~: go~(K)~Ap(C") defined by 

e f t ) :  z 

is a linear topological isomorphism. 

Proof. It is easy to check that f~(#) is in AI,(C ") for each pES~,(K)' (see Braun, 
Meise and Taylor [6]) and that f# is a continuous linear map. Lemma 3.5 implies 
the injectivity of ~#. Hence the result follows from the open mapping theorem provided 
that we prove the surjectivity o f  fg. To do this, we use the idea of proof of Taylor [26], 
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2.8. I f  gEAe(C" ) is given then there exist mEN with 

(1) [g(z)] ~_ exp(HK(Imz)+m(o(z)) for all zEC ". 

Since o2 satisfies 1.1(0 0 and (7)' it is easy to check that a slight variation of 
the proof of H6rmander [12], 4.4.3, can be used to prove the existence of A>0,  
l, yEN and of a function GEA(C"• which has the following properties: 

(2) G(z,z)=g(z) for all zEC"; 

(3) [G(z, w)[ <= A(1 + Izl2) v exp (H~:(im z) + / ~ . = 1  cS(wj)) 

for all (z, w)EC"• ~. 

If  we fix zEC ~ then G(z, , ) is in A(C'). Hence we have 

(4) G(z, w) = Z~N ~ Q~(z)w ~, 
where 

--(~1/)" ~) d ~ l '  d~., ~EN~ (5) O.(z)-- ... f,c~ 

for r=(r~, ..., r,)ER~_. Estimating (5) by (3) we get for each aEN~ 

(6' ]Q,(z)[<-A(l+]z[2)'exp(HK(Imz))infexp[l~s=i(~o(rj)-~logri)) 

n ~- A (1 + Izl2) v exp (HK (Im z)) exp (-- l X~=~ (p* (ej/1)) 

By the theorem of Paley--Wiener--Schwartz, (6) implies that for each eEN~ 
there exists T~EC=(R')" with supp (T,)cK such that the Fourier--Laplace trans- 
form L of T~ satisfies (-i)l'lfr~(z)=Q,(z) exp (l~,s=~ ~o*(aj/1)). Moreover, (6) 
implies the existence of tEN and D > 0  such that: 

For each aENg and each fEC=(R"): 

(7) [(T~,f>[ ~ D  sup sup [f(P)(x)[. 

Next note that by Whitney's extension theorem (see Malgrange [16], 1.3) there 
exists a continuous linear extension map R: Ct(K)--,-Ct(R"). Hence (7) and the 
proof of H6rmander [13], 1.5.4, imply: 

There exists E > 0  such that for each ~EN~ there exists 

(8) I~,ECt(K)" with ] ~ , f ) [  _~Esupsuplf~(x)l  for each 
[/i'[ -~t xEK 

fECt(K) and ~ ,  e~(f))  = (T~,f) for all fEC~*(R'). 
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Next we use 3.5(2) to choose k > l  and M > 0  such that 

(9) ~'f=0 exp ('/q}* ( + ) +  kq}* (--~-)] = M < , o .  

Then we note that the multiplication operator Mz: A~(C)~A~(C), 
Mz(f): z~,.zf(z) is continuous. Hence its adjoint is also continuous. By Meise [17], 
2.4, and Meise and Taylor [18], 1.10, A,~(C); can be identified with the sequence 
space 6%({0}) (0ER). With this identification M~ equals the backward shift opera- 
tor. It is easy to check that the continuity of this operator implies: 

There exist pEN and L > 0  such that for each j E N  o and 

Hence we get from (8), (9) and (10) and each f=(f~)~N,~Eg0,(K): 

c 9 
Z ,  cN~ I(#, exp {-- / Z~'=, q}* ( T ) ) ,  f , / l  

( ' ' k ~,n .^, L" sup sup tf~+a(x)] exp --p X~=t 9* < EL~M']lfIIp �9 
IPI~t xE K 

This proves that p:f~-~Z~N~(/&,f~}exp[-l~]=19*[--~-)]  is a contin- 

uous linear form on 80, (K). By the definition of ~ we get from (8), (4) and (2) 

n = Z ~ N  2P~ (z) exp ( - l  Z j=l q)* (a f l l ) ) ( - i z )  ~ = Z~cN~ Q~(z) z~ = G(z, z) = g(z).  

This shows that cg is surjective and completes the proof. 

Remark. From the proof of Proposition 3.6 one can easily derive the following 
result on the local structure of ultradistributions in ~0,(R~) ", which corresponds 
to Komatsu [14], 8.1: For every TEN0,(R')' and each compact convex subset 
KcR"  there exist mEN and a family (P~)~eN~ in C(K) '  with 

n II  IIc{ }, exp ( -  Zj=  < 
~EN~ 
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such that for each fE 9o(K)  we have 

(T, f )  = Z,cN~ (~ ,  f('))" 

3.7. Proposition. Let co be a weight function which satisfies 1.1(e). Then the 
restriction map OK: 8o(R0--~8o(K) is a surjective topological homomorphism for 
each compact convex set K in W which is either a singleton or has non-empty interior. 

Proof. It suffices to prove this for 0E/~ (resp. K=  (0}). Assuming this, we de- 
fine p: C"~[0, co[ by p(z)=[ImzI+c3(z)  and P=(Pm), where pz ( z )=HK(Imz)+ 
mFo(z). Then we have the following commutative diagram 

(1) 

~ o ( K ) ;  ~- n t Co (R)b 

ap (c") ~ AAc") 

where ~ denotes the Fourier Laplace transform, J denotes the inclusion and 
where fr is defined in 3.6 if k # 0 .  If K=  {0}, then we identify go,({0})~ in the usual 
way with the sequence space 2(A, " ' N0) b , where 

n n ,~(A, rqg):= {(y,)=eNe~CN~ llYllm :---- Z=eNe ly=l exp ( - m  Z j=l ~o (~ j /m))  < o o  

for each mEN} 

and we define fr 2(A, Ng)~-~Ap(C")=A,~(C") by 

fr [z] := Z ,  cN~ Y,(-- iz)'. 

It is easy to cheek that fq is a linear topological isomorphism and that the 
diagram (1) is also commutative in this case. Since f# and ~- are linear topological 
isomorphisms it is obvious that 0~: is an injective topological homomorphism if 
and only if J has this property. Since o9 satisfies condition 1.1(e), Proposition 1.7 
implies that the hypotheses of Proposition 2.2 are satisfied, which proves that 0~ 
is an injeetive topological homomorphism. This implies that Or is a surjective to- 
pological homomorphism (see e.g. Schaefer [25], IV, 7.8). 

3.8. Corollary. Let o9 be a weight function which satisfies the conditions 1.1 (e) 
and let g2cR" be an open bounded set with a real analytic boundary. Then the restric- 
tion map 

0t]: go(Rn) --" do(O) 

is a surjeetive topological homomorphism. 

Proof. First we treat a special ease: Put Q : = ( ] - I ,  1[)" and assume that U 
is an open set in R" for which there exists a real-analytic diffeomorphism ~o: Q-~ U 
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with 

~[ UN ~r'~ = ~0({(r ..., C.)EQ[r > 0}) = ~0(~e~+) 

(*) (v o(2 . . . ,  = 0}). 

Furthermore, assume that for gES~,(~) there exists a compact set LcU 
such that g . (x )=0  for all ~EN~ and all xELn ~. Since ~o is real-analytic, there 
exists fES~(~+)  with .f(o)=g(o)O~O by Braun, Meise and Taylor [6]. Since Q+ 
is a compact convex set with non-empty interior, Proposition 3.7 implies the exis- 
tence of FEg~,(W) with O0+(F)=fl Of course we can assume that supp (F) is 
contained in a compact subset of Q. Then the function G: R"-*C, defined by 

0 if xr U; 

(7(g) := F(~0_I(x)) if xE U; 

is in go,(R") and satisfies oa(G)=g. 
For the general case let g=(g,)ESo,(~) be given. Then the compactness of 

0(2 implies the existence of NEN so that for I<=j<=N we can find open sets Uj 
in R", maps ~oi: Q-+Uj and functions q~jE~o(Uj) which have the following 
properties 

iV (1) 0(2 c Uj=  uj; 

(2) Z~=~ q~j(x)= 1 for all x in some open neighbourhood V of  0(2; 

(3) ~o i is a real-analytic diffeomorphism which satisfies (*)  if  U in ( . )  is replaced 
by U3. 

has the properties which we required in the special case. Hence there exists GjE $'o, (R") 
with Q~(Gj)=gjg for I<=j<-N. Because of(2), the function G 0 : = ( 1 - ~ ; = l  9j)g0 
has compact support in (2. Hence it can be considered as a function in N,o((2)c 
g~,(R ). Then G:=~Jc=oGj is in 8o,(R") and satisfies 

= Z,i= o Qz(G~)[xl = (1 -- Z j ~ I  q~j(x))go(x) + ZsN=I q~j(x) go(x) = g0(x) 

for each xE(2, which implies Q~(G)=g. 

Remark. The proof of  Corollary 3.8 shows that the following more general 
version of 3.8 holds, too:  Let Y2 be an open set in R" with a real-analytic boundary, 
which means that for each xEOg2 there exists an open neighbourhood U of x and 
a real-analytic diffeomorphism q~: Q-* U which satisfies 3 .8( . ) .  Then the restric- 
tion map 0r~: o~,o(R")-+8~,(L )) is surjective, where we extend Definition 3.3 in an 
obvious way to the present situation. 
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3.9. Proposition. Let 02 be a weight function and assume that the restriction 
map EK: g~,(R")~8,~(I() is surjective for  some compact convex set K in R N with 

1 ( ~ 0  or for some singleton K. Then 02 satisfies 1.1(e). 

Proof. Since 8,~(R") and 8,~(K) are Fr6chet spaces, the surjectivity of eK implies 
that EK is a surjective topological homomorphism. Hence ~ is an injective topologi- 
cal homomorphism. By the commutative diagram 3.7 (1) this implies that J :  A e (C n) 
Ap(C") is an injective topological homomorphism. Hence the result follows from 
Proposition 2.3 and Proposition 1.7. 

3.10. Theorem. Let 02 be a weight function. Then the following assertions are 
equivalent: 

(1) For each nEN and each compact convex set K c R "  with K ~ O  the restriction 
map Er : 8,~(R")~8,~(K) is surjective. 

(2) For each nEN and each bounded open set s  ~ with real-analytic boundary 
the map ea: g.(R")-~g~(C)) is surjective. 

(3) There exists nEN and a compact convex set K c R "  with 1 (~0  such that r 
is surjective. 

(4) For each nEN the Borel map B,: e,~(R")~g,~{0}, B,(f):=(f( ' )(O)) ,EN~, is 
surjective. 

(5) There exists hEN such that B,  is surjective. 

(6) There exists C > 0 with f= 02(yt) dt < C02(y)+C for all y > O. 
1 t 2 

(7) lim lira sup ew(t) 
~o . 0 2 ( ~ 0 = 0 .  

r 
(8) There exists K > 1 with lim sup------7=-. < K. 

t ~ ,  02(0 

(9) There exists a weight function x which satisfies 1.1 @), which is concave on [0, ~[ 
and which is equivalent to 02 in the sense o f  1.3(4) (i). 

Proof. The implications (1):~(3), (2)=*(3) and (4)~(5) hold trivially. By Prop- 
osition 3.9 we have the implications (3)=*(6) and (5)=*(6). The implications (6)=*(1) 
and (6)==*(4) hold by Proposition 3.7, while (6)=--,(2) holds by Corollary 3.8. "Ihe 
equivalence of (6), (7), (8) and (9) was proved in 1.3 and the remark following 1.3. 

3.11. Remark. Let (Mj)jEN. be a sequence of positive numbers which has the 
following properties: 
(M1) M~<=Mj_IMj+I for all jEN; 
(M2) there exist A, H > I  with M,~AH"mino~_j<=,MjM,_j  for all hEN; 

(M3) there exists A > 0  with ~ ' ~ j + l  Mq-1 Mj for all jEN; and define 
M, ~_Aj Mj+~ 
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caM: R~[O, ~[ by 

for  ltI > 0 
ItlJMo 

co u ( t ) =  sup log Mj 
iENo 0 for t = 0 .  

Then cog is a continuous even function with e~M(0)=0 and limt_.~ COM(t)=oo, 
which satisfies 1.1(V)' and 1.1(8). By Komatsu [14], 4.4, (M3) implies that co M sat- 
isfies 1.1(~). Hence Proposition 1.3 implies the existence of  a weight function 
which satisfies 1.1 (e), which is concave on [0, ~[ and which satisfies 

(1) COM(t ) <= x(t) <= Co2M(t)+C for some C > 0 and all t > 0. 

Since g is subadditive, this implies 

(2) o~t(2t) <-- g(2t) <_- 2x(t) <= 2CO~M(t)+2C for all t > 0. 

By Komatsu [14], 3.6, (M2) implies the existence of  D > 0  with 

(3) 2~oM(t) ~ o~M(DO+D for  all t > 0. 

From (1)--(3) it follows that for each open set C/(resp. compact set K) in R" we have 

l i  t~) (x)[ 8~(s = g(Mj)(~) = {f~C=(~2)[ sup sup - -  < •  
~N~ ~K h 1~1MI~ I 

for each h > 0 and each K c ~ compact} 

and 8~(K)=8(Mj)(K), where g(MA(K) is defined similarly as in 3.4. 
Because of  this, Theorem 3.10 extends the results of Ehrenpreis [11], p. 447, 

and Komatsu [15], 4.5. 

Remark. It is an interesting question to know if  Whitney's extension theorem 
holds for the classes 8~, and arbitrary compact subsets K of  R n when o~ is a weight 
function satisfying 3.10(6). For  the classes d{MA Bruna [8] has shown this to be 
the case, provided that the sequence (M~)~,~N ~ satisfies some conditions which are 
stronger than (M1), (M2) and (M3). We suspect it is also the case here. However, 
our use of  Fourier transform methods makes it difficult to treat the case of  arbitrary 
compact sets. 

By Theorem 3.10 we know that the maps 0K and B, are surjective in many 
cases. In these cases one would like to know whether they also admit a continuous 
linear right inverse, i.e. whether one can do the extension with a continuous linear 
operator. For  the ordinary C~-functions on R" it is known that B, does not admit 
a continuous linear right inverse (see Mityagin [23]) and that a continuous linear 

extension operator exists for compact convex sets K c  R" with / s  0 (see "[idten [27], 
4.6). For  the present classes of  functions we shall treat this question in [21] (see 
the announcement [20]). Here we use a result of  our paper [19] to derive a necessary 
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condition for the existence of  a continuous linear right inverse of  the Borel map B,.  
In [21] we prove that this condition is also sufficient. 

3.12. Corollary. Let  09 be a weight function. I f  the Borel map B,: S,o(R")~8,o({0}) 
admits a continuous linear right inverse then co has the following property: 

For each C > I there exist 6 > 0  and Ro > O with 
(*) 

(D-I(CR)(D-I((~R) "~ ((D-I(R)) 2 for  all R ~= Ro. 

Proof. Let g~(R")  denote the closed linear subspace of  go~(R ") consisting of  
all functions which are periodic with respect to hypercube [ - x ,  n] ~. Since g ~ ( R  ~) 
is the kernel of  a system of  difference equations it follows from Meise [17], 3.7, 
that ~ =  (R ~) is isomorphic to a power series space of  infinite type (for subadditive 
weight functions co see Yogt [29], 7.7). IfB~ admits a continuous linear right inverse, 
then B, .=B[  o, ( R )  has this property too, and hence ~,({0}) is isomorphic to a 
linear topological subspace of  g~(R") .  This implies that g,~({0}) has the property 
(DN) of  Vogt [23]. In the proof  of  Proposition 3.7 we have already remarked that 

P t l  g,o({0})b---A~(C ). Hence 09 satisfies ( . )  by [19], 3.1. 

3.13. Example. For  l < s < ~ o  define ogs: t~-~(max(0,1ogltl)) s. Then o9 is a 
weight function which satisfies 1.1 (5). It is easy to check that co does not satisfy 
3 .12( . ) .  Hence the Borel map Bn: o~,~(R")~g,o({0}) is surjective but does not  
admit a continuous linear right inverse. 
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