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1. Introduction 

Let P(x, Dx) be a linear partial differential operator with analytic coefficients 
defined in a neighborhood of a point xo~R n. We shall call P locally approximable 
at Xo if for any distribution u for which Pu=O in a neighborhood of Xo, there is 
a neighborhood ~ of xo and a sequence of distributions uj real analytic in q/ 
such that 

u j ~ u  in q/, 

Puj=O in q/. 

The property of local approximability was studied by Baouendi and Treves [2], 
who showed that P is locally approximable at x0 if its complex characteristics at 
x0 are simple. M6tivier [7] has proved approximability for a class of first order 
nonlinear equations. Baouendi and the second author [1] showed that any left 
invariant differential operator on a Lie group is locally approximable. 

The class of locally approximable differential operators contains that of analytic 
hypoelliptic differential operators. (Recall that P is analytic hypoelliptic at xo if 
Pu real analytic in a neighborhood of x0 implies that u is real analytic near x0.) 
The notion of analytic hypoellipticity has been microlocalized in an obvious way, 
but the notion of microlocal approximability is less clear. In w 2 we give a defini- 
tion of microlocal approximability and also extend the definition of local approx- 
imability to pseudodifferential operators. These definitions are based on the con- 
stants for the Fourier--Bros--Iagolnitzer transform of a distribution (see e.g. [11]). 
We show that when charx. P is contained in a line then local approximability is 
equivalent to microlocal approximability in all directions. 

* Partially supported by N.S.F. grant DMS g601260. 
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In w 3 we follow the method of  Sj6strand [113] and Helffer [4] (see also [3] as 
well as the references to Grugin's work given in [10]) to study a class of  differential 
operators with symplectic characteristic variety. For these we show that the ques- 
tion of  microlocal approximability for P is equivalent to that of  a system of analytic 
pseudodifferential operators in one variable. In w 4 we use the machinery developed 
by M6tivier [6] to prove the analyticity of  the operators defined in w 3. We refer 
the reader to [12] and [6], respectively for the definitions of  classical analytic pseudo- 
differential operators of  type (1/2, 1[2). 

In w 5 we give the first example of  a differential operator, not totally charac- 
teristic at x0, which is not locally approximable at xo. This olcerator is 

03 03 
P = - ~ + t 2 - ~ + i  o-~+Y 

on R ~ with Xo= (0, 0). The proof  of  non approximability uses the reduction to a 
pseudodifferential operator in one variable given in w 3 and w 4, and the connection 
between microlocal and local approximability proved in w 2. 

2. Microlocal analytic approximability 

We shall microlocalize the definition of  analytic approximability. Recall that 
for a distribution u defined near xoER n, an FBI (Fourier--Bros--Iagolnitzer) 
transform of  u is an integral of  the form 

(2.1) ~ u  (x, 4) = f e '(x-r)'e-(x'r)'tr Z (Y) u(y) dy, 

where zECo(R"), X - 1  near )co, Then u is analytic at (Xo, 4o), 40#0, or 
(xo, 4o)r u, if there is a conic neighborhood F of  40, a neighborhood qz' of  
xo and a constant C such that 

(2.2) ]~u(x, 4)1 ~- Ce -I~l/c for all (x, 4 )E~215  

We shall write u,--0 at (x0, 40) if  (x 0, ~o)~WFau. I f  {uj} is a sequence of  dis- 
tributions, we write {uj}~ 0 at (Xo, 40) if (2.2) holds for all uj with the same C, 
q~ and F. 

(2.3) Definition. A classical analytic pseudodifferential operator Q defined in 
a conic neighborhood of  (x0, 40) is microlocally approximable at (x0, 40) if for 
any distribution v for which Qv,,,O at (Xo, 40) there is a sequence of  distributions 
vj such that 

i) vj-~ v 
ii) {Qvi}..,O at (Xo, ~o) 

iii) v~,,,0 at (Xo, ~o,) with the conic neighborhood independent o f j .  
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In order to show that these definitions make sense we need the following lemma. 
For an analytic pseudodifferential operator (either classical or of  type 1 w e  

write R~,,0 at (x0, ~o) if R is of  order - co in a conic neighborhood of  (Xo, ~o). 

(2.4) Lemma. I f  R is an analytic pseudodifferential operator and {w j} is a se- 
quence of  distributions with {wj}~-,0 at (xo, 40) then {Rwj}~0 at (Xo, 40). If  R ~ 0  
and {w j} is any bounded sequence o f  distributions, then {Rwj}~ 0 at (Xo, 40). 

Proof. The second statement may be proved by following the constants in the 
FBI transform. The first is also refinement of  the statement that an analytic pseudo- 
differential operator does not extend the wave front set. 

By abuse of  notation we shall also write QI~  Q~ at (Xo, 40) if Q1-  F1 Q2 F~ 
is of  order - co at (x0, ~0), where F~ and F 2 are elliptic pseudodifferential opera- 
tors. By the above it follows that Q~ is microlocally approximable at (Xo, 40) if 
and only if Qz is. 

We may also generalize local approximability to locally defined analytic pseudo- 
differential operators as follows. 

(2.5) Definition. I f  Q is an analytic pseudodifferential operator defined in a 
neighborhood of  xo then Q is locally approximable at x0 if for every distribution v 
for which Qv is real analytic in a neighborhood q/ of  Xo there is a sequence vj of  
functions, real analytic in a neighborhood ~ '  of  x0, such that 

i) vj-,-v 
ii) {Qvj} extends to a convergent sequence of  holomorphic functions in a neigh- 

borhood of  Xo in C ". 

It is easy to check, using the Cauchy--Kovalevsky Theorem, that if  Q is an 
analytic differential operator not total ly characteristic at x0, then this definition 
agrees with that of  Baouendi and Treves [2]. 

We write w ~  0 or {wi}~-,0 or Q ~  0 at x0 if the equivalence defined above 
holds for every 2ER" \0 .  We note that if {wj},-,0 at x0, then (see, e.g., [11]) there 
is a neighborhood of  x0 in C n to which all the wj extend as uniformly bounded 
holomorphic functions Wj. Hence, by the well known theorem for holomorphic 
functions, the Wj have a convergent subsequence. This is the connection between 
the two conditions (ii) in the local and microlocal definitions of  analytic approx- 
imability. 

In a special case microlocal approximability in all directions is equivalent to 
local approximability. 

(2.6) Theorem. Let Q be a classical analytic pseudodifferential operator for which 
charx0 Q is contained in a line. Then Q is locally approximable at Xo i f  and only i f  Q 
is microlocally approximable at (xo, 4) for all CERn",,{0}. 
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Proof. We may assume that at x0, Q is elliptic away from {(0 . . . . .  0, 4,), ~,~0}. 
Suppose first that Q is microlocally approximable at (x0, 4) for all 4 and that 
Qv...O at x0. Then v is analytic at (xo, 4), 4~ (0  . . . . .  0, +__1) and by using appro- 
priate cut-off functions we may write v=vl+v2, v~..~O except at (Xo, 0 . . . . .  0, 4,), 
4 , > 0  and v2--.0 except at (x0;0 . . . . .  0,4n), ~,<0.  Since Qvl+Qv2..~O at xo 
and Qv~...O at (x0;0 . . . . .  0, 1) we have Qv~...O. Hence we may assume v ~ 0  
at (Xo, ~), 4~(0,  ..., 0, 1). By assumption of  microlocal approximability there is 
a sequence {v~} such that vj~v, {av~}--.0 and v i ~ 0  in a conic neighborhood 
q / •  of  (x0; 0 . . . . .  0, I). We claim first that {v~}.-~0 at (x0, 4), 4 ~ ( 0  . . . . .  0, + 1). 
Indeed, since Q is elliptic at such points, there is an analytic pseudodifferential 
operator P such that PQ.vI at (x0, 4). The claim then follows by Lemma (2.4). 
Now we may find an analytic pseudodifferential operator T(D) such that T(D)--. 0 
at (Xo, 4) if 4 , < 0  and T(D).-~I at (Xo, ~), 4near (0, . . . ,0,  1). Let vj=T(D)v~+ 
(I-T(D))v.  Then vi~v, since T(D)v~-T(D)v-,-O. Also, T(D)v}~O for all j 
and (I--T(D))w..O, since T(D)v.~v near (Xo;0 . . . . .  0,1) and v~O at (Xo,4), 
~ ( 0  . . . . .  1). Finally, 

{Qv,} = {Q T (D) vj} + {Q ( I -  T (1))) v}, 

so it suffices to show {QT(D)v~}~.,O. We have 

QTvj = ~Qvj +[Q, T]vj 

and since {av~}-.~0, {Tav~}~0 by Lemma (2.4), while {[Q, Tire.}.-0 also by the 
lemma, because [Q, ~] is of  order - o o  near char~o (Q) and {vj}~0 away from 
that set. Hence, Q is locally approximable at x0. 

For the converse, assume Q is locally approximable at x 0 and let v be such 
that Qv~O at (x0;0 . . . . .  0, 1). We write v=v~+v2 as above. Then Qv~...O at 
x0, so there exists a sequence v.~v~ so that v~.~0 at Xo and {Qv~.}--~0 at Xo. 
Since v2-.~0 at (x0; 0 . . . . .  0, 1) we may take vj=v~+v2 which proves Q is micro- 
locally approximable at (x0; 0 . . . . .  0, 1). The proof  of  microlocal approximability 
at (xo; 0 . . . . .  0, - 1) is the same, and it is clear that Q is microlocally approximable 
at any noncharacteristic point. 

3. A criterion of microloeal approximability for some differential operators 

We consider here a differential operator of  degree m>n in the variables 
( t , y ) C R " •  of  the form 

(3.1) z~I~l + lpt ~_m a~p (t, y, Dr, Dy) t~D~ ~1D~ 
where  

v~Drn~ a,a(t, y, D t, Dy) = Z~lrl+lal_~(m_lal_lal)/a a,aro(t, j ,  y.-', 
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is an analytic differential operator of degree ~_ (m-I~1-1ill)/2 with a~p~o constant 
for M + l f l l = m  and lTl=(m-lc~l-lfll)/2. We let 

a~proDy t Dy D t . 
r =(m-I~l- # )/2 

We shall assume the condition of transversal ellipticity, i.e., that 

(3.2) ~'l~l+lPl=ma~p00t'~z 'a # 0 for all (t', z')ER~"\{0}. 

The operators considered here are in a more restricted class than those studied 
in [4], [6] and [10]. Following the approach of Grugin and that of [4] and [10] (for 
the C ~ case) we shall reduce the question of microlocal analytic hypoellipticity 
and microlocal approximability to that of a system of pseudodifferential operators. 

We first use a result from [3] applied to Pro. We fix a point (0; 0 . . . . .  t/0 ) in 
char P m (determined by r/o>0 or r/0<0 ) and let 

Pro(t/) = z ~  + a ~_m a~a~0 r/l~l+l~lt~Dt~" 
r =(m- ~ -lt~ )/3 

Then P*(rl)Pm(q) has a kernel in L~(R ") of finite dimension qx and Pm(tl)P*(tl) a 
kernel of dimension qz. In [3] it is shown that there exist microlocal systems of  
analytic pseudodifferential operators J1, 3"2, Q, L defined 

J,:  e ' (Rr)q,  ~ ~'(R~',+x), i = 1, 2 

such that 

and 
(3.4) ( ~  JI~(P,,  

near (0; 0 . . . . .  t/). Here the analyticity of the above systems means that ifuE~'(R~,+y ~) 
and viES"(Ry) q, then 

WF.(Qu) c WF.(u), 

WF~(Lv~) c WF~(v O, 

WF,(Jiv,) c {(t,y; z, r/)[t = z = 0, (y, tl)EWF,(v)}, 

weo(J " c {(y, y; 0, n)cweo( )}. 

By the construction of  Helffer [4], following Sj6strand [10], there exist 
C*~ operators E, E +, E -  and E + so that if  
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then ~ N ~  I, N ~ I  in the C "~ sense. In fact, these operators may be obtained 
from 

by a Neumann series: by (3.3) N6~ ~r ~r where 

and formally 

(3.5) 
= (z;_-o 

0 I~ 

so, g = ~ o ( J - - d )  -1. It is shown in [4] that the operators E, E +, E - ,  E + can be 
obtained from (3.5) in this fashion and that they have the appropriate C r176 behavior. 
In particular, E • is semiclassical and E is of  type (1,  @). We shall show, using the 
machinery of  M6tivier [6] that they are also analytic. 

(3.6) Theorem. Let P be o f  the form (3.1), transversally elliptic and such that 
a, pro is constant for N+IN<=m, M=(m-lc~l-I/~l)/2. Let co=(0; 0 . . . . .  0, t/). Then 
the operators E, E +, E - ,  E • are all microlocally analytic at 09. P is microlocally 
analytic hypoelliptic at co i f  and only i f  E + is at co'= (0; r/)C R •  (R \0 ) .  Furthermore, 
P is microlocally approximable at 09 i f  and only if  E • is microlocally approximable 
at co'. 

Proof. The first statement will be proved in w 4. We shall assume it here. The 
statement about microlocal analytic hypoellipticity is proved by standard arguments 
(see [1], [4] and [i0]). For the statement about microlocal approximability, suppose 
first that P is microlocally approximable at co and that E:kv~O at co'. I f  w=E+v 
then Pw..~O atcosince PE++J2E+..,O. Let {wj} be such that wj~w and {Pw}i~.0 
at co, and set v~=J~wj. Since E - P + E + J ~ O  and {Pwj}---0, {E• 
that is, {E:~vj)~0 at co'. Finally, if vo=v--J~E+v then Vo--,0 at co', vj+vo-..O 
at co' and v~+vo~v. 

Conversely, if E • is microlocally approximable at co' and Pu~O at co, let 
v=J*u. "i'hen Pu~O at co and E-P+E•  imply E• at co'. Let 
vj~v, {E+vi}~0 at co', uj=E+vj.  Then {Puj}~0 at co since PE++J2E• 
Since E P + E + J ~ I ,  E+J~u=u--uo with uo---0 at co so u~+uo=E+v~+Uo~U. 
This completes the proof  of  theorem. 
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4. Proof of the analyticRy of E, E +, E - ,  E ~= 

We shall base the proof of  the analyticity of  the operator g on M6tivier [6], 
where it is proved an operator of the form (3.1) (in fact, those in a more general 
class) has a left analytic parametrix if ker P=(q) is trivial. In what follows we use 
the material contained in Chapter II and III of [6] and will recall only essential 
definitions and results as needed to make this section readable. 

After some analysis of the Neumann series expansion of (~g0) -~ we see that 
the only thing to do is find the sequence of operators Q j, j =  0, 1 . . . .  defined by 
taking Q0= Q, Qj= - Q_PQj_~, j=> 1, where _P= P(t, y, Dr, Dr)-  P,,(Dy)(t, Dr). I f  
this is done and we let E=XQj,  E+=-EPJ~+J1,  E-=J~*--J~* fiE and E •  
E - f f J~  then using (3.3) and the definition of E one sees that at least formally the 
matrix g thus obtained is a right inverse for ~ .  We shall show that E can be found 
in this way and that it is an analytic operator. 

We begin by recalling from [6] that for a nonnegative integer k, the space j~k (R") 
consists of those uEHk(R ") such that aEHk(R"), where H k is the usual Sobolev 
space based on L2(R"). In ~r we have the norm I[ I1~ given by [lullk=suplZ~ul, 
where the sup is taken over all T t=  T,...Tk, each T i being either a multiplication 
by a tj or a partial derivative 0tj. The dual of wk is ~r For a positive real number 
R and a nonnegative integer m La~(R") is the space of operators K: 6a '~5  a' such 
that for p = 0  . . . . .  m+lYl (adT)~K:  a f ' - P ~  -p+m+lel with norm <-CRIrlIyI! for 
some C independent of 7 and p. The best of such constants C is denoted by IlK II~e~. 
In this definition, ~ is a multiindex (?~ . . . . .  "h,), adT~K=adt~ ~... adt~-ada~,+, ... 

ado  r,- K and as usual (adT) (K)= TK--KT. 
�9 � 9  tn 

One has (see [6]) 

[[ad T'KII~TR <- ~/[~.~ (2R) I'111Klla-?~. 

With this one can show: I f  K C ~  then its left symbol a(K)(r, e)=e-~'~K(e ~'~) 
satisfies 

(4.1) Ir 'e~a~a~G(K)(r ,  o)l <_--Co(CR)I=I+IPJ+t~I+I'I l & ! / ~ ! ~ ! a !  IIKII.~z 

(4.2) lle*%(t'*)K(t, s)llL, < ~ ,  I[e%(*'*)R(z, -a ) l lL ,  < ~ ,  j = 1 . . . . .  n. 

R(z, - a) is essentially the Schwartz kernel of  R, the operator given by / ~ =  (Ku)^. 
~Ihe norm IIKII. of g is the maximum of the numbers in (4.2). 

if  Icq+l/31~m§ for some Co and C. 
Now let qh: R " X R " ~ R  be given by ~oi(t,s)=t~+s~ if  t,s,~O, qh(t ,s)= 

Itp-s~l if  tisi~O. For e>0  B, is the space of  operators K: L2(R")~L~(R") 
whose Schwartz kernel, denoted as K(t, s), satisfies 
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Proposition 2.10 of [6] states that if 0<e '<e~_l  then KEB, implies 
(ad T) KEB~,, where T is either tj or 0tt, and 

( Mo 11:' 
(4.3) H(adT) glle - t ~ - e ' )  llg[l,o 

with Mo~ 1 independent of e, e' and K. It follows from this, Plancherel's theorem 
and the fact that B~c~L~(R ") with norm independent of e that if KEB~, e<= 1 
and ~'< E, the left symbol 

a (K) (r, O) = e-  ~'Q f e ~~ K(r, s) ds 
of K satisfies 

[M0)  (t~t +lt~l)/2 
i l O ~ O g a ( g ) l l L ,  <- c ~ (1~1 + 1/~1) (l=l§ Ilgll. 

with C independent of e,/?, ~, ~' and K. Therefore 

(._..~_) n + 1+ ([~l + Ib'l)12 
(4.4) ta~ag,r(X)(r, a)l <- c ( l~l+lPl)  ~l~'l+lpl~ IIKII. 

with another constant C. 
Let t2 be a complex neighborhood of (0, yo)ER"• and / ' o c R " ' ~ R \ 0  a 

conic neighborhood of (0, ~/o) sttch that (z, q)E ho=~l(z, q)l ~ Iql. We shall assume 
r/o>0. For c>0  small let F =  {(z, ~)~cnxc: Re (z, t/)EFo, [Im (z, r/)[<clRe (z, r/)l}. 
Modifying slightly the definition given in [6] we let G,~(f2• F) be the space of holo- 
morphic functions a: f 2 •  such that 

(4.5) [la( t, Y, ~, n)l[, <=CiRe(z, r/)l" if (t, y, z, t/)EOXF. 

Similarly F~(f2XT) consists of the holomorphic functions a: f 2 X F ~  ~ such 
that (4.5) holds with the La~ 

(4.6) Lemma. For j =  O, 1 . . . .  let AjE F2-:Iz( t2XF) (respectively G~-JI2(f2X s 
be such that 

(4.7) l[Aj(t, y, z, tl)~ <- CoRloj s/~ IRe (z, n)l m-~/2 

where the norm is that o f  .~o (respectively B,) and let as(t ,y,  z, ~, r, 0)= 
a(Ai(t ,  y, z, tl))(r, 0). Then there exist C1, R1 such that for  (t, y)E f2, (z, rl)EF1ccFo, 
(r, Q)ER ~ 

(4.8) I:a#O~,O~O~ y, v, rl, r, Q)I ~= G ]/e1/~!7!6! Ol#t 

)< R/~+#+r+~+01+~ i~llm-J/~-Iol-~ 

for  any e, fl . . . . .  It with I~+Bl~lr+,~l (respectively e=/?=0) .  I f  zjEC**(R,.,n+I) 
is a sequence such that 0<-Zj~_ 1, Zj(z, r/)=0 i f  I(z, ,t)l<j, x~(z, n) = 1 if  I(z, n) l>2j  



Analytic approximability of solutions of partial differential equations 297 

o ~ +1~1 ~ j  and IO.O, Xj(z, t/)] <-cl~ when 10l + I~l for  some C independent o f  j and i f  
a = ~  zj((v, ~/)/2)aj then .for some Cz, 2, R2 and indices ~ . . . . .  # as above (respec- 
tively ~= fl= O) 

(4.9) ~ ~ ~ ~ 0 . < [r ~ OrOoO, O,a( t , y ,v ,~ l , r ,~) l  C2]/~lfl!~,!6!O!#! 

X R~ ~+/J+~+n+~ [r/I m-l~ 

i f  (t, y)E O, (v, q)E F1 and l(z,,)l>R~([01+~). 

For the proof of the lemma we only point out that (4.8) is a consequence of  
(4.7), (4.1) (respectively (4.4)) and Cauchy's integral formula, and (4.9) follows 
from (4.8) by the argument given in the proof of Lemma 3.2 of [6]. 

(4.10) Lemma. I f  a: f 2 •  satifies (4.9)for some C~, R~ and all ~ . . . . .  # 
with I~l+l/~l<_-I~,l+lOl (respectively ~ = f l = 0 )  then there are constants C3, Ra such 
that for  [zl+ l~/l>Rz(10[+#) 

(4.11) [O~O~ O~ O] a ( t, y, z, tl, 21/~r, 2-x120)1 <= 6'3 l/~. O! # ! v ! 

)<R3[0[+#+v e [Imr] 2 g /  Ra [/'/[ m - t t - O  ~ - v -  [ct[12 

i f  ( t ,y)Efl ,  (z,~I)EF1, 2>0,  rEC" and ]~[<c2 for  some small c. (Respectively 

(4.12) [O~ y, ~, tl, tf/~r, ~/-a/2z)[ ~ C 3 ~ • 1 7 6  el~rl'lnl/R"ltl]m-"/a-1~ 

i f  ( t ,y )E~,  (x, ~I)EF, rEC" and ] R e r ] < l ) .  In particular, for  (t ,y,  z, t/)ERe f l X F  a 
a(t, y, z, q, ~f/zt, ~/-V2z) is an analytic symbol o f  type (1/2, 1/2). 

This Lemma is a direct consequence of the estimates (4.9). 
Let us now consider the operator 

(4.13) Pm(q)(r, D~) = Z ~  + a ~-- a,,~ror/I,l+ Irl r 'Df  
~' = ( m - -  a - -  fl )/g 

of  the previous section with the ellipticity condition (3.2). It satisfies P,, (t/) (r, Dr) = 
ttm/"P~(1)(tf/~r, q-~'2D,). Let //1: L ~ L  ~ be the orthogonal projection onto the 
kernel of  Pro(l) as an operator on L ~ and let 1--Ha: L ~ L  2 be the orthogonal 
projection onto the range, which is known to be closed; Ha and 1-/2 have finite range 
(see [3] and references given there) because of  the ellipticity of Pro(l), which implies 
also the existence of an operator K: L2- -~  ~ such that P,,K=I--FI2,  KP, ,=I- - I I I .  
K E ~  for some R > 0  so KEB~o for some Co>0 (see [6])since m>n.  Let k(r, 4) 
be the symbol of K. Then ~l-Z/~kQ1 a/2 t, 11-~/~) is an analytic symbol of type (1/2, 112) 
and order --m/2. 

We will now begin the construction of the operators Q~ mentioned at the begin- 
ning of this section. Let g(z, t/)EC~176 be supported in a conic neighborhood 
of  (0, qo) contained in Fo such that g(x, I/)=1 if I(z, ~/)l=>l and (z, ~ I ) E F ~ F o ,  
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another conic neighborhood of  (0, r/o), vanishing near 0 and such that 

(4.14) 10g0ff g(v, r/)l <= cMol +"(l~l/l(v, r/)l) <~ +~) 

as in Lemma 3. I of  [6]. 
The operator Q appearing in go in w 3 is given by 

(4.15) Qf(t, y) = (2=) -"-1 f e i{'-*)'+i('-,')"g(z, r /) . - ' /= 

xk(r/~/2 t, r/-~l%) f(s,  y') ds dy" dz dr/ 

where g is as in (4.14) with 1 /2<Q<1.  If  P(t ,y ,  Dt, Dy)=P(t ,y ,  Dt, Dy ) -  
Pm(Dy)(t, Dr) its left symbol can be written as /~(t, y, ~, r/, r/1/2t, r/-1/2"c) where 
/~(t, y, z, r/)(r, 0) is a polynomial in (r, Q) of  degree ~ m  with coefficients which 
are holomorphic functions in a complex conic neighborhood t2XF of  (0, Y0, 0, r/o) 
and bounded there by CiRe (~, r/)[m/~-l. 

Since the symbol of  Q is of  type (1/2, 1/2) and that o f / 3  of  type (1, 0) the 
usual formula for the symbol of  the composition holds (see [6]). Using it we obtain, 
after some rearrangement of  t e rms ,  that Q/~ has a symbol of  the form 
h(t, y, , ,  r/, r/I/2t, r/-~/2~) and for (t, y, ~, r/) close to (0, Y0, 0, r/0) 

h(t, y, z, 11, r, O) "~ Z~=o a(Hk( t, Y, z, r/))(r, Q) 
where 

Hk(t, y, ~, r/)(r, D.) = r/-'/~-'X~.+t01=, Zj=~.,_~. c0, . . . , j  

•  ( -ir))~ (r, Dr)oD~ D,"p(t, y, ~, r/, r, Dr). 

Here L =  1/2(~ ' r j  ad O,j+iO,j ad G) and ]Co, u,u,,jl<-2"/2+a+u'X(#-j)!/O!#!. Since 
K E ~  there exists Rx, C 1 such that (adr) ~ LJKcLP~ with norm bounded by 
Cxl/~j!(C~R~)l~ and with this and the fact that /~ is a polynomial in 
(r, 0) of  degree <_--m whose coefficients satisfy specific bounds one shows 
HI~ F~I~-I(I2• with 

(4.16) llHj(t, y, % r/)Hzo ~ Co Rg 1/T~ IRe (z, r/)]-j/2-1 

for some Co, R0. Let Wj~G"e-JIz(f2• be such that 

(4.17) llWj(t, y, ~, r/)[], <- CoRJo Jt/fl(IRe(v, r/)l,,,-j/2. 

Let h~=a(Hj) ,  wj=tr(W~) and set 

h(t, y, z, r/, r, O) = g(z, r/) ~ Zj+~(z, r/)hj(t, y, z, r/, r, O) 

(likewise w(t, y, z, r/, r, 0)) with g~ chosen as in lemma (4.6) and g as in the defini- 
tion of  Q. For a symbol such as h or w let 

op (h)f(t, y) = (2zc ) - " - l f  e~(t-s),+i(r-~.)~ h (t, y, "c, r/, r/1/~ t, r/--l/g v) f(s, y') ds dy' d* dr~. 
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We also write op (2Hj) for this operator, Of  course different realizations of  the 
formal symbol SHj yield operators differing only by an analytic-regularizing opera- 
tor near (0, Y0, 0, 70). 

(4.18) Proposition. Let h and w be as above. Then H =  op (h) and W =  op (w) 
are analytic pseudodifferential operators in a neighborhood g2 o o f  (0, Yo) in R "+1. 
I f  ~o~Co(f2o) and (p=l  near (0, y0) then Hq~W=C where C isanoperator which 
in a a neighborhood o f  (0, Yo, O, ~o) is o f  the form op (c) with 

(2n)-" f ei(t_s)(~_~)tllat/2 (4.19) c (t, y, v, 7, rl aIS t, q-1/2 v) = Y" c~I flI y! 6-------~! 

X,~r--1~l/2,3a+~,~ h .dr y, z, ~/, r/1/2 t, t/-1/2 z)] 

X (D~D~+ 'D~, WI)(t, y, z, ~I, ~f/~s, ~l-]12 a) ds dz. 

Outline o f  Proof. The analyticity of  the operators H and W follows from 
Lemma (4.10) above and Lemma 3.3 of  [6]. The expansion of  the symbol of  the 
composition is obtained by taking the Taylor expansion of  w(s, y', ~, tl, r, ~) in 
s at s =  t and that of  h (t, y, z, ~, ~x/~ t, ~-1/2 Q) in �9 at z = a and ~ at ~ = q. After 
carrying out the q derivatives in (4.19) we see that c ~ '  o c k with Ck(t, y, Z, ~I, r, Q) 
the left symbol of  CkC Gm'-k/2-~" (~'<e, see (4.3)) given by 

1 
(4.20) Ck = X-~. H~,~j(t, y, ~, tl)oDryD~ +tJ (-- iad r) p Wi(t, y, z, 7) 

where the sum extends over the indices e, fl, ~,, 6, i, j such that Ice] + Ifll + 2 (17[ + 16I) + 
i + j = k  and H~prajCFg2-k/Z-I(~• for some R > 0  with 

(4.21) llH, p~aj(t, y, z, 11)11.~o <= l /~Col~l+l~l+l~l+l~i+J+lx lRe(z ,  ~l)lil 2-k/~-~ 

in ~X/~, for some Co, because of  (4.16). Here ~X/~ is any sufficiently small 
neighborhood of  (0, Y0, 0, 17o ) in ~ X F .  

Now Proposition 2.9 of  [6] states that given R there are e0 and C > 0  such 
that H( .g  a~ and W~B~ implies H W ~ B ,  and 

(4.22) tlHWII,~ C lIH1[z~ IIgIl,. 

Using this, the bounds (4.21) for the Hj and (4.17) for the Wj one shows easily 
that the Ck satisfy the bounds (4.17) also, with m ' -  1 in place of  m'. 

The expansion (4.19) uses only "(~,6),  (0', 6') behavior" with 0'<6, see 
Lemma (4.10), and because of  this, the estimates for the C~ and Lemma(4.10) 
again, the proofs of  Propositions 3.6 and 3.7 of  [6] give, with minor modifications, 
the proof  that C has the expansion stated. 
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We will now find the operator ~Qj mentioned at the beginning of this section 
by finding an operator W such that ( I+ QP)W = Q in a neighborhood of 
(O, y0, O,r/0). Q is given by (4.15). If QP=op  (~Hj) where HjCF~i/2-~(O• 
satisfies (4.16) in a neighborhood of (0, Y0, O, r/o) and W= op (~Wi) with WiE G[ "/2-i/2 
satisfying (4.17), then ( /+ Qff) w =  Q if Wo is given by 

Wo(t, y, % r/) = r/-m/2 K(r, 19,) 

and Wk+2 is the operator Ck in (4.21) above, by proposition (4.18). These condi- 
tions in turn determine the Wk and we will show using standard techniques and 
Propositions 2.9 and 2.10 of M&ivier [6], that the Wi obtained in this manner 
satisfy (4.17) in a neighborhood O •  of (0, y0, 0, r/0) in which the estimates 
(4.21) already hold. 

Let M0~l  be the constant in (4.3), z0=(0, y0), 0<e0=<l such that KEB,o, 
let 0 < r <  1/Mo be such that the polydisc with radius e0r and center Zo, D(zo, eor), 
is contained in f2 and let f2,=D(z0, er). Suppose that 

�9 (v/2 + l) ~/~+~ ( Moe ]~/2+i IRe (% r/)l -i/2-~/2 (4.23) HW~(t, y, z, r/)][, ~ M1 ~,+t+i lt/-----s I, %----'-"~) 

holds for some -/1//1, all e<eo, all (t,y, ~, r/)Cf2,XF when i<=k. (4.23) is already 
true if i=0. Using Proposition 2.10 of [6] (outlines in (4.3) above) we get 

I[0~'+~ (ad r) p W,[[~ 

MIZ~+t~_ ~ [(v+l/~l + 2(1y1+161))/2+ I~1 +/]  (~+ltq+2(l~l+lal)/'+l'l+t 

I ~/~ Iflla/~(l=l + 1~1 + 1~1) I~I + lrt + tnt 

xf Moe / @+Ipl+2(IrI+lal))/2+l~l+t 
IRe (~, r/)l -k/2"1 

k 80--8 / 

in f2~XF if ~<~0. Using now the definition of Wk+~, Proposition 2.10 of [6] 
(equation (4.22) here) and the estimates (4.21) we obtain 

llw~+~ll~ < M~+~ Z ( Moe ]u/2+~ (p/2 + s) u/2+~ 

[ sS/2(2Co)l~l+l'l+lrl+l~l+iMil-k-2 ( Mo ] -j/z] 

where the inner sum extends over the indices ~,/~, y, 6, i, j, v, l such that v+ I/~1 + 
2([rl+l~l)+j=#, [~l+l=s, v+l<-i<-k-l~l-lfll-j-2(M+161). The inner sum, 
divided by 

Z ( Moe )~176 
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will be less than 1/C if  Mx is large compared with Co, since 

ssl~ ppl~ 
ic~lt~l/z lt/~( O/2 + p)O/~+ p <= 1 

if  s = l a l + l  (<--_k), p = s  and O+p~k+2,  and Moe/(eo-e)~e. q his shows that 
Wk satisfies (4.23) for all k. 

Now let W = o p ( ~ ' o W j ) .  Because ( l + O f i ) W = Q  we have W = Q - a f f w  
and PmW=(1--II)(1-- f fW) near (0, yo,0, r/0), where [I=J~J*, because of  (3.3). 
With these properties of the operator W and (3.3) one verifies that if E =  W, E +=  
] l - W f f J 1 ,  E - = J ~ - J ~ f f E  and E++-=--E-fiJ1 then o ~ is a right inverse for 
near (0, Y0, 0, q0). These operators are compositions of analytic operators (in the 
sense of the previous section) so they are analyt'~c. Finally, N* also has an analytic 
right inverse near (0, Y0, 0, t/0) which is then given by g* near that point. This 
completes the proof of Theorem (3.6). 

5. An example of a locally nonapproximable differential operator 

(5.1) Theorem. The operator 

(5.2) P = ~/Ot + t 2 ~/Oy 2 + iO/~y + y 

is not locally approximable in any neighborhood of  O. In fact, a solution v of  Pv~O is 
approximable at 0 i f  and only i f  v~ 0 at O. 

To prove the theorem we first use Theorem (2.6) to reduce the problem of 
approximability at 0 to that of  microlocal approximability in all directions at 0. 
We claim that P is not  microlocally approximable at o9=(0, 0; 0, --1)r 
By Theorem (3.6) this will follow if E + is not microlocally approximable at 
~o '= (0 ; -1 ) r  We shall show that E ~= is equivalent, in a neighborhood of  
o9', to the operator with symbol y via conjugation by elliptic analytic operators. 
Assume this has been done. The following lemma will then complete the proof of  
the first statement of the Theorem. 

(5.3) Lemma. Let Q be an analytic pseudodifferential operator on R with total 
symbol y on ~/<0. I f  Qv~O at co'=(o; - 1) and there is a sequence of  distributions 
{vj} such that v ~ v ,  vj,,~O, {Qvj}--,0 at o9' then v-~O at o9". Hence Q is not micro: 
locally approximable at o9. 

The proof is given below. To prove the second statement of the theorem we 
observe that if Pv ~ 0 and v is approximable at 0 then J~" v~ 0 at o9' by Lemma (5.3) 
so v ~ 0 at o9. But v,-~ 0 also at all points (0, 0; z, r/) with z ~ 0 or ~/> 0 since P 
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is analytic hypoelliptic at these points (see M&ivier [6] for the points with z=0).  
Thus, v,~0 at 0. This completes the proof of the theorem. 

Proof o f  Lemma (5.3). Let v and vj be a s  stated, w=yv, wj=yvj. Then 
{Qvj}~0 at 09' and Lemma (2.4) imply {wj}~0 at co' so there is a neighborhood 
q / o f  0 in R and a > 0  such that w and the wj extend as holomorphic functions W 
and Wj to f2=q/+i (0 ,  a ) c C ,  and [Wj(z)l<-Cllmz[ -N for a l l j  and zCf2 and 
some C, N independent of  j.  Passing to a subsequence we may assume that the 
Wj converge uniformly locally in f2, to W since vj~v. Now each vj, being analytic 
at co', is the boundary value o f a  holomorphic function defined on a set f2+i(0, aj), 
a j>0 ,  and yvj=wj implies zVj=Wj  on the common domain. Thus the Vj can 
be taken to be defined on f2, the sequence {V j} converges uniformly locally there 
and we have estimates of  the form [Vj(z)[<=C[Imz[ -N-l, C, N independent o f j .  
Thus the limit V also satisfies such an estimate, and has as boundary value at Im z = 0 
the distribution v, again because vj-+v. Thus v~0  at co'. This proves the lemma. 

(5.4) Lemma. E • is a classical pseudodiff erential operator with symbol y + r(y, rl) 
on r/<0, where r is of  order - 1. 

Proof. The analysis of the operator P in the C ~ category carried out using 
the techniques of  Helffer [4] and Proposition 3.2.2 there give that E • is a classical 
pseudodifferential operator, since 0t s -  t 2 r/e-r/ is a selfadjoint second order opera- 
tor for r/real and the eigenvectors, for r/<0, are even. It only remains to find the 
principal symbol. For our operator P we have Jl=d~=J, ~ * - r * - 7 *  where 

Jr(t, y) = (2re) -1 zc-1/4 f .<o  d tr-r')g Iql 1/4 e-'~l~l/2 v(y') dy" d~l 

-I  -114 ~(Y-Y')~ e-t~l"l/~ f(t ,  y') dt dy" dq J*f(y)  = (27~) 7r f.<ofe lql~/4 

if  vECo(R ) and f6Co(R2). Since if=y, E•  But J*yEyJ  has 
order - 1  while J*yJ=y+[J*,y]J  and [J*,y]J has order - 1 .  Thus E •  
op (r) with r classical of  order - 1 as stated. 

(5.5) Lemma. Let R be a classical analytic pseudodifferential operator of  order 
- 1 in a neighborhood of  0 in R. Then there exist analytic elliptic pseudodifferential 
operators F~, F 2 such that 

(5.6) FI(y q--R) F2 .v y. 

Proof. It follows from a known result [8] in R ~ that one can find F~, F~ with 
F~(y+R)F~..~op(y+ol-1), c constant (see Lebeau[5], Th6or6me 1.4). Hence it 
suffices to take R = o p  (cr/-1). Now take F1 with symbol r/-ir and F~=F; ~ to get 
(5.6). "Ihis proves the lemma. 
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