On the compactness of paracommutators
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1. Introduction
In their paper [2], Janson and Peetre consider the paracommutator defined by

®) T51(E) = @y~ [ 5(E—n) A )12 Il Fn) dn

and obtain a series of results about its L2-boundedness and its S?-estimates. In
§ 13, they prove threc theorems about the compactness of paracommutators (for
notations see below):

Theorem A. Suppose that A satisfies Al and A3 (y) and that s+t<y and s, t=0.
If bebll', then Ty is compact.

oo 9

Theorem B. Suppose that A satisfies A3 and
1Al seayx sy = a(—k) with 2o _a(n) <ee.
If bed®,, then T, is compact.
Theorem C. Suppose that A satisfies A1, A2, A3. If b¢ CMO, then T, is compact-

In this paper, we study the converses of the above theorems. We adopt the
notation in [2]. For the sake of completeness, we include some of them, which are
used in this paper. Let 4, denote the set {¢€R?: 2¥=|¢|=2%+1}. The space of
Schur multipliers M(UXV') is the set of all @€ L=(UXV¥) that admit the repre-
sentation

@3 ()] ==f9<x(€, o) B(n, @) dp(w)

for some finite measure space (Q, u) and |&l=@wxay, |Bll=wxoy=1; the norm
lolmwxvy is given by the miinimum of the u(Q) over all representations (2).
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AQ: There exists an r>1 such that A@E, ry)=A(, n).
Al: }IA[IM(ijAk)§C, for all j, k€Z.
A2: There exist A4, A,c M(R*XR?) and 6=0 such that

A, m = A4 m) for [nl <[]
A, n) = A& ) for & <6nl.
A3: There exist y=0 and 6=0 such that if B=B(¢,r) with r<4|&,|, then

7 Y
[Alu@xn =C (ITOI) .
A4: There exists no &0 such that A(¢+#,n)=0 for a.e. 1.
AS5: For every &,#0 there exist §=>0 and 7,¢R? such that, with

U={&: [EE1—&/1&l| <8 and [£] = |&l} and V= By, 51&l),
A, M TEMUXY).
We need another non-degeneracy assumption A4+ on A(E,7), which is stronger
than A4 but weaker than AS5.
A4%: For every &,#0 there exist #¢R? and 8>0 such that, with
By = B(o+n0,018) and Dy = B(ny, 51&0),  A(S,m)7 €M (ByXDy).

Remark 1. 1t is easy to show that the assumption A4—;— is equivalent to the
following statement:
For every &0 there exist 7,6R? with #,¢{—¢&,, 0} and

0 < § < 5 min ([&+1gl, 174l 1)

such that, with By=B(S,+ 1, 61%0l) and Dy = B(n,, 61&)), A(E, m) 7€ M (ByXD,).
A4+ and A5 will be used in the homogeneous case (A0 holds). In that case A5=>A4 L.
In fact, if A5 holds, we choose a finite set of points {£}/_; on {l=|¢|=r} with
corresponding sets UY and ¥ such that U]_, UV {i¢|=r} and

A(é, n)—leM(U(j)X V(J'))‘

Consequently, U;_, r*UP> {ig|=r**"} and A n)TeMEUDPX VD) for
every k€Z. Let £,7#£0, without loss of the generality, we may assume that 1=|&,|=r.
Then there exists U such that &,&r 2UY. Choose 6’>0 small enough such that
B(&), 28’ 1&Ncr2UWD, If <8 r21El, et mo=r—2{?, S=min (&’ §/r?),
By,=B(&y+14, 81&|) and Dy=B(nq, 81&)), then Bycr 2UW, Dycr—2VY and

1A srox gy = 14 ™ prem209 <2 ;"f’) < oo,
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If |mjl=6"12&l, let no=r—""2n{? where k=[log, [n{’|/8"1&]1+1,

. Lo S
5=m11’1[5,6 —rs—lrl—G)—l],

By=B(Ey 14, 51&)) and Do=B(y,, 81&,), then r*B,cr-2UY, ¢ D,cr-2p¥
and hence

1A o xpoy = 14 "t Bo xrvpgy = 147 pom2u sp-2vy < oo,
ie. A4% holds.

Remark. 2. The assumptions A4-;— and A5 are asymumetric in ¢ and #, con-
sequently the theorems below will be asymmetric too.
As in Triebel [6], let Z(R9) denote the set

{feS®RY: D*f(0) = 0, for every a}.

Let 5%, denote the closure of Z(R?Y) in B%, and CMO denote the closure of Z(RY)
in BMO.

On examples whose kernels A(, ) satisfy A4+ or A5, see § 1 and § 6 of [2].
In particular, the kernels of Hankel operators, commutators, higher order com-
mutators and paraproducts satisfy A4+ and A5. As well known, Hartman [1] and
Sarason [5] have proved that a Hankel operator I, is compact if and only if ¢€CMO,
and Uchiyama [7] has proved that a commutator [K, b] is compact if and only if
b€ CMO, so Theorem 2 below is a generalization of their results.

The main results of this paper are the following two theorems.

Theorem 1. Suppose that A satisfies AO with some r=>1, Al, A3 (y) and A4+,
then T being compact implies that bebsT.

Theorem 2. Suppose that A satisfies AO with some r=>1, Al, A3 () and AS,
then T, being compact implies that b€ CMO.

We need some lemmas.

Lemma 1. If T is a compact operator on L2(R%) and fi~0 weakly in L2(R%)
as j—eo, then |Tfy—~0.

This is well-known.

Lemma 2. If g is a positive continuous function with compact support, g,(x)=
ri®g(rx), and if |f, (=g, (x) then f, ,~0 weakly in L2(R%) and uniformly
inwas r-0 or r—oo,

This is obvious.
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Lemma 3. Let beB’,. Then bebs, if and only if b satisfies the following three
conditions

@) 25[bxYle ~ 0 as k4o,
(3) (i) 2%[bxYyfw ~ 0 as k> —eo,
(i) b*y () -0 as |x| >ce, for every k,
where \J is an arbitrary test function in S(R?) such that Re Y (E)=c=>0 on Ay, supp ¥ <
{r=|¢|=R} for some O<r<1, 2<R<eco, and §,(E)=§(2%&).
Remark 3. It is easy to see that under the conditions (i) and (ii), the condition
(iii) is equivalent to the condition
(1)’ sup 25bx (X)) -~ 0 as |x] - oo,

Lemma 4. Let be BMO. T hen b€CMO if and only if b satisfies the following
three conditions

(i) lim sup M(b,0) =0,
at0ig|=a
(® (i) lim sup M(b, Q) =0,
1o |Ql=a
(i) lJ}!iin M@, Q0+x)=0 foreach O,
where

M6.0) = inf {2 Lo 0)=cldy}.

The proof of Lemma 3 is omitted here. We refer to Peng [4]. Lemma 4 is due
to Herz, Strichartz and Sarason, and a proof is given by Uchiyama [7].
We will prove Theorem 1 and 2 in § 2 and § 3, respectively.

Acknowledgement. This paper is a part of the author’s Ph. D. thesis, written
at University of Stockholm under the direction of S. Janson, to whom the author
expresses his sincere thanks.

2. Proof of Theorem 1

For the sake of simplicity, we assume that #=2 in AO. By the assumption
A4 and Remark 1, there exist finite sets of points {¢{’}/_; in 4, and {§"}]_
with corresponding open balls B(&{), 6¢7) and B(§, 5(”) such that ,7(1),50
,1(1)# 5(1) U B(f(’) 5(1))D Ag, 5(1)< min (ié(n_{_n(z)l M(J)I’ 1), and with
B~BED 19, 50) and D,=B(, 6P), 4 M(B,XD))
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We choose the positive functions h}(§) and h;(n) such that A}, heCy ®RY

i

supp h;=B;, h;(£)=0 on B;, supp h;=D;, and h; (11)>O on D;. Let

U =3, [1E+nlInl hjE+n) b () dn.

Then §eCyRY), supp Y {F=|¢=2+2), and §(&)=c>0 on 4,. Thus § can
be used to define the norm of B5}Y, in particular it can be used to Lemma 3.

Since Ad+=A4, by Theorem 9.1 of [2], we know that bEBS'. If bgbsH,
by Lemma 3, b does not satisfy at least one of (i), (ii) and (iii) in ().

If b does not satisfy (i) then there exists a subsequence k,—~+ e as v—>oo,
a sequence of points x,€R? and g,>0 such that

(5) 256401 b x iy (x,)] = &

We shall show that (5) contradicts the compactness of T;'. Let
£ = 2w kv v,
g9 (1) = 27492 y (2 hop) e,

I v(j)Hz = CJ,’ “g(“H = Cj;

Then
thus we have

BE bk, ()] = C| [ BEOY () &2 de

= C| 3, [ 6@1E+nlInl 27" By (2% (E +n) by (2~ Fem) €™ ¢ dE d
= C|ZI_, [ BCE—mErint £D©) gD () dé dn|.
Since A€M (B;X D;), it has the representation
AT = [ alE o) B, 0) du(@)
with ) zogs ey IBlim xey=1 and p(Q)=14"pyp ¢y Note that
AQWE 2R = A, ),

thus we have

2k | 5 Ve, ()l
= C 3| [ bE—mAEnIEPInf a2, o)

FD@ B2, ) 6P dt dn du(o)|

= CZ, 1_[ 75 gy)m”m(nd) I EQ)HU(R")dﬂ(a))
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(where £ (O =a(&/2%, ) £ (@), g0 =B0/2, ©) g (n)

= CZ, 1f 175 gﬁ’loﬂLz(Rd) dp(v).

By Lemma 2, f) -0 weakly in L*(R% and uniformly in w€Q as v—, and

by Lemma 1, !lT@wll ey~ 0 uniformly in w€Q as v—o. This contradicts (5).
Similarly, we can show that b must satisfy (ii).
If b satisfies (i) and (i), but does not satisfy (iii), then there exist k, and a se-
quence of points {x,} and g,>0 such that |x,| > as v—>e and

(©) 1B Y, (x,)| = &

We shall now show that (6) contradicts the compactness of T;'. Without loss of
generality, we assume that k,=0. Let

JRIGENGES
gD () = byl e
Then || f9P||,= C', l]g(f)ll2 C;. Thus we have
by (x)l = C|Z7_, [[BE@1E+nllnlf (& +m) by () e dE dn
= C|ZI_, [[B@E+nPint /P ©&D (n) ¢ dyf
= C 30| [f[ BE—n) A DIEP Il 2, ©) £ (&) B, ) g9 (r) dE dy du(o)

=c3, [ T8 g$”mHL2(Rd)du(w)

where g(’) M=, co)g&j)(r/). By the Riemann—Lebesgue lemma g% —~0 weakly
S
in L2(R?) as v—oo, for every w€Q, and by Lemma 1, | T5'g%) [l spe—~0 as

TN
v—>oo for every w€Q, thus [q[7;'g%) |l sme du(®)~0as v—eo. This contradicts

(©).
This completes the proof of Theorem 1.
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3. Proof of Theorem 2

For the sake of simplicity, we assume that 4 is homogeneous of degree 0, i.e.
A0 holds for every r=0. The proof for the general case is similar. (Cf. Janson
and Peetre [2].)

By Theorem 10.1 of [2], we know that b€ BMO, and by Theorem 1, we know
that beb?, i.e. (i), (ii) and (iii) in (3) hold for b. By Lemma 4, it suffices to show
that (i), (ii) and (iii) in (4) hold for b.

As in the proof of Theorem 10.1 of Janson and Peetre [2], by A5, we may choose
a finite set of points {£J}]_, on the unit sphere and {#$’}]_, with corresponding
sets UY and ¥ such that J_, UV > {¢|=1} and A4~ 1EM(U“’XV“’) Thus
Ui U9 =)o {1E1= R} for some large R. We fix g€ L? with |g(x)|=1 when
[x|<1 and supp £<B(0, 5), where d=min;=;<; 6 (), We may assume that §<1.

To show (i) in (4), for every ¢=0, by (i) and (ii) in (3), there exists K,>0
to be an integer such that

lbxYil. <& if [kl =K.

i . For B=B(x,,r), put

b(x) = S50 b+ Z )+ S, bi(x) = 6P (1) +5® (x) +5P (x),

where b, (x)=bx\,(x), m={log, R/r]. Now we estimate

-i—;_l B(x,,7) Ib (x) - b(l) (xr) - b(2) (x,-)l dx
= _1_ [6W (x) - bM (x,)] dx+if 1b® (%) — b (x,)| dx
= IBI B(x,,r) T IBI B(x,.1) Y
1
+|_BT B(x,.,r)lb(s)(x)‘ dx = 11+12+I3.

For I,, we use the standard estimates

Vo] = C24[by] .
Hence

L= C 35 o P l—ddn 3 C 350 Pr = G2 < G

For I,, we have, similarly,

-3 1 —
L= ZK ? lBlfB(x " ”ka\loo lx—x,|dx = Cerz 39k = (G,
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For I, we have

1 f Syt ar] ~1/2 ) p(®
L=\ seeun 10D dx) = 1B 169 Leuiar

= B2 [p® P PP [where 8,5, (%) = g(x';Xr)]

AN

= 2n) 2B~V b % 5, 1w
N

- ~34)2) B1-1/2 1 () 4 &
= (2m)~ 32| B2 b *gr,xrﬂL,[‘;]g%]

+@r)~ 2B [ g, ] )= Tyy+ L.

2 (1a=%
Note that when k>m-+2, supp by *8,,, C{|¢|>R/r}. Thus we get

Iy = (2n)=342|B|~1/* 2m+2 H[’k *gr,x,”Lz(R“) = |B|~1? ZZf: b5 &r, %, L2y

m—2

= B2 3010 byl e l2wty = € 3ty 8 = Ce
Finally, for I;;, note that supp z@*g,,xch(o, Rfr) for i=1,2. Thus we have

Iy = Qu)22 B2 b xg, |, (15=2)

§(2n)‘3d/2l3|_“22;=1 Hg*gr,xyn . Uyl y-
(")

r

Hence, it suffices to show that for every j

Q) (2m)~34% | B| 2 ]IB*gr,x,“Lz[ U gH ] < g,

when r is small enough.
To show (7), let

7. = BA2g, . (r—n$fr) = oo R 12 g (r =) e~ ),

. i . .
Then | fl.=C, suppf,.cBGP)r, 8jr)c— VW, Since A~ eMUPXVY), there
r
is a representation of A, 7)™,
A T e @O o () = [ alé, o) fr, w) dp(w)

such that
ol =@ xays 1Blr=g» oy =1
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and
fﬂ dp(@) = [A™ Yy «ve)-
Thus we have

@m) =B |bxg, | = Cléxf1

L2[ U@ g ]
r

()

=C||f6E—n . dn|, (22)

uld
r

_ C”/fﬂé(é"")A(é’ n)a[—f—,w]ﬁ[g—,w]fr(’?)dﬂdﬂ(w)”u(

=Cf ol T@HL*(R“) dp(w),

whete 7, o(n) = 8 (L, o),
By Lemma 2, f,,~0 weakly in L2(R% and uniformly in wéQ as r—0,
P

and by Lemma 1, |7} f; ol smey~0 uniformly in w€Q as r—0, ie. (7) holds.
A similar, but simpler argument shows that (ii) in (4) holds.
To show (iii) in (4), for a fixed B=B(0,r), we may assume that r=1. For
every €=0, by (ii) in (3), there exists K,=>[log, R] such that

bl <&, if k<-K,.
But

b() = I8 b+ 37y 40 bl = BO W)+ ().

For [x° large enough, we estimate
_ B (40
fB(xD,l)lb(x) b (x9)| dx

= b () — b (x9)] dx + [

— J B(x%1)

(2) —
B(x“,l)lb ) dx = I+ 1.
For I,, we have

=35 jB(xo, L VB @) 1x—x% dx = C > TKegke < Ce

For I,, we have
L= l{b(”lluw(xo,l))

= [b® gooll L2may (Where g is as before, and g (x) = g(x—x?))
= 1)~ [F x g al ey

N N
= (2”)_3"/2 I b® % £eol g zr)+ (2m)~342 I b® %80 Hu(]gl <ry = Iyt Ips.
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Note that when k=>m-+2=[log, R]+2, supp b x &, {|é|=R}, so we have
Iy, = (27:)"3d/ 2 TIZH I Bk*éxﬂ | LXRY = 2 ﬁ;;l [ by g xoll LYRY)
The sum has only finitely terms, and each term is bounded by
1/2 ol 1/2
([ 10 g —xORdx) 4 ([ 160(6) g (o a2 dx)™.

Because |b(x)|~0 as |x[-e< and |g(x—x9)|=C|x—x%~M for some large M,
when |x—x% large enough,

I, < Ce, if |x°] large enough.
For I, it sufﬁcés to show that
® (2r)=342 | bx 8| LW -y < & when |x? large enough.
To show (), let
Fuo(n) = g(n—n) = 8(n—niP)e '@’ =m>
Then | foll;:=C and suppf.cB@#S, )cVY. Thus we have
QR b % ol Lo —qgy = QR [6% fro| Lower
= C| [ BE=m el dn| ey
= C|| [[obCE—m A 1) a(E, ) B, ) Frolr) d dpp(@)]|ayenry

=c| [, ren

le(Rd) d/»‘ (w)

P
where fo ,(n)=B{, ) f.o(). By the Riemann—Iebesgue lemma, fxo,w»O weakly
in L2(R?Y as |x% < for every w€®, and by Lemma 1,

N
1Ty fro,0lL2mey =0 as |x%] —e for every w2,
hence
N
S Ts fro ol c2may du(@) ~ 0 as 139 ><o,
i.e. (8) holds.
This completes the proof of Theorem 2.
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