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1. Introduction 

Let G be a compact abelian group with dual group ~ and let u~R~ be a strongly 
continuous representation of G on a Banach space X. Associated with each rE G, 
define Er: X--,-X by 

E~,x = f o r ( u ) R _ , , x d u  (xEX), 

where du denotes Haar measure on G and the integral exists as a Bochner integral. 
Then E r is a bounded projection which maps X onto the corresponding eigenspace 

X~ = {xEX: R~x = r (u )x  for all uEG}. (1.1) 

Furthermore, 

(1.2) 
and 

(1.3) 

IIE~ll ~ c = s u p  {IlR.II: uCG} <~ (rEd) 

E~Ev=O (r, vCd, r~v).  

Also, the injectivity of the Fourier transform implies that 

(1.4) clm{X~: r E ~ } = X  and n{kerE~: rEg}={0},  

where "clm" denotes "closed linear span". We shall refer to E~ as the spectral projec- 
tion associated with 7E G. 

Suppose now that G is connected. Then G can be given (in a non-canonical 
and in general non-unique way) a total ordering with respect to which it becomes 
an ordered group. Let => be any such ordering and define the subspaces X +, 
X -  of X by 

(1.5) X + =clm{Xr:  rE~, r =>0}, X -  = clm{X~: r ed ,  r < 0 } .  

Then (1.3) and (1.4) imply that X + n X - =  {0} and that the algebraic direct sum 
X + @ X  - is dense in X. The main result of this paper (Theorem (4.1)) is that, 
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under a suitable geometric condition on X, 

X = X+ G X  -.  

In addition, the norm of the corresponding projection E + of X onto X + satisfies 
IIE+II <=cZgx, where c is the constant in (1.2) and K x is a constant dependent on 
X but not on G or =>. The precise condition on X is that it should belong to the class 
of Banach spaces having the unconditionality property for martingale differences, 
the so-called UMD spaces. 

A special case of this result is Bochner's generalization of the M. Riesz harmonic 
conjugacy theorem. In the present context, the M. Riesz theorem is most conveniently 
formulated as asserting the boundedness (with norm denoted by Cv) of the natural 
projection of LV(T) onto HP(T) for the circle group T ( l < p <  oo). Bochner's theo- 
rem [6, Theorem 16] states that, for G compact, connected and abelian, and _-> 
as above, the 'analytic' projection of a trigonometric polynomial z~r~o %? on 
G onto ~_~0 cr? is bounded relative to the L p norm and so extends to all of LV(G), 
provided 1 < p <  oo. In addition, the norm of this analytic projection is dominated 
by a constant which depends on p but not on G or =>. To obtain Bochner's result 
from Theorem (4.1), take X to be the UMD space LV(G) and R u to be the transla- 
tion operator on LP(G) associated with uCG. In this case, the constant Kx men- 
tioned above is majorized by C v. (See Remark (a) after the proof of Theorem (4.1).) 
Thus Cp is seen to be the best possible constant for Bochner's theorem, a fact shown 
earlier in [1]. 

Two techniques combine to give our extension of Bochner's theorem, namely 
the use of a generalization of the method of transference of Coifman and Weiss [10] 
and the boundedness of the vector-valued Hilbert transform for UMD spaces. We 
discuss these ideas in w167 2, 3 before proving the main result in w 4. (In w 2, we also 
indicate how to obtain a version of the homomorphism theorem for multipliers 
using transference.) In the final section, we discuss briefly how the extension of 
Bochner's theorem can be refined in the case when X is a subspace of an LP-space 
( l<p<~o) and the operators R~ (uEG) are invertible isometries. For such X, 
the analytic projection of LP(T) onto HP(T) is extremal in the sense that it gives 
rise to the largest possible norm for the 'analytic' projection E + of X onto X +. 
Indeed, such a result is valid for linear combinations of E +, the identity operator 
I and the spectral projection Eo associated with the zero element of ~ (Theorem (5.1)). 
A more restricted version of this extremal result (in the context of Bochner's theo- 
rem) was obtained earlier in [1, Theorem (3.8) and Corollary 3.13)]. Other aspects 
of spectral theory in UMD spaces have been studied by the authors [3, 4], where 
the notion of transference has also played an important role. 

As usual, R, C, Z and N denote the real numbers, the complex numbers, the 
integers and the positive integers respectively. All Banach spaces are taken to have 
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complex scalars and all integrals of vector-valued functions are to be interpreted as 
appropriate Bochner integrals. Given sets A and B, we denote their set-theoretic 
difference by A\B .  If  A and B are also subsets of an abelian group, their algebraic 
difference {a-b: aCA, bEB} will be written A--B. 

2. Generalized transference 

We begin by recalling the general transference result of Coifman and Weiss 
[10, Theorem 2.4]. This is concerned with the representation of a locally compact 
amenable group fr on a subspace Y of an LP-space, and the transfer of norm esti- 
mates for certain convolution operators on LP(f~) to obtain similar estimates for 
associated operators on IT. For simplicity, we confine ourselves here to the case 
when ~ is locally compact abelian (and hence automatically amenable), since this 
suffices for our applications. 

To fix notation, let f~ be a locally compact abelian group, let ( ~ ,  p) be an 
arbitrary measure space, and let Y be a closed subspace of LP(JCl, lO, where 
l<=p<oo. Let u~R,  be a strongly continuous representation of  f~ on Y with 

Let kELl(Cff) and put 

(2.1) 

e = s u p  { l l R d  : u ~ }  < ~ .  

Tky = f k(u)R_,ydu (YCY). 

Integration (in Bochner's sense) is with respect to Haar measure du on (# and (2.1) 
defines T~ as a bounded linear operator on Y, with 

(2.2) IITkll <---- ellklh. 

The aim of transference is to improve the order of magnitude of the majorant in 
(2.2) as follows. 

(2.3) Theorem ([10, Theorem 2.4]). With the above hypotheses and notation, 

llTkll <---- c2Np(k), 

where Np(k) denotes the norm of the convolution operator f ~ k  . f on LP(f#). 

A few comments about (2.3) and its proof are in order. Firstly, Coifman and 
Weiss consider the case Y=LP(d4, #), but their proof applies when Y is only a 
subspace of L~(./r p). Secondly, they take k to have compact support; however, 
(2.2) shows that II ZklI is continuous as a function of k relative to the Ll-norm and 
hence the extension to an arbitrary integrable kernel k is immediate. (Such an ex- 



Earl Berkson, T. A. Gillespie and Paul S. Muhly 

tension is indicated in [10, p. l l].) Of more significance, the proof in [10] relies in 
part on an application of Fubini's theorem, and so # is assumed to be a-finite therein. 
Furthermore, Coifman and Weiss interpret (2.1) in a pointwise sense as 

(2.4) (Tky)(o9) = f +, du (,o C - a.e.) 

and, in order to apply Fubini's theorem, implicitly require an appropriate joint 
measurability condition as a function of (u, co) of expressions such as the integrand 
k(u)(R_.y)(og) in (2.4). Whilst we do not wish to dwell on these technicalities, we 
record here the following lemma. With the aid of this, the proof of [10, Theorem 2.4] 
may be adapted to give (2.3) in the generality stated here. 

(2.5) Lemma. Let u+R.  be a strongly continuous representation of  the locally 
compact abelian group ~ on a closed subspace Y of LP(~,  It) with 

c = sup {l[g.II : uE~} <0% 

where (d/l,#) is an arbitrary measure space and l<_-p<,-. Let kELI((~) have 
compact support K, let T k be as in (2.1), and let V be a relatively compact open subset 
of(#. Then, given yE Y, there exist a a-finite measurable subset dr of ~/[[ and a jointly 
measurable function F: (r • + C such that 

O) F vanishes off (V--K)X~Cgo; 
(ii) for almost all uEV--K, F(u, .) is a representing function for the equiv- 

alence class (modulo equality It-a.e.) R,y; 
(iii) for all vEV, 

f +k(u) V(v-u, .)du 

is a representing function for the equivalence class RvTky. 

Outline of  proof. Fix yEY. The uniform continuity of u-+R,y on V - K  
gives a sequence {f,} of simple functions, say 

L ( u )  = 2 m  Znm(U)Ynm ' 

with each ;(,m the characteristic function of a measurable subset of V--K and each 
Y.r, EY, such that f . ( u )+R .y  in LP(J / ,# )  norm uniform on V - K .  Since each 
Y,r~ vanishes almost everywhere off some a-finite subset of d / ,  there is a a-finite 
measurable subset ,/go of dg such that Y,m vanishes off ./go for all n, m. With 

Fn(U , CO) = ZmXnm(U)Ynm((D), 

it is easy to check that {F,} is Cauchy in LP((V-K)X.//r and so converges in 
LP((V-K)• to some function F. We may consider F as a measurable func- 
tion ff • ~ / +  C satisfying (i). 
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We have 

{f. W(u, co)-(R.y)(co)l'dl,(co)} du <= 2"[[F-F.Ilf:,(v_r, xato) 

+ 2, fv-,, IV.(u. + (co)} du -.- o 

as n ~ co. Property (ii) now follows. 
To obtain (iii), fix v6V. Thus RoTky is given by the Bochner integral 

f~k (u )R~_3du .  For any g~Lq(~ ,#)  (where p - l + q - l = l ) ,  we have, with the 
aid of Fubini's theorem, 

(R.Tky, g) = f Kk(u)(g._.y, g) du = f  og(co) {f Kk(u) F(v-u, co)du} dp(co) 

= L g ( c o ) { f , ,  k (u )F(v -u ,  co)du} dp(co). 

The proof of the Lemma is easily completed by letting g run through the charac- 
teristic functions of the subsets of . g  having finite measure. 

Suppose now that f~0 is a a-compact, locally compact abelian group, and that 
u-,-S, is a representation of fg0 by measure-preserving transformations of the points 
in an arbitrary measure space (~/, p). For l_<-p< co, let u~R~ v) be the repre- 
sentation (by isometries) of fgo in LP(J//, #) defined as follows : 

(R<f))f(co)=f(S_uco), for fEL%//l,p), uEf~o, coE..g. 

It is easily seen that, for any given value of p, strong continuity of the representa- 
tion R (p) is equivalent to the following condition (which is independent of p): for 
each measurable subset E of J / /such that # (E)<  o% #(EA(S,E))-~O as u ~ 0  in 
if0, where A denotes symmetric difference. We shall also assume this latter condi- 
tion of strong continuity. In [9, Theorem 3.7], Coifman and Weiss apply their original 
version of the above Theorem (2.3) to the present setting in order to establish a 
method for transferring "normalized" LP(fr with their bounds to 
LP(~g, #). The proof in [9] explicitly requires p to be a-finite, and implicitly requires 
the representation S to provide joint measurability in (u, co) of f(S_,co) for appro- 
priate measurable functions f. Use of Theorem (2.3) above in the proof of [9, 
Theorem 3.7] removes both of these requirements. Specifically, the Transference 
Result for Multipliers takes the following form. 

(2.6) Proposition. Let f~o be a a-compact, locally compact abelian group, let 
(~//, p) be an arbitrary measure space, and suppose that u ~ S ,  is a representation 
of ~r by measure-preserving transformations of all. Assume .further that, for each 
measurable subset E of Jr  of finite measure, p(EA (S,E))~O as u-~O in fgo. Denote 
by e(.)  the (regular Borel) spectral measure of the unitary representation u-~R(,. 2) 
described above. I f  1 <-p< ~ and tp is an LP(fgo)-multiplier, normalized in the sense of 
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[9, w 3], then the operator f can be extended from L2(J/[, #)c~LP(J/[, #) 

to a bounded linear mapping of LP(dg, It) into LP(dr ~) whose norm does not exceed 
the LP(fqo)-multiplier norm of ~k. 

This Proposition allows us to deduce by transference a version of the Homo- 
morphism Theorem for Multipliers [11, Appendix B]. For a locally compact abelian 
group f#, we shall denote the space of LP(f~)-multipliers by Mp(~), and the cor- 
responding multiplier norm by I1.11~,~). 

(2.7) Theorem. (Homomorphism Theorem for Multipliers). Let F 1 and F2 be 
locally compact abelian groups. Suppose that ~2 is a-compact, and 0 is a continuous 
homomorphism ofF 1 into F2. I f  1 <=p< 0% and ~C Mp(F2) is normalized in the sense 
of[9, w 3], then the composition IpoQ~ Mp(F1), and 

Outline of Proof. Since ~ is normalized, we can also assume without loss of 
generality that ff is continuous. The argument with standard tools in [11, 
Lemma B.I.1] now allows us to assume further that ~k is continuous with compact 
support. Let d j - -F i ,  j = l , 2 ,  and let 0: G~Ga be the dual homomorphism 
of O. For uEG2, let S, be translation in G~ by 0(u). Thus u ~ S ,  represents G~ 
by (Haar) measure-preserving transformations of G1. It is straightforward to 
check that, in the notation of the preceding Proposition, the spectral measure e(. ) 
for the representation u~R(, 2) of G2 in L~(GO satisfies the following whenever B 
is a Baire subset of F2: 

~(B) is the L2(G~)-multiplier transformation corresponding to the characteristic 
function of 0 - 1 ( - B ) .  
Use of this fact, together with the preceding Proposition, completes the proof. 

We now return to the context of (2.3) and obtain a generalization of that result 
which applies to representations of a locally compact abelian group fq on an arbit- 
rary Banach space X. To this end, let LP(ff, X) denote the usual Lebesgue-- 
Bochner space of p-integrable X-valued functions on f#, where 1 <=p< ~o. Given 
k~L~(fg), let Np, x(k) denote the norm of convolution by k on LP(f~, X). 

(2.8) Theorem. Let u-*R, be a strongly continuous representation of  ~ on X 
such that 

c = sup {llR~ll : uCfr <~o 

let kCLl(f#), and let Tk: X ~ X  be defined by 

= f k(u)R_uxdu (xeX). 

Then IlZkll~c2ap, x(k) for l ~ p < ~ .  
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Proof. This is a mild adaptation of the proof of the Coifman--Weiss result. 
(Indeed, it is somewhat simpler since there are no measure-theoretic technicalities.) 
Firstly, the inequality (2.2) is still valid, so we may restrict to the case when k has 
compact support K. Fix e > 0  and let V be a relatively compact open subset of fq 
such that 

m(V-K) /m(V)  ~ 1 +e, 

where m temporarily denotes Haar measure [14, Lemma (31.36)]. Let ~ denote the 
characteristic function of V - K .  Fix xEX and let fCLP((r X) be defined by 

Averaging the inequality [1 TkxllP <=c p [I R o T k x l f  = c  p II T~,R,,xll p over f ( u )  = Z (u) 8 .  x.  
vE V, we have 

II xll" fv [[fK g(u)gv-'x d [l'd  

= +{m(V)}-*fvllf (u)z(v-u)R=_=xdu l'a  

= c p { m ( V ) } - * f v  [ ] ( k , f ) ( v )HPdv  <= cP{m(V)}- l{N, , ,x(k) i l] f l[~,}  p 

<= c~V(1 +e){Nv, x(k)}Vllxl[ v. 

The required estimate for [] Tk[I now follows, completing the proof of (2.8). 

3. UMD s p a c e s  

A Banach space X has  the  unconditionality property for martingale differences 
(written as XEUMD) if, for l < p <  o% there are constants C(p, X) such that 

" d <= Ilzj=: + Jll  c(p,x)llz ::aJlb 
for every martingale difference sequence {dj: j~N} in LV([0, 1J, X) and all choices 
of numbers el, e~ . . . . .  with ej = _+ 1. A more extended discussion of  this defini- 
tion, together with further references, may be found in [8]. The class UMD con- 
tains a number of classical Banach spaces such as the Ln-spaces of an arbitrary 
measure ( l < p <  oo) and their non-commutative analogues, including the von Neu- 
mann--Schatten p-classes ( l < p <  co). (See [4, 5] for more background and further 
details.) 

In the present note, we shall be concerned with a characterization of the UMD 
property in terms of the Hilbert transform, due to Burkholder and Bourgain. To 
state the result precisely, we denote by H x the periodic Hilbert transform 

H x f ( s ) =  lim (2z0-1f  ~ cot( t /2) f (s- t )dt ,  
e~O+ ~ [ t [ _ ~  
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of a strongly measurable function f :  T-~X, provided this exists almost every- 
where on T. 

(3.1) Theorem ([7, 8]). For a Banach space X, the following statements are 
equivalent. 

(i) X~UMD. 
(ii) Hx is a bounded linear operator LP(T, X)~LP(T,  X) for every p in the 

range 1 < p <  ~. 
(iii) Hx is a bounded linear operator LP(T, X)~LP(T, X) for some p in the 

range l < p <  ~. 

It should perhaps be remarked that the UMD property may analogously be 
characterized in terms of the Hilbert kernels associated with R and Z (see [4] for 
the case of Z). However, in the present context, it is the periodic case which is most 
appropriate. 

Given a UMD space A", define the constant Kx as 

(3.2) K x =  inf [12-1(I+Px+iHx)llp, 
l<p-<~ 

where P x f  denotes the constant term in the Fourier series of an integrable func- 
tion f :  T-*X and I1" lip denotes the operator norm on LP(T, X). We can now 
state a preliminary version (for the circle group) of our main result. 

(3.3) Theorem. Let elt~Re~t be a strongly continuous representation of  T on 
the UMD space X and, for nEZ, let E, be the associated spectral projection 

E .x  = (2re) -1 f~_ ei"'Re-,,x dt. 

Then there is a unique bounded linear operator T on X such that 

{0 (xEE.X, n >= O) 
Tx = (xEE.X, n < 0). 0.4) 

Furthermore, 

0.5) [IZl[ ~ c2gx, 

where K x is given by (3.2) and c=sup  {[IRe, l[: eUET}. 

Proof. Let k, denote the nth Fej6r kernel for T and let h,: T ~  C be defined 
by h,(eU)=~j_~0 ~, ( j )e  iit, where ^ denotes the Fourier transform. Let T. be the 
transferred operator on X defined by 

Znx = (2.)-1f~_= hn(eit)Re-,,X dt (xEX). 

By Theorem (2.8), 

(3.6) IIT,[I -< c~ap, x(h.) (nCN, 1 < p <o~). 
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Since h , . f = k , , ( 2 - 1 ( I + P x + i H x ) f )  for fELP(T, X) and Ilk, Ill--I, we have 

Np, x(h~) <: Np, x(k,)ll2-1(I+ex+inx)llp ~ 112-1(I+ ex+inx)llp 

for hEN and l < p <  co. Hence, by (3.2) and (3.6), 

(3.7) 117,11 ~- e~Kx (nEN). 

For jEZ and xEEjX, Re~ x=ei~tx; hence, for all n, 

T.x = h, ,( j)x ~ {0 (xEEjX, j >= O) 
(xEEjX, j < 0). 

It follows from (3.7) and the density in X of the linear span of the eigenspaces EjX  
(jE Z) that {T,} converges strongly to an operator T on X satisfying (3.4) and (3.5). 
It is easy to see from (3.4) that X = X + ~ X  -,  and T is the projection onto X § 
along X- .  This settles the uniqueness assertion and completes the proof of Theo- 
rem (3.3). 

Remark. The existence of the operator T satisfying (3.4) was also shown in 
[2, Theorem (4.2)]. However, the methods used there do not lead to the estimate 
(3.5), which will be needed for the proof of our main result (Theorem (4.1)). 

4. Analytic projections 

Using the notation of w167 1, 3, we can now state precisely our main result. 

(4.1) Theorem. Let G be a compact, connected, abelian group and let >- be a 
linear ordering of  its dual group ~, Let u-~ Ru be a strongly continuous representation 
of  G on a UMD space X. Then 

(4.2) X = X + ~3 X - 

and the corresponding projection E + of  X onto X + satisfies 

(4.3) I[E+[I ~ c2Kx, 

where X +, X -  and Kx are given by (1.5) and (3.2) respectively and c--sup {[]Ru!] : uEG}. 

The proof of (4.1) proceeds by considering first the case G = T  ~r and then 
deducing the general case. 

Proof of (4.1) when G ~ T  N. Assume that u ~ R ,  is a strongly continuous 
representation of T N on the UMD space X and that -> is some linear ordering on 
G--Z N which respects the additive group structure. Fix x - - - ~ o  x~, where each 
xr belongs to the eigenspace X r given by (1.1) and x r#0  for only finitely many 
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)'EG. We must show that 

(4.4) I1 ,_ 0 x, II e'gxllxll 
in order to established (4.2) and (4.3). 

By Lemma 2.5 of [1], there exists aCR N such that 

(4.5) a . 7 > 0  if  x r ~ 0  and 7 > 0  

and 

(4.6) a . 7 < : 0  if x ~ 0  and 7 < 0 .  

(See the discussion on p. 283 of [I]; the dot here denotes the standard inner product 
on RN.) We may further assume that the coordinates of a are rational and then, 
by multiplying by a suitable positive integer, take a = ( k l ,  ..., kN)EZ N. 

Now consider the homomorphism 0 of T into T N defined by 0(eU)= 
(e ik't . . . .  , e ikNt) and the associated representation 

(4.7) -Re'* = Ro(e,,) 

of T on X. By Theorem (3.3), there is a bounded linear operator T: X ~ X  such 
that, if y E X  belongs to the eigenspace 

X, : {z: Re,tZ : eintz for all eitET} 

for some nCZ, then 

Furthermore, 

(4.8) 

Noting that 

o (n _-> 0) 
Ty = (n < 0). 

IITII ~ sup {11~,,,11~: e l t q T } K x  ~ c~Kx . 

Re,t x~ = Ro(e,t) x~ = "~ ( O (eit)) x~ = ei(a" ~)tx~ 

for each ~,EO, it follows from (4.5) and (4.6) that 

Tx = Z ~ ,  x,~; 

(4,8) now gives the desired inequality (4.4) and completes the proof in this 
special case. 

Proof of  (4.1) in the general ease. Now let G be an arbitrary compact, con- 
nected, abelian group and u-+R, a representation of G on X as in the statement 
of (4.1). As before, we must establish (4.4) for an arbitrary element x = ~  x~ in 
the linear span of the eigenspaces X~ defined by (1.1). 

Fix such an element x = ~ x ~  and put F={TEG: x~r Assume that F 
is non-empty (otherwise x = 0  and there is nothing to prove), let A denote the 
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subgroup of G generated by F, and let K denote the annihilator of A in G. Since 
F is finite and ~ is torsion-free, A may be identified with Z N and its dual G/K with 
T N for some positive integer N. Also, A = Z  n inherits a linear ordering from ~. Let 

Consider the induced strongly continuous representation/~ of G/K on Y defined by 

-~,+ K = R, IY. 

It is easily verified with the aid of (1.I) that the eigenspaces Yr (yEA) for/~ satisfy 

(ycr), (yeA\r). 

Applying the result of (4.1) in the special case of T N, noting that Yis a UMD space 
with Ky<=Kx, we conclude that 

ll2 _ 0x ll -~ ~:, sup {[[/~.+KI[2: u+KEG/K}][x[] --<- Kxc2[lx][. 

This gives (4.4) and completes the proof of Theorem (4.1) in the general case. 

Remarks. (a) Let (all, #) be an arbitrary measure space and let X be a closed 
subspace of LP(Jg, p), where l < p < ~ .  Given a trigonometric polynomial 
Q: T--X, say 

Q(elt) = ~ , c z  eintx,, 

with each x,  EX, we have 

(2-1(I+Px + iHx) Q)(e 't) = Z.~_o eintx, �9 

A simple application of Fubini!s theorem (justified by replacing J// by a a-finite 
subset which carries each x,) shows that 

[I2-l( I + Px + iHx)Ql[, <- Cpl[Q[ln, 

where Cp is the norm of the classical Riesz projection of LP(T) onto HP(T). Hence, 
for X a subspace of LP(J/, #), the constant Kx given by  (3.2) satisfies Kx<=Cp. 
This shows that, for such a space X, the norm of E + in Theorem (4.1) is dominated 
by a constant which depends only on p and c but not on the particular measure 
space (~',/~). Thus, as observed in w 1, Theorem (4.1) is indeed a full extension of 
Bochner's generalization of the M. Riesz conjugacy theorem. 

(b) Using the Cotlar bootstrap method, it was shown in [13, IV. 4] that the 
Hilbert transform is bounded on Ln(R, %)  for l < p <  o% where cgp denotes the 
von Neumann--Schatten p-c/ass. Hence Theorem(4.1) applies to X=Cg/, for 
l < p <  ~. Let cg~ be realized as an operator ideal acting on the space H~(T) and 
let the group T be represented on Cgp by the isometries R, of cg n given by 

= s . - , x s ,  u T), 
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where Su: H~(T)~HZ(T)  corresponds to rotation by u. A straightforward calcula- 
tion shows that, when I" = Z  has its natural order, the projection E + in Theorem (4.1) 
is the upper triangular projection which maps the matrix (relative to the standard 
basis in Ha(T)) of xC~p to its upper triangular truncation (obtained by replacing 
with 0 all entries strictly below the main diagonal). That this is bounded on (gr 
for l < p <  ~o is a celebrated result of Macaev [15]. Whilst this proof  of  Macaev's 
result is somewhat indirect (for a more direct approach using the Cotlar bootstrap 
method, see [12, III. 6]), it is of some interest to note that Theorem (4.1) does provide 
an extension of Macaev's theorem along the lines of Bochner's extension of the 
M. Riesz conjugacy theorem. Another extension of Macaev's theorem, again in- 
volving the U M D  property in its proof, appears in [5]. 

5. Representations on subspaces of  LP-spaces 

In this final section, we give a refinement of the inequality (4.3) when X is a 
subspace of an LP-space ( l < p <  ~o) and the operators R,, are invertible isometrics. 
To state the result precisely, let P+  denote the classical Riesz projection of LP(T) 
onto HP(T) and let P0 denote the rank one projection f ~ f ( o )  on LP(T). Denote 
the norm of an operator on LP(T) by ]] �9 lip. 

(5.1) Theorem. Let (Jg, #) be an arbitrary measure space and let X be a closed 
subspace of  LP(Jg, iz), where l < p <  ~.  Let G be a compact, connected, abelian 
group and let u ~ R  u be a strongly continuous representation of  G by invertible iso- 
metries on X. Let E + be the analytic projection on X corresponding to some linear 
ordering on ~ and let E o be the spectral projection associated with OC G. Then 

[14I+rlEo+ffE+[I <= [lr 
for 4, q, ~EC. 

Remark. With X=LP(T),  G = T ,  and R u given by rotation by uET, the 
operators 41+ r/E0 + ~E + and 41+ ~/P0 + ffP + are equal. Thus, Theorem (5.1) shows 
that the regular representation of T on LP(T) is extremal (with respect to the size 
of  the norm of a linear combination of the identity operator and the projections 
E0, E +) amongst isometric representations of compact, connected, abelian groups 
on subspace of  LP-spaces. A restricted version of this result, applicable to certain 
multipliers, was obtained in [1, Theorem (3.8) and Corollary (3.13)]. 

Proof of(5.1). This is a mild adaptation of the proof  of Theorem (4.1) and 
so we indicate the necessary modifications without giving complete details. 

As in the proof  of  Theorem (4.1), it suffices to consider the case when G--T  N. 
Assume then that G = T  N and that ~ is some linear ordering on G = Z  N. Fix 



Generalized analyticity in UMD spaces 13 

x = Z x  r in the linear span of the eigenspaces Xr (~,CZ N) and let a 6 Z  N satisfy 
(4.5) and (4.6). We may then represent T on X as in (4.7). The p roof  is completed 
by applying the following result (in the case c--1).  

(5.2) Lemma.  Let cUrRent be a strongly continuous representation o f  T on X, 

where X is as in (5.1). Let E + and E o be the associated projections on X corresponding 
to the natural order on Z, and let ~, q, (EC. Then 

I[~Z+~lEo+(g+ll <= c~ll~I+oeo+(P+llp,  

where c - - sup  {llRe,tll : e"~T}. 

Proof  o f  Lemma. This is along the same lines as the proof  of  Theorem (3.3), 
but uses the original transference result (2.3) rather than the Banach space version 
(2.8). In this case, we transfer the convolution kernel 

f ,  = ~ k , + q + ~ h , ,  

where k, is the nth Fej6r kernel and h, is as in the proof  of  Theorem (3.3), to X by 
the representation R of T and let n-~ ~.  We omit the details. 
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