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O. Introduction 

In this paper, we study the propagation of singularities for a class of pseudo- 
differential operators having characteristics of variable multiplicity. We do not 
assume the characteristics to be in involution, in the sense that their Hamilton 
fields satisfy the Frobenius integrability condition. Instead, we assume that the 
characteristic set is a union of hypersurfaces tangent of exactly order k 0_-> 1 along 
an involutive submanifold of codimension d0_->2. This means that the Hamilton 
fields are parallel at the intersection, and their Lie brackets vanish of at least order 
k0 there. We also assume a version of the generalized Levi condition. One example, 
with ko=l, is the wave operator for uniaxial crystals, i.e. trigonal, tetragonal 
and hexagonal crystals. The main result is stated in Theorem 1.3, and it shows that 
the wave front set of the solution is propagated along the union of the Hamilton 
fields of the characteristic surfaces. 

The method of proof is to reduce the operator to a first order diagonalizable 
system - -  see Proposition 2.3. By the geometry of the problem and the Levi condi- 
tion, this can be done using the general symbol c/asses of the Weyl calculus. For 
this system the Cauchy problem is well posed, and the parametrix is constructed 
using Lax' method of oscillatory solutions - -  see Proposition 3.4. The oscillatory 
solutions are conormal distributions with non-standard symbols, so we need some 
calculus lemmas in the appendix. The special symbol classes make it possible to 
"blow up" the singularity of the characteristics as in [10]. The contributions out- 
side the singularity may then be taken care of, and we are left with solving a micro- 
local system of pseudo-differential operators along the leaves of the singularity, 
which is done in Section 4. Finally, the singularities of the parametrix are analyzed 
in Section 5. 
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There have been many studies of singularities of solutions of symmetrizable 
hyperbolic systems, see [15] and references there. Nosmas [12] has studied the in- 
volutive case. Kumano-go and Taniguchi [8] have constructed parametrices for 
diagonalizable systems, but since they consider classical symbols, their results are 
not directly applicable here. The results on the propagation of singularities for 
the system in Proposition 2.3 may be obtained by the method of energy estimates 
of Ivrii [6] (see also [16]). For scalar operators, the case when the characteristics 
have transversal involutive self-intersection has been analyzed in [1], [9], [13] and 
[14]. Melrose and Uhlmann [10] considered the case of conical involutive singularity 
of the characteristic set. Morimoto [11] studied operators on the form (2.12) below, 
but with involutive characteristics. Ivrii [7] considered operators with L ~ bounds 
on the Poisson brackets at double characteristic points. 

In this paper, we shall consider classical, or polyhomogeneous, pseudo-dif- 
ferential operators. These have symbols which are asymptotic sums of homogeneous 
terms. But we shall also use the more general symbol classes of the Weyl calculus. 
Since all our metrics are split, we can use the standard calculus of pseudo-differ- 
ential operators with these symbol classes. For notation and calculus results, see 
[5, Chapter 18]. 

1. Statement of result 

We are going to study the pseudo-differential operator P(~';ho(X) on a C ~ 
manifold X. Let p = a ( P )  be the principal symbol and 2;=p-1(0) the character- 
istic set. Assume, microlocally near (x0, 40)~22, 

(1.1) 2; = U i=1 Sj, r0 "-2,  where Sj are non-radial hypersurfaces 

r o ~ . .  tangent at 2; 2 -- A j=l Sj of exactly order k0 = 1. 

This means that the Hamilton fields of Sj do not have the radial direction (4, 0e}. 
Also, the k 0: th jets of Sj coincide on Ez, but no ko + 1 : th jet does, and the surfaces 
only intersect at E~ in a neighborhood of (x0, 40). Observe that the surfaces need 
not be in involution, in the sense that their Hamilton fields satisfy the Frobenius 
integrability condition. Since p is homogeneous in 4, 2;i and Sj are conical. Next 
we assume, microlocally near (x0, 40), 

(1.2) I; 2 is an involutive manifold of codimension do => 2, 

and //(2;2) = X, where H is the projection: T*(X) --,- X. 
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Clearly the codimension cannot be equal to 1, and by non-degeneracy 2~, is a mani- 
fold near (x0, C0). In order to obtain conditions on lower order terms of  P on 
the multiple characteristic set we assume the following version of the Levi condition. 
For j = l  . . . .  , r0 there exist .njCN, with the property that, if q~jCC ~, (x, dx~oj)CSj 
near x0, dx 9j  (x0) = 40 then 

(1.3) le-iQ~'~P(e~a~Ja)[ ~ C(l+Q6k~ dxg~176176 0 ~oo, 

r0 VaCC *~ supported near Xo. Here "no=Z]=l  my, and 6(dx, dC) is the homogeneous 
distance to 2~, i.e. the distance with respect to the metric [dxl2+[d~12/(l+l~[2). 
This means that p vanishes of  order .nj at Sj\~,2, of order ,n o at 2~2, and P satisfies 
the Levi conditions on Sj and 27~ (see [2]). We also have uniform conditions on lower 
order terms on X~=Z",,~2 when approaching 2~2. In order to avoid extra zeroes of  
the principal symbol at 2~, we assume 

(1.4) dm~ ~ 0  at ~ ,  m0 = Z~~ o-nJ ,  

microlocally near (Xo, C0), where dkp is the k: th differential of  p. 
Clearly, (1.1), (1.2) and (1.4) are invariant under multiplication with elliptic 

pseudo-differential operators and conjugation by elliptic Fourier integral operators 
corresponding to canonical transformations preserving the projection condition: 
//(2~) =X.  In order to obtain the invariance of (1.3) we need the following 

Lemma 1.1. Condition (1.3) is invariant under multiplication of P with elliptic 
pseudo-differential operators and conjugation of P by elliptic Fourier integral oper- 
ators corresponding to canonical transformations preserving the projection condition. 

Proof. It suffices to check how FCIk(y• F') transforms u(x, o)e ~r176 when 
F is the graph of  a homogeneous canonical transformation Z preserving the projec- 
tion condition. Here u(x, Q) = ~  uj(x) oJCC ~~ satisfies 

(1.5) lu(x, 0)[ --~ C(l+Q6k~ x, dx$(x)))~(l+Q) v, e ~oo, 

where /~, v=>0. By [5, Prop. 25.3.3] we may assume [Oy/Ox[#O so that X is given 
by a homogeneous generating function q~. We obtain 

(1.6) F(efaCu) = (27r)-" f f e"'(m)-<x'r162 Ou(x, e) dxdC 

= (2~O-"a"ffe~t*t~'e)-(~'~176 oOu(x, o) dxd~, 

with aC S k. The critical points for the exponent are given by 

x = 0~,p (y,  0 
(1.7) { =  C ~'(x), 
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which are non-degenerate. In fact, by differentiating (1.7) with y(x) as function 
of x, we obtain that the determinant of the Hessian of the exponent is equal to 

(1.8) IId-O~q)(y,~)~"(x)l=lOyOeq~(y, OllOy/Oxl~O at ~. 

The section (x,d~) is mapped on ( y , d ~ )  by Z, where ~(y(x))--~(x), since 
z~ ~ dxi is preserved by homogeneity. The method of stationary phase gives 
F(eiOu) =e i~ v, with 

W oo (1.9) v(y, e)~ (Y) z~j=o~-~Lj(a(Y, Q~)u(x, 0))l~=0/(x) , e ~o~, 
x = o ~ ( r ,  ~) 

where L i are differential operators of order 2j in (x, 4) and w(y)~O (see 
[5, Th. 7.7.1 and 7.7.6]). Since k0=>l in (1.1), v(y, 0)=z~vj(y)Q J satisfies (1.5) 
with v + k  instead of  v. In fact, (1.5) is equivalent to 

luj(x)l ~ Cjg(x, dO(x))(J-")§ +1), 

where t+ = m a x  (t, 0). Then 

ID~uj(x)l <-- fiat(x, dO(x))CJ-'-O*(k"+~, I/~1 ~- 2i. 

Since )~ is a diffeomorphism, this completes the proof  of the lemma. 
We shall now state the result for propagation of  singularities for P. Since the 

surfaces are tangent at 2;2, their Hamilton fields are parallel. Since 2~2 is involutive 
and 2; 2 = n S j ,  the Hamilton fields of Sj are tangent to ~2, and they define the 
same flow there. 

Definition 1.2. The Hamilton flow on S is the union of the Hamilton flows on S j, 
j = l  . . . .  , r  0. 

The following is the main result of the paper. 

Theorem 1.3. Assume PC ~P~hg(X) satisfies (1.1)--(1.4) microlocally near wC ~. 
I f  uEN'(X), then W F u \  WF Pu is invariant under the Hamilton flow on I ;=p-1(0)  

near w. 

On ~;~ this follows from the fact that the characteristics have constant multi- 
plicity, see [2, Th. 1.1]. In the next section, we shall reduce P to a first order system, 
microlocally near 1C z. First we shall give an example. 

Example 1.4. We consider Maxwell's equations in uniaxial crystals 

[~ Ot e -  curl h = 0 
(1.10) ~# O,h+curl e = 0 

[div (ee) = div (/th) = O. 

Here e, h are distributions with values in C 3 and e,/~ are positive definite, constant 
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3X3 matrices, such that g=p-~/2s#-~l= has two different eigenvalues ~, f l>0.  
By choosing new fiber and x variables, we may assume it-=-Id and 

0 

The system (1.10) has characteristic set included in {zr  If  we skip the diver- 
gence equations, which are redundant when z r  the resulting 6X6  system has 
determinant equal to 

o~ fizz ((z~__ O)z__ (~-1__/3-1)~ ( ~  + r (1.11) 

where 
= (~-1 + /~ .  2) (r + r + =-* r 

Clearly, when ~ # 0 ,  (1.11) satisfies (1.1)--(1.4). In fact, (1.3) and (1.4) are sat- 
isfied fri~cially. By choosing 

J ~j, j > 0 ,  

as new local coordinates when z~0 ,  we find Z n { z r  where 

Sj : {/7o = ( - -  l ) Y ( ~ - l - - ~ - l ) ( t / ~ q - t / ~ ) / 2 } .  

These are non-radial, and tangent of  order 2 at Z2 c~ {T ~ 0} = {r/0 =rh =t/~---0}, which 
is involutive of  codimension 3. 

2. Reduction to a first order system 

We assume PEtP';hg(X ) satisfies (1.1)--(1.4) microlocally near wE2; 2. Since 
the result is local and we have invariance of  the conditions, we may assume X = R  n, 
Because Z2 is involutive and / '/(S2)=X, we may choose symplectic, homogeneous 
coordinates (x,~)6T*Rn near w~2; 2 so that w=(0 ; (0 ,  ..., 1)) and 

(2.1) Z2 = fix, r 4' = 0}, 

where ~=(~' ,  r We may also assume 

(2.2) & = fix, ~ ) ~ r * R " :  4, = 0}, 

near w. In fact, ZecSI implies S l = f - l ( 0 )  with real homogeneous f=~a, ~'>, 
a ~ 0  near w. Since Z2 is involutive, Hf is tangent to Z2. If we assume aar  then 
Hy is non-characteristic to {xl =0} at w. Thus we may complete f=~h  to a sym- 
plectic coordinate system so that qs=~j when x l=0 ,  j > l ,  and clearly r / '=0 
at S2. 
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Now we rename xl=t, (x2 . . . . .  Xao)=X" and (xa0+z, . . . ,x,)=x",  Since Sj is 
tangent to St at 272, we obtain 

(2.3) s j  = ((t, x;  ~, O ~ 7 " * ( g •  ~+/ / t ( t ,  x, ~) = 0}, 

with fit real and homogeneous of degree 1 in ~, //1-0, and 

(2.4) cl~'lk~ k~ --<- Ifl~-//~l <= Cl~'lk~ k~ J ~ k, 

in a conical neighborhood of w. By taking k = l ,  we obtain 

cl~'?~ k~ <= I//jl <-- Cl~'lk~ J = 2 ,  . . . ,  t o ,  

so flj vanishes of exactly order k0+l  at {~'=0}. 
Next, we prepare PE~hg(X). Assume P to be given by the expansion 

P+Pn-I+Pm-2+ .... where p--a(P) and PiES s. Conditions (1.3) (with r 
and (1.4) give 0~p---0 at ~2 when j<mo, and 0Top.O, near wEZ a. Thus Mal- 
grange's preparation theorem gives, by homogeneity (see [5, Th. 7.5.5]), 

m o p =- c~j=o arno_jZ J n e a r  wES,~, 

where O~cESr"-~o, ajEC~(R, S t) are homogeneous in ~, a0-1 and aj=O at 
272, j>0 .  By multiplication with an elliptic pseudo-differential operator we may 
assume m=mo and c - 1 .  By Malgrange's preparation theorem, we have (see 
[5, Th. 7.5.6]) 

x--Trno-- 1 
Pmo-1 : C-IP+2aj=o bmo-j-1 zJ, near wE2;2, 

where c_IES -1 and bjE C~ (R, S t) are homogeneous in 4. By multiplication with 
1-c_~ES ~ we may assume c_~-0. In this way, we obtain by induction 

(2.5) p _  x;,,0 A D j microlocally near w, - -  ~ j = O  m o - j  t ,  

where AtCC~(R, ~hg) and Ao=l.  Now (1.3) gives more information about Aj, 
but we first have to introduce some symbol classes corresponding to the firs. 

Let 

(2.6) m(~) = 1 + I~'1~o +~ (~)-~o, 

where (r ~/z, thus m~l+l / /~l .  Put 

(2.7) g(dx, dr = Idxl'+ld~'l'l((~)"+l~'l)2+ldUI2/(~) 2 at (x, O, 

where #=ko/(ko+l), which gives h2=supg/gr It is easy to 
see that g is a temperate. In fact, 
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implies (r and 

(1-~)1,~'1 ~-lrt'l+e(r <--I~'l+Ce(rt)", 
which gives the slow variation. Since g~>-h-~g>-(4)2"g , the metric is a temperate, 
and m~(4)-koh -ko-1 is a weight for g. We shall denote by S(mh J, g) the symbol 
classes in (x, 4) of weight mh j, jEZ, depending C = on t, and Op S(mh J, g) the 
corresponding (classical) pseudo-differential operators. (Thus we shall suppress the 
t dependence.) The reason for using these classes is that PjE S(m, g). In fact, Taylor's 
formula gives 

(2.8) /~J = Z~=k .+ l  ~ 4  '~, 

where asE S -ko are homogeneous in 4. Thus we get 

(r 10~O}:0}::/~jl < C ::;-ko-CJ~'l-ko-~)+ 14,1<~0+~-,~',~+ < Cj,rmhlVl, 
by considering the cases 14'[ <> (~)~. Similarly, we obtain that if a(t, x, 4) is homo- 
geneous of degreej  in 4 and [al<-em k, then aES(mJ, g). In fact, if k<L  then 
a - 0 ,  otherwise a vanishes of order ->j(k0+l) at Z2. This we will use together 
with (1.3) to prove the following preparation result. 

Lemma 2.1. Assume that P is given by (2.5) and satisfies (1.1)--(1.4) with m =m 0 
and S~={z=0}, near wEZ~. Then A~EOpS(ml, g) and 

(2.9) bj = e-i~sP(e~q'sa)ES(m~,+'-'~, g) near (to, Xo, ~o), 

for all aES(m~, g), i f  ~oi(t, x , 4) is homogeneous o f  degree 1 in 4, (t, x, dt, x~Oj)ESj 
near (to, xo, ~o), (to, Xo, dt, xq~j(to, Xo, 4o))=w, and (t, x, dt,~q~i)EZ2 when ~'=0. 

Proof. First we observe that by solving 

{ Otq~j + fl flt, x, dt, x~os) = 0 

rpjlt=to = (x, 4), 

near (to, x0, 40), by Hamilton-Jacobi, we obtain r satisfying the conditions in 
the lemma. In fact, by Lemma 3.1 we have 0tO~,q~/-0 when 4 '=0,  and O~,q~j=~" 
at t=to. Let P have symbol expansion p+p~_a+p,,o_~+ .... where p = a ( P )  
and p~ES ~. To compute (2.9) for homogeneous a, we may use the formal expansion 
in Lemma A.1 and homogeneity to get 

bj ~ Zk~_O Lk(P, qgj) a mod S-  % 

since h-<_(r -~'. Here Lk(P, stpj)=s%-kL~(P, q~j) is differential operator of order 
k in (t, x), with principal symbol 

a(r~(P, q~S))(e, ~l) = Z ,.(0~ r x, 4,~q~)(O, ~l)'/k!. 
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Applying this to aCS(1, g), homogeneous of degree 0 in 4, (1.3) gives that 
Lk(P, ~oj)=-O when k<mj, and that all coefficients of Lk(P, ~oj) are bounded 
by cmm~ when k>=mj (since re=m0). By homogeneity, all coefficients of 
Lk(P, ~oj) are in S(m too-k, g) when k~mj.  Observe that this implies that p vanishes 
of order mj at S j, and 

O~dPlsjES(m m~ g), I~1 --> mj, 

near w. In fact, the proof of Lemma A. 1 shows that the mapping (x, 4)~ (x, dx ~p~) 
preserves S(m t, g), Vi. 

Now by induction we obtain that Pro0-1 vanishes of order (mj-i)+ at Sj, 
and that 

( 2 . 1 0 )  , ,no-  i -  O,,r I~l,g), I~1 -~ mj--i. 

In fact, the term of order k in L~+k(P, %), is equal to 

O" - . ( t ,  x ,  ~'l~,l=,', ,,*P,,,o-, d,,~,qJj)(e, n)'ltc! 

modulo terms with coefficients on the form 

~v (2.11) e=eI[l~_,~ Ox qgj(t,x, tl)O~r dt, xq)j), j <  i, 

where (by homogeneity) m o - j -  1/71 +/~---mo-i-  k. By the induction hypothesis 
and (3.5), (2.11) is bounded in S(m"mmo-J-lpl, g)=S(m"~ which gives 
(2.10). By using the expansion (A.6) for general a, we get (2.9). In order to prove 
A~EOp S(m i, g), we observe that when j = l ,  (2.10) gives 

k m o - i - k  O,p,,o-il~=oES(m ,g), Vi, k. 

Since the symbol of P is a polynomial in z, we obtain the result, by considering the 
derivatives at {~=0}. 

Lemma 2.2. Assume that P satisfies the conditions in Lemma 2.1. Then we can 
find A, AsEOpS(1, g),I=(il, ...,i~o)CN'o, so that a(A)---1 and 

(2.12) P =  A H~.~ 1 Q]J+~ltl<moA1 II~~ Q}~, 
ij~_raj 

microlocallynear wES2. Here Qj=D,+Bj, BjEOpS(m,g) ana a(Bj)=/~j. 

Observe that the products in (2.12) are commutative modulo lower order terms. 
In fact, we obtain from (2.4) and (2.8) 

(2.13) {qy, qk} = Hqsq~ = clk(qj--qk)+dO k, cpES(1, g), Vjk, 

where qj=a(Qj), by considering Iff'l.~ c<~) ~, Changing lower order terms in Qj 
only changes A I in (2.12). It is also clear that all terms in (2.12) satisfy (2.9). 
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Proof. First we observe that a (P )  =p  =IIq'~J, since it is a monic polynomial of 
degree m0 in ~, vanishing of order mj at ~ = -/~j .  We shall consider the cases 14'1 
c (4)", by using a partition of  unity in S (1, g). When 14'1N c (4)~, we find S (m k, g) c 
S(1, g), Vk. Replacing D~ by //Q~J, where ~ k j = k  and kj<=mj, only changes 
terms of  lower order in Dr. Thus we only have to consider 14'1=>c(~)". Let P have 
the expansion p+p,,o_l+..,. The result will follow if we can write Pmo_ k, k > 0 ,  
in the form 

(2.14) Pmo-k = Z~o~_ij~_mj a~ l [  j q~, a~ES(1, g), 
I zl <,no 

when 14'1=>c<4)". In fact, if zES(1, g) is a cut-off function, we find that Z Z ~ / / @  
may be written in the form (2.12), since h<m -1 

The proof  of  Lemma 2,1 implies that Pmo_ ~ vanishes of  order (mj-k)+ at 
{z = -p j} .  Since pmo_ ~ is polynomial in ~ of  degree m0, we find 

Pmo- ~ = q~mj- ~)§ rL V j ,  

where r~ is polynomial in z of order mo-(mj -k )+,  and satisfies 

~i rJl c ~ ( . . m o  . . . .  (mj, k ) - i  .~ V i, j, kl~=-~j~-~"k H "  ~ 5 1 ~  

according to (2.10). Since Pmo-k/P is rational in z, residue calculus gives 

Pmo-~/P = Zl~_i~_mi.~(mj, k) a[i(qJ) -~" 
J 

Here a~iES(1, g) in {l~'l->c(~)"}, where it is essentially given by the z derivative 
of  order rain (rnj, k ) - i  of  

q~i,(mj, k), / "=r~ / - / i# jq i -m '  at {~=--/~j}. J Fmo--klF 

--1 Observe that, since 14'1=>c(4~ ", we find qi I,=-aj ~(~ i - - f l J ) - l~S (  m - l ,  g)' accord, 
ing to (2.4). This proves (2.14) and the lemma. 

Now it is simple to reduce (2.12) to a first order diagonal system. We shall 
follow Morimoto [11]. We rename the factors by letting 

Pk = Qj f o r  Z i < j  mi < k <- ~i~-i mi' 1 ~ j <- to. 

Then we may rewrite (2.12) as 

(2.15) P = P I P 2  . . .  Pmo'q-~[j[<mo A J 1ZjE  J P j ,  

with AJEOp S(I ,  g). 
Assume Pu=f, uCN'(R"). Let U=t(uo,uo) . . . .  )--t(uj)lJl<rn ~ where uo=u, 

and Us=.Pju=Pj...Piu , for J=( .h , . . . , j ' r )CN r, with l~jk~mo, Jicjk when 
i~k .  Then U has values in C No, N0=~7__~ mo!/j!, and we shall construct a first 
order No• system for U. First we observe that when I J] =mo, we can find 
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B~EOp S(1, g) such that 

(2.16) Ps = P~Pz "'" Pmo+Zl,l<,,0 B~P~, 

because of (2.13). Since there are many relations between the components of U, 
we make the following choice in order to get a diagonal system. If IJI ---r< m0-1, we 
take the largest iEZ, so that i<=mo and ir  l<=k<=r, then 

(2.17) P~us = Us, where J '  = (i, Jr, -.., J,). 

If I J l=mo-1 ,  we take iEZ so that l<=i<=mo and i#jk,  l<----k<=mo -1 ,  then 

(2.18) Pi us i i j ,  = f+~l i l<mo(Bs , -A )ux with = (i, Jx . . . . .  J,,o-1) 

follows from (2.13) and (2.16). Clearly (2.17) and (2.18) form a first order NoXNo 
system for U, with principal symbol being diagonal matrix with elements z+f l j= 
a(Qj) (repeated several times). Summing up, we obtain the following result. 

Proposition 2.3. Assume that PE ~P~hg satisfies (1.1)--(1.4). Then, by conjuga- 
tion with elliptic Fourier integral operators and multiplication by elliptic pseudo- 
differential operators, the equation Pu=f, uE@'(X), can be reduced to the No• 
system 

(2.19) D,U +K(t, x,D~)U = F, 

microloeally near wE2;2. Here WF F = W F f ,  WF U=WF u, No=,~;~l mo!/j!, and 
KEOp S(m, g) with principal symbol 

(2.20) kl(t, X, ~) = (6jk f l ik) j ,k=l  . . . . .  NO 

being diagonal matrix, with real eigenvalues fliES(m, g) homogeneous of  degree 1 
in ~, satisfying (2.4), and //1-0. 

3. The Cauchy Problem 

We shall study the Cauchy problem for the No•  o system 

P : Dz ldNo4-K(t, x, D:,) 

having the properties in Proposition 2.3. As in Section 2, we shall suppress the t 
dependence and we shall use the notation of that section. Thus KEOp S(m, g) 
has principal symbol k(t, x, ~) satisfying 

k is diagonizable in S(1, g), with real eigenvalues {flj}j=l ....... 
(3.1) 

homogeneous of degree 1 in ~, satisfying (2.4), and fll ~ 0. 
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Thus there exists a base of left (right) eigenvectors in S(1, g). Since their eigen- 
values are C ~ functions, the dimension of the eigenspace corresponding to flj is con- 
stant outside Z2={~'=0}. Let zcj(t, x, ~)ES(1, g) be the projection on the eigen- 
vectors corresponding to the eigenvalue flj along the others when ~ '#0 ,  and 
extended by continuity. Then we have 

(3.2) k Z~.~ 

and k is symmetrizable with symmetrizer M = Z r c ~ n j ,  i.e. M > 0  and M k  is 
symmetric. 

Now we are going to solve the microlocal Cauchy problem 

D t E  + K E  -~ 0 
(3.3) [Elt=0 ~ IdNo 

microlocally near (0, (0, ~0), (0, ~0)), 40 =0, with E: g ' ( R n - 1 ) ~ ' ( R " ) .  We shall 
use Lax' method of oscillatory solutions. In order to do that, we must solve the 
eiconal equations 

~O,~j+~j(t,  x, d~,~j) = 0 
(3.4) [#j(0,  x, r/) = (x, t/) for j = 1 . . . . .  r0. 

By Hamilton-Jacobi, this has a unique local solution, homogeneous of degree 
1 int/. 

Lemma 3.1. Let #j  solve (3.4) with {[3j} satisfying the conditions in (3.1). Then 
we find that (pj(t, x, t / )=#j ( t ,  x, ~/)-(x, r/> satisfies 

(3.5) O~,r - 0 when t/' = 0, ITI -< ko, Vj. 

Proof. By (2.8), the eiconal equation gives 

0.6)  Or(P J+  Zt~l=ko+t ~( t ,  x, tl + dx~oj)(tf + d~,(pj) ~ = O, 

and q~j (0, x, t / ) -  0. When r/' = 0 we get 

~t~Pj+Zl,l=ko+ x ~( t ,  x, ti+ dxqgj)(dx, tpj) ~ = O, 

so uniqueness gives cpj-0 when t/ '=0.  By differentiating (3.6)we find that 
Ot~,gj=_O when t/ '=0, since d~,g j -O then. By induction over [Tl_-<ko we obtain 
the result. 

Now we define Ej: 8 '(R n-l) ~ ~,(R=), j = 1 . . . .  , r 0, as oscillatory integrals 

(3.7) Eju(t ,  x) = (2n)l-= f f  efCOAt'x'r x, tl)u(y) dy dtl, 

with aICS(1 , g). Assume that aj is supported in a conical neighborhood of 0/' =0}. 
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By Lemma A.1 in the appendix, we get 

(3.8) PEru(t, x) = (2z )~-" f f  e~(r x, rl)u(y) dy drl, 

where 

(3.9) bj(t, x, ~) = (O, q)j IdNo + k(t, x, d~ ~j))aj + Ljai + Rjaj, 

Rj is continuous S(mih ~, g)-*S(mih ~+~, g), Vi, j, l, and 

Ljaj = Dtaj-k Zi(O~,k) (t, X, dx~j)Dx, aj+ Mja 1, 

with MjES(1, g). In general, we cannot find homogeneous aj making b]ES -~. 
However, we have the following result. 

Lemma 3.2. Assuming (3.1), we can find ajES(1, g) such that biES(m -N, g), 
V N, in (3.9), j = l  . . . . .  ro, and 

0.10)  Z j ajlt=o -~ IdN0" 

Proof. Let 
(3.9) is 

aj~a~ where afkES(m--k,g). The dominant term in 

(a t (~j IdNo + (k (t, x, d:, cp j) ) 4 = Z i (P~" ( ( f i t -  f l j) ui) a~ 

where ~ . f= f ( t ,  x, d~q)j), so necessarily a~EIm * - * ~j  re j -  0 ~ej Ker ~ j  n v If we take 
a~=~j(O,x, q) at t=0 ,  we obtain z~a~lt=o=Idso. The term in S(m-' ,g),  r~0 ,  
in the expansion (3.9), is given by 

Z i  (I)~ ((fli-flJ)~i)afr-l + Ljafr-[- Rja} -r, 

since h<-m -1 (a)=O). Now c~;(fli-flj)ES(m, g) is invertible modulo S(m -~176 g) 
according to (2.4) when j~ i ,  since dx,~j=0([q ' [ )  by (3.5). Thus, it suffices to 
solve successively, with suitable initial data, 

(3.11) (~P;ui)(Ljaf'+l~ial-') = O, r => O, 

*~ a - r  where aX-0, and (IdNo--q~ j j) ~ has been determined in the previous step. 
Here/~j  is continuous S(m i, g)-*S(m ~-1, g), Vi. 

Now, let {v}}iES(1, g ) be a base for Im~jzcj,  and consider i 
e~ES(m-', g). (Such a base exists, since it follows from the proof of Lemma A.1 
that ~ .  preserves the metric g.) Since rcjrcz=Sfh, we get 

(O~j )7~ l~ ' -~ ja~  l = (~jlaTCl V ijl, 
which gives 

* * i * i * * i -- ~ j  (a~j) ~ j  (T~I) Vj = 0 V i~ J, I. = 5jz Oj (au~) vj ( ~ j  7~j) ~ j  (~7~1)Vj 
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Since Ok=Z~ ((Ofl~)ni+fliOni), we obtain 

where 

(3.12) ?, -= Dto~iW ~a l qb~(Oe, flj) Dx, o~i-4- .~t P~c~tC S(1 ,  g) ,  

with p~C S(1, g). If we introduce local g orthogonal coordinates, then ~ ~* (0r fir)Dx, 
transforms into a uniformly bounded C = vector field. Thus, by adding a suitable 
linear combination of v~. to each column of aj-" we may solve (3.11) for all 1 <=j<-r o, 
with initial data making 

{0'r=0 
z q ~ j a j ' =  r > 0  VI, at t = 0 .  

If we do this recursively for r>0 ,  we obtain the lemma. 
Now the symbols in An S(m -n, g) are integrable in r/'. We obtain new symbol 

classes after integrating (3.8), according to the following lemma. 

Lemma3.3. I f  a(t, x, ~1)EN~ S(m-S, g) has support where IO'l<-cl~"l, and 
q~(t, x, rl) is homogeneous of degree 1 satisfying (3.5), then 

(3.13) a ( t ,  x ,  y ' ,  rt") = fdc*'("x'~)+<x'-'"~'>)a(t, x, rl)drfCS~,.,o, 

where v=/~(d0-1),  p=ko/(ko + l), d0=codim Z2. Here S~,~, o is defined by 

(3.14) k u' a" 0' y" _ C~#ek(rf/>v+tLl~'+/~,l-I~"l IDtD~,,D~,,Dy, D,,, b(t, x, y', ~/")1 < 

Proof. If N(ko+l)>=do+lal, we obtain 

(3.15) ~'~(1 + I~'1 ko§ (n>-k0) -N d~/' 

<...>(,.~.0-.. f r + I~'l k~ +x)-N d~' <- C= (rt") (1~1 +ao-~)., 

by putting ~'=r/'/(t/") ~'. This gives lal<-C(q") ". When differentiating (3.13), the 
derivatives falling on a give the right factors. The derivatives falling on the exponent 
give either r/' factors, or factors 

k ~t ? "  - -  ~ "  IO, OxO,,,q,(t, x, rt)l -< Ck.r,,(q) I Ira, 

by (3.5) and homogeneity. The r/' factors give only (q")u factors by (3.15), and the 
m factors are harmless since aCS(m -N, g), VN. This completes the proof. 

The lemma gives 

(3.16) ~PE~u = (2~z)ao-"ff ei<"'-'"'"">r~(t, x, y', rf') u(y) dy dtf' 
tZ/Eju]t= o =- u, 
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where rjES~.,,o, j = l ,  ..., r 0. We shall compensate for these terms by adding E0: 
8 ' ( R " - I ) ~ ' ( R  ") defined by 

(3.17) Eou(t, x) = (2n)d~ e*(X"-r"'"")ao(t, x, y', 7") u(y) dy d7", 

with aoES~,,, o. By Lemma A.2 in the appendix, we have 

(3.18) PEou(t, x) = (2n)ao-"ff  ei(X"-f"")bo(t, x, y', tf') u(y) dy dT", 

where boES;,~, o is given by 

(3.19) bo = Dt ao + ei<Dy ' oct Ic (t, x, 4) ao (t, y, z', 7")ly =': 
= (0, ~") 

if ]~ is the full symbol of K. In the next section, we shall study this type of equation 
(which is a microlocal type of pseudo-differential operator). By using Proposition 4.1, 
we may solve 

~ b o + Z r j ~ O ,  0 < t < c ,  
(3.20) ta0l,=0 ~ 0, 

modulo S - %  Anticipating this result, we obtain the solution to the Cauchy problem 
(3.3). Naturally, this can be done with t replaced by t - s ,  for small s, which gives 
the following 

Proposition 3.4. Let K(t, x, D~)EOp S(m, g) be an No• system with prin- 
cipal symbol k(t, x, r satisfying (3.1). Then the Cauchy problem for Isl<~ 

fDtE(~)+K(t,x,D~)E (~) ~ O, t>s ,  
(3.21) ,r - - [ E  (~) ]t=~ ----- Id~o, 

mieroloeally near (0, (0, ~o), (0, ~o)), 40 =0, has a solution E(~): g'(R"-I)--,-~'(W ') 
in the form 

~ . a j = O  ~ J  " 

Here 

EJ~) u(t, x) = (21r)x-" f f eif~Jct.~.")-~,n)) aj(t,x, 7) u(y) dy dT, j >= 1, 

�9 j solves (3.4), ajES(1, g), and 

E~o~)U(t, x) = (2~)do-" f f e~(~'-f ""'> ao(t, x, y', 7") u(y) dy dT', 

where aoES~,u,o, v = # ( d o -  1),/t =ko/(ko+ 1), do =codim $2. 
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4. The micro-local pseudo-differential operator 

We are going to study the system 

" ~ - - r ( t , x , z , r f ' ) ,  t > 0 ,  (4.1) Dr f +  e ~ ,'~ x, O f ( t ,  Y, z', rl =~o,,,,) 
t f (0 ,  x, z ,  ~/) = fo(x, z ,  r /) ,  

modulo S - %  wherefo,  r6S~.,, o have values in C No, and k E S ( m , g )  is NoXNo 
system (see Section 3). By Lemma A.2 in the appendix, we have rCSI.,, o if f6S~,, ,  o . 
We shall also assume that k is symmetrizable, i.e. 3 symmetric NoXNo system 
M(t,  x, ~)CS(1, g) such that O<c<=M and M k - ( M k ) * 6 S ( 1 ,  g). 

Proposition4.1. Assume that k ( t , x ,  O C S ( m , g  ) is a symmetrizable NoXNo 
system. Then, /br  every fo, r6S~,~, o, the equation (4.1) has a solution fES~,,, o in 
a conical neighborhood o f  (0, 0, (0, r/~'))6RXR2do-~X T*R "-ao . 

Proof. We shall solve (4.1) by iteration, modulo ~-u S~,~,o, p=ko/(ko+ l )< l. By 
Lemma A.2, we have 

(4.2) ei<Oy.O~> k(t,  x, O f ( t ,  y, z', rl")l~-~o.,.. ) 

_~ ~<Dr"Ur ) k(t ,  x, ~', r/~)f(t, y', x", z', ~/")1~:_-~. = k( t ,  x, D~,, q" ) f ( t ,  x, z', q"), 

modulo terms in ~ ,~o .  Also, we may assume k supported where [ r  #")l<e (q") 
and Itl < c. By cutting off, we may assume k, f supported where (q")~ (qo'}, and 
fo, r having compact support. Put z=kqo~ =J ,  and let 

(4.3) w = (X tp, ~.-1Z', .~l[,~zp). 

Then (4.1) becomes, by (4.2), 

(4.4) ~ D , f (  t , x , w ) + k ~ ( t , x , w , D ~ , ) f ( t , x , w ) ~ -  " " " t > 0 ,  

t f (0 ,  x ,  w) = f o ( x ,  w), 

mod S(2 ~1-*)/~, 2-~ldx'P+ldwp),  wherefo, rES(2 -'#' ,  &-Zldx'12+ldwlZ), and 

k ~ S ( 1  + I~'lko+~ ). ko+~, ]dxp + Idwp+ Id~'l'/(Z-~ + I~'l)~). 

Clearly, we may assume v=0.  

(4.5) 

then it suffices to solve the system 

(4.6) 

If we make the symplectic dilation 

y ---- ~-1 x'  
~/ ,~' ,  

Dtf( t ,  y, w)+k~(t ,  y, w, Dy)f( t ,  y, w) ~ r(t, y, w), t > O, 

f(O, y, w) ~ .[o (Y, w), 
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modulo S(2, ldwl~ +ldyl2), where kz(t, y, w, q)CS((q) ~~ ga), 

g~ = 2 3 IdylS+ Idwl2 + IdrllZ/(tl) 2, 

and f0, rCS(I, Idwl2+ldyl 2) uniformly in 2. By assumption, there exists a sym- 
metric N o •  o system O<c<=Mz(t,y,w,~l)ES(1, g~), such that M~kx is sym- 
metric modulo S(1, g~). To complete the proof we need to solve (4.6) with 
f~S(1 ,  ldwl2+ldyl 2) uniformly in 2. Going back, we obtain a solution in S~,u,0 to 
(4.1) modulo S~,~o. 

Choose a partition of  unity {Xj(Y, w)}~S(1, ldwl2+ldyl2), such that there is 
a fixed bound of  the diameter of the supports of Zj, and on the number of over- 
lapping supports. Replacing f0, r with z j fo ,  zjr,  and translating in y, it sufifices 
to solve (4.6) with fESP uniformly, when fo, rEC~ uniformly with fixed support. 
Since 

2-1(kz(t, y, w, ~1)-kz(t, O, w, q))CS((y)(~/) ~0+1, gx), ), -<- 1, 

uniformly, we can replace k~(t, y, w, Dy) by kz(t, w, Dr)=kz(t ,  O, w, Dy) in the 
system (4.6). By taking M;. (t, w, r/)= Ma (t, 0, w, ~/) we obtain that M;.k~ is sym- 
metric, rood S(1, ga). 

Now taking the Fourier transform with respect to y in (4.6), we want to solve 

~D,f(t ,  rl, w)+k~.(t, w, ~l)f(t, ~l, w) = f(t, ~l, w), t > O, 
(4.7) t f (0 ,  r/, w) =L( t / ,  w). 

The unique temperate solution to (4.7) is given by 

(4.8) f ( t , ~ l ,w)=Fz( t ,  rl, w ) ( f o ( q , w ) + i  f~ F~-l(s,~l,w)f(s, rl, w)ds) ,  

if Fz(t, q, w) is temperate solution to 

fDtF~(t, n, w)+kx(t ,  w, q)Fa(t, ~1, w) = O, t > O, 
(4.9) ~ tF~(0, ~/, w) = IdNo. 

Thus the proof  is compIeted by showing that fC 5 a uniformly, which is done in 
the following 

Lemma 4.2. Let F~ satisfy (4.9). Then the mapping 5a• Sc3(fo, r ) ~ f C  5 a de- 
f ined by (4.8) is continuous, uniformly with respect to 2. 

Proof. Since Fourier transformation and integration are continuous in Se, it 
remains only to prove that multiplication with F~ +~ is uniformly continuous. This 
will follow from 

(4.10) 0 < c <--_ [F~(t, ~1, w)l <= C 

(4.11) [D,D~DwF~(t,J ~ # r/, w)[ <= Cj~,# (~1) (i+ i#i)(ko+l)+ I~lko . 
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To prove (4.10), we let 

nv~ = (M~v, ~), vEC No, 
then 

(4.12) c ~_ llvll~/Ivl' ~ C 

uniformly. We obtain by (4.9) and (4.12) 

la, ll&vll]l = I((O, MDF~v, Fx--~-i(MakaFav, ~>+i<M~Fav, k~v) l  ~_ cll~vlll, 
so GrOnwaU's Iemma gives (4.10) by (4.12), since Falt=0=Id~o. By differentiating 
(4.9), we get 

(4,13) / 
~p i D p t ~.j=l,:o =/9~ ,Dl,:o. 

where F~s,=DS, D:,D~F;, r~=--/c and ~+ I= [D , ,  r i l - r f l c  is defined recursively. 
Thus Irjl_-<cj(n)s(~o +1), and 

j DI(FA'-IFj~I.#a~) = -  F~-IZ (i 1(,1 (~} (D~-ID~-'~D~-'Y k~.) F.~. tdl, 
where the sum is taken over i+16+~1<J+1~+/71. Since 

s ~ p Iv(t/) ~0 if 1/71>0 
ID, DwD, ka(t, w, n)l ~-/c(n)~,+~ if 1/71 = 0, 

we get (4.11) by induction. This completes the proof. 

Remark 4.3. The argument above shows that the unique f E Y' solving (4.7) with 
fo, rE Se, gives a continuous map B**)<B**~B*', uniformly in 2. Here B** is the 
set of  C *~ functions having L *~ bounds on all derivatives. 

This follows easily by writing (4.8) as an oscillatory integral and integrating by 
parts, using (4.11). In fact, it suffices to estimate 

f e<x-Y'~>a(y, ~) dy drl 
where, according to (4.11), 

ID~ D~ a(y, ~/)1 -~ Call(17) ~ + ll~ll~~ 

and the constants depend on the B** semlnorms off0, r and the seminorms of F~. 
Integration by parts gives a convergent integral and the desired estimate. 
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5. The propagation of singularities 

In this section, we shall construct a microlocal parametrix for the No• 
system P = D  t ldNo+K(t , x, D~), where KEOp S(m, g) has principal symbol k 
satisfying (3.1), and study the propagation of singularities. This will be done by 
using Duhamel's principle and the parametrix for the Cauchy problem constructed 
by Proposition 3.4. 

As before, it suffices to consider w=(0, 0, " ' - /f  r/o)e 2- Let 0s be the restriction to 
{t=s} and goE~,o have support in a conical neighborhood of w, such that 
w~WF (go-l)  and N*{ t=s}nWF g0=0, Vs, where N* is the conormal bundle. 
Then the composition O~orp is well defined, and we put 

E f =  f'_ E~%a, ogofds, fEe ' (R") ,  (5.1) 

tEl--e, e[, where E O) is the solution to (3.21) for sufficiently small e>0. Then E 
is a microlocal parametrix near w, since 

e ~~ e,ogof+f'_, (pgc~))o O, ogofds ~ gof rood C ~'. PEr= 

We shall study the singularities of this parametrix. Recall that Z = U ~ I  S~, 
where Sj are non-radial hypersurfaces. Let C j c S j •  be the forward (in t) Ha- 
milton flow on Sj, j = l ,  ..., r0, and A* the diagonal in T*RnXT*R ". 

Proposition 5.1. Let P = Dt + K ( t, x, D ~) be an No• system, with KEOp S (m, g) 
having principal symbol k satisfying (3.1). I f  E is the parametrix for P defined by 
(5.1), then WF' Ec(Uf=z  Cj)wA*, microlocally near (w, w)EZ2• 

Proof. We have WF (r (gof))l,=~, where re: (t, x; z, r x, ~) 
is the projection. Thus, it suffices to show 

(5.2) WF(E(')fo)It> ~ c U;~ (WFfo), f0E~'(R"-~), 

. .  �9 , T*R,- t  where t~. Tt=~R ~ is the dual to the inclusion of R "-~ as the surface 
{t=s} in R". Now, (5.2) holds for EJ~)fo, j > 0 ,  since % solves (3.4). It is clear that 

WF (Eo~')fo)l,>,, c Coots (WFfo), JoEN'(Rn-X), 

where C0cI~2• is the set of (wz, w~) such that wj and w2 are in the same leaf of 
2:~ and t(wz)>t(w2). Thus it suffices to prove that E(o~)EC ~ microlocaUy near 

M H (t, x, (0, r/0), z, (0, ~/o)) when x '#z ' .  By translation we may assume s=0.  
Now applying P to Eo (~ we obtain by (3.17)--(3.20) and Lemma A.2 in the 

appendix 

.~tDta~162 x, ~', ~/")a0(t, y', x", z', ~ Roao, t > O, 
(5.3) ta0(0, x, z',  n") ~- O, 
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modS-oo, microlocally when Ix'-z'l~e>0, ve>0. Here Ro: -1 Vv, 
and ]c is the full symbol of K. (This follows since (5.2) holds for EJ ~ j>0. )  Also, 
(5.3) is determined rood S -=  by the restriction of ao to {]y'-z '[>e/2},  and k to 
{l~'l<_-C(q")}. We shall prove aoES -~~ in {x '~z '} ,  by showing that a0ES~,,,o=* 
aoE .~v-~lz Vv, there. ~ 1 , / t , 0  , 

�9 " IXo-Zol By translation Thus assume a0ES~,,,o near (to, xo, Zo, ~/o), ' ' ->0 >0. 
�9 u o ~ H and localization, we may assume xo=O, a0ES~,u, o supported where (q)=(~/o), 

and J~ supported where I~'l<-C(q")~C(qo'). Let z=~,~/o/ , and make the change 
of variables (4.3) and (4.5). Then ao(t, y, w)ES(2 -v/~, e), k(t, y, w, ~/)ES((~/) ko+x, gx), 
where e is equal to the euclidean metric and we may assume v=O. Clearly Iwl> 
02 -1. Observe that (5.3) holds rood S(2 N,e), VN, when lYl=12-1x'l<02-1/2. 
Choose ~(s)ECo(R ), such that ~ ( s ) = l  when Isl<_-l/2, ~(s)=0 when Isl>l, 
and put 

X(Y, w) = ~(42 lYlVo~+C2 ~ IwI2)ES(1, ,l ldyl~+ Idwl*). 

Then bo:2-a/Zza o satisfies 

(5.4) ~D, bo+rCo(t, w, Dy)bo = r~, 0 < t < t, 
tbol,=0 = to, 

where ~o(t, w, r/)=)~(t, 0, w, ~/), and rjEC~" are uniformly bounded in B ~176 In 
fact, ZaoES(2 N, e), VN, at t=0.  Also, the calculus gives 

w, D,), x]COp Sgn) 
and 

2-1/2Z(~(t, y, w, Dy)-]~o(t, w, D,))E Op S((r/) ko+x, gx), 

where gx=2[dyp+ldw[2+[d~[2/(rl) 2. Then Remark4.3 gives that b0 is uniformly 
in B ~, 0_~t<e. Thus ZaoES(2 x/~', e), and since this is uniform in 2 when [x ' - z ' l  >- 
0>0, we obtain the proposition. 

Proof o f  Theorem 1.3. As mentioned before, we only have to consider wE~a. 
By Proposition 2.3 it suffices to prove the propagation of singularities for the system 
P=Dt  IdNo+K(t, x, D~) satisfying (3.1). The adjoint P* satisfies the same con- 
ditions, so by Proposition 5.1 we can construct a parametrix E for P* such that 
W F ' E c ( u  C i ) u  A*, mierolocally near (w,w)EZ~XZ~. Cutting off, we may 
assume uEr and wEZ ~\WF Pu. Then u~--E*Pu modulo Coo, and since we may 
change t to - t ,  this gives the result. 
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Appendix. Some calculus lemmas 

We are going to study the composition of conormal distributions having non, 
standard symbols. Let a~,(x, D)E@'(Rn• n) be given by 

(,4,.1) aq,(x,D)u(x) = (2rc)-" f e~<<x-','O+q'~'~,'~'a(x, rl)u(y)dy drl, 

uEC~(R~), where aES(m ~, g), ~p(x, ~/)EC**(T*R"\0) is homogeneous of degree 1 
in the ~/variables and satisfies (3.5). Here g, m are defined by (2.6)---(2.7). The com- 
position with p (x,/9) is given by 

(A.2) p(x, D)a~(x, D)u(x) = (2n)-2~ f f dc<~-y.~>+<'-~.,>+~r 0 

X a(y, rl)u(z) dz dtl dy d~ = b~,(x, D)u(x), 

if p, a E S/', where 

(A.3) b (x, ~/) = (2n)-n f e-trip(x, ~) a (y, rl) dy d~ 

and E = ( y - x ,  r162 ~)+~p(x, ~l)=(y-x ,  O-~l), if we put 

(a.4) 0 = i-f: a.~(~+s(y-x), rl)ds. 

Now Z: (x, ~; y, t/) ~ (x, 0; y, ~7) is a diffeomorphism. Thus if we let 

f ( x ,  O; y, ,1) = p(x ,  OaO,,  ,7), 
we obtain 

(A.5) 

Id ,e)l since I ~ 1  

b(x, ~l) = e'<~176176 f (x ,  0; y, ~/)[~-~ 

-1 .  This can be extended to general symbols by the following 

Lemma A.1. Assume ~p(x, r/)ECO~(T*R~'~,0) is homogeneous of degree 1 in the 
rl variables and satisfies (3.5). I f  aE S(rn k, g), kEZ, has support in a sufficiently small 
conical neighborhood of  {r/'=0} and pES(m, g), then the composition is given by 
(A.2) where bES(m k+~, g) satisfies (A.5), and has the expansion 

(A.6) b(x, ~i) "~ N-1 . = 2~=o (~ (~ ,  D , -  (aO/ay)D~)Jp (x, 0 a(y, 'l)/j!l:~ 

modulo S(rn~+Xh s, g), with 0 given by (A.4). 

Proof. I f  tp--0 then (A.5)--(A.6) follows from the Weyl calculus, since 
g(t, -x )=g( t ,  z) (see Th. 18.5.4 and 18.5.10 in [51). Now p(x, ~)a(y, ~/)ES(M, G) 
where M(~,~/)=m(~)rr~0/) is a weight for G=g~d(dx, d~)+gy,,(dy,&l). Thus, 
if we can prove that z*S(M, G)=S(M, G), then we would obtain (A.6) since 
0~Z=(0, Id;0,  0) and Oyz=(O, OO/Oy; Id, 0). Now we onlyhave to consider the 



case when 

(A .7) 
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10-hi ~- e(101"+lttP), 

since otherwise we may integrate by parts with respect to y in (A.3) to obtain 
bCS -*~. In fact, (3.5) gives t0-~l<_-olu'l, when r/is in a small conical neighborhood 
of {n.'=0}, and for small Q we find 101~+l~/l"=>c(lr When (A.7) holds for 
small e, we obtain 

lie <- ((0)~+10"1)/((,7)~+1~'1) ~_ c. 
This gives I(O)-(r and 

(0)~ + 10'1 ~- C((~)~ +1r + o~((ff) ~ + Iv'l)) ~- c'((~)~ + I~'1 + 0"((0)"+ 10'l)). 

For small 0 we find (O)~'+IO'I~C((r and similarly (~)~+I~'I~=C((0>"+ 
10'I). Since m(~)~.h-ko-z(~)(r -ko, we have ffM..~M for ~/ in a small conical 
neighborhood of {r/'=0}. C/early, a0/~,~"=c((In'l/Inl)~o§ a0/~,i"--~(I) and 
aO/~x=~(l~'l), so z*G~G in a small conical neighborhood of {~/'=0}. Thus by 
Lemma 8.2 in [4] we obtain z*S(M, G)=S(M, (7) if 

(A.8) -. (k) W" ..., k , c~(~)tz ( , tl, t~)) ~_ c~ /L=~ G~c~)(z (w, t,)) 

for k >  1, where ~ is the k:th differential. This means that 

$tO~,OgO~O'(x, y, n)l ~- C~a,<~>-~a"l(<~)~+lr/'l)~-tall 
(A.9) tlO;OgOiO"(x, y, n)l <- c.a,(~> 1- la"J ((n)"+ Irt ' l)-Ia I, 

for I~1 +lfll +ly l> l ,  where 0 is given by (A,4). Since 0 is homogeneous of degree 1, 
the second inequality follows from (n)-~2(01)~'+l~'l) -]. Similarly, we get the 
first when 1#'1>0, and otherwise 

la:ag:'a~O'(x n)l < c~r~ Irt'l(n) -la'l  

according to (3.5), which proves (A.9) and the 1emma. 
Next, let S~,,, o be the symbol classes defined by (3.14), #=ko/(ko+l), 

*'=/~(d0-1) and do=codimZ ~. For a(S~,,,o we define a(x,D")(N'(R"XR") by 

(A.10) a(x, D")u(x) = (2rO'~o-" f f e~<'"-r,'r) a(x, y', rf')u(y) dy dtf', 

u(C~*(R"). If p, a~6e, then the composition is given by 

(A.11) p(x,D)a(x,D")u(x) = (2=)'~~ e~(<=-.~'":'+<r-""r;')p(x,O 

Xa(y, z', tf')u(z) dz drf" dy d~ = b(x,D")u(x) 
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where 

~/,,) ei(~-y, ~- co, ~"))p (x, d~ (A.12) b(x, z', = ( 2 ~ ) - " f f  4)a(y, z', ~") dy 

= e~D,.D~>p(x, 4)a(y, z', ~")]~:~o.,')" 

For more general symbols we obtain the following lemma. 

Lemma A.2. I f  pE S(m, g) and aE S~,u.o, then the composition is given by (A.11) 
where bES~,u, o satisfies (A.12)and 

(A.13) b(x, z', q") = ei(%"ve'>p(x, ~', q3a(y ' ,  x ';  z', q'")]~;--o, +Pet, 

where R: .~v ~.~'-~ is continuous. Also, b ana Ra are determined modulo S -~ ~l,,u,O ~1,/~,0 
by the restriction o f  a to ( ly-xl<~},  and p to {14-(0, q")l<e(~/")}, V~>0. 

Proof. Let 

C(~.r = Idxl2+ Id~'lV((4)~ + 14'1)2+ IdUIV(4) 2 

+ [dy'l~(q")2u+ [dy"]~+ ]dz'12Qf') 2u + I dq"l 2/(~/") ~, 

and A(x,  ~,y, z', q")=(y,  4). Then the dual metric is given by 

A G(~.e.v.=..,..)(O, d4, dy, 0) = Id~'12/(q")~u + IdUI2+ Idy'12((~)" + IVI)2+ [dy"12(~)L 

and equal to +oo otherwise. We have p(x, ~)a(y , z ' , r t " )ES(M,G)  where 
M(~, q")---m(4)(q")L In the following we shall suppress the z' variables, which are 
not important. 

Now, G is slowly varying, G<=G a at A={~=(0, r/")Ay=x} and G is A tem- 
perate with respect to A, i.e. 

. <  A G(~.,.~.,..) = ca(~.(0.,..~.~.,..) (1 + G(~.r ~ - (0 ,  ,('), y - x ,  0)) N. 

This follows since 

(,i"Y'f((~)" +14'1) + (~")1(r <= c(1 + 14"-,i"1), 

and similarly M is A, G temperate with respect to A, since 

M(~, .")tM((O, q"), n") = 1 + (14"1/(r '`~ 
and 

I~'II(~5" = (1~'1/<,/'5")(<,/')/(r ~- c (1  + I~'1/(,/')" + I U - , / ' 1 )  ~. 

By Theorem 18.4.10' in [5] we obtain that bES[,u, o satisfies (A.12). 
In order to prove (A. 13), we observe that 

ei(Dv, De)  : ei(Dv ,, Z)~,) 0 ei(O~/", Dr 

If A"(x, ~, y, rl" ) = (y", ~") we obtain 

a t'(0, d~", O, dy", O) = G a(O, d~", O, dy", 0), 
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and equal to +oo otherwise. We have G<-(tl">-~G a" at A " = { 4 " = q " ^ y " = x " }  
and G is A" temperate with respect to A", since 

(((r ~"))" + 14"1)/((~)"+ 14'1) + ((~', ~"))/(4) <- C(1 + IU-~" I ) .  
Similarly, M is J " ,  G temperate with respect to A", so Theorem 18.4.11 in [5] gives 

c -~ ei(Oy",O~")p(x, r nOla.CS( l, (7), 

where (7, ~r  are the restrictions of G, M to A". Here c~-p(x, 4)a(y, r/")[a, modulo 
S(./~,, (7), where )fil=Jl,~f(r/")-'. 

If A'(x, 4, Y, r/") = (Y', r we get 

(7a'(O, d4", dy', O) = aa(o,  d4", dy', 0)h-, 

and equal to +co otherwise. Then (7<(7.4, at A ' = { r  in A", and 
(7 is dearly A' temperate with respect to A', since it is the restriction of an A tem- 
perate metric. Similarly, ~r  is A', (7 temperate with respect to A', since it is the 
restriction of an A, G temperate weight. As before, we obtain that 

b(x, n 3  = e~<~176 c(x, ~', Y', r/Oh.~SL~.0 

satisfies (A.13), since 

(Tin. = Gla ~ Idx'p (r/3 ~ + Idx"P + Idz'P (r/,,)2, + idr/,,iV(n,,)2. 

Outside the support of the integrand in (A.12), the symbol decays as any power of 
the G a distance to the support (see [5, Section 18.4]). Thus, the last statement fol- 
lows from the fact that 

G'4(y -x ,  4- (0 ,  r/")) _-> l y - x p ( n " > ~ ' +  Ir  r/")l~(r/"> -~., 

at (x, (0, r/"), x, r/"), where 0</~< 1. This completes the proof of the lemma. 
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