An analytic algebra without analytic structure in the spectrum

H. Goldmann

Introduction

Let A be a uniform algebra. Denote by \hat{A} the algebra of all Gelfand transforms of A and by $M(A)$ the spectrum of $A . A$ is called an analytic algebra provided any function $f \in \hat{A}$ which vanishes on a nonvoid open subset of $M(A)$ is identically zero. In [1] Wermer constructed a new "Stolzenberg example", i.e. he constructed a compact set $Y \subset \mathbf{C}^{2}$ such that X - the polynomially convex hull of Y - contains no analytic disc and $X \backslash Y \neq \emptyset$. In the present note we want to show that $P(X)(X$ the set in Wermer's example) is an analytic algebra, where $P(X)$ denotes the algebra of all continuous complex-valued functions on X which can be approximated uniformly on X by polynomials.

This seems to be interesting for two reasons. Firstly we get more information about Wermer's example.

Secondly, we learn that the identity theorem is a phenomenon in the theory of uniform algebras which occurs not only in connection with analytic structure. To be more precise we give two definitions.

We say that A has analytic structure in a point $x \in M(A)$ if there is a neighbourhood U of x in $M(A)$, an analytic set V in a polycylinder $P \subset \mathbf{C}^{n}$ and a homeomorphism $\Phi: V \rightarrow U$ such that $f \circ \Phi$ is an analytic function on V for all $f \in \hat{A}$.

A satisfies the weak identity theorem in $x \in M(A)$ if there is a (fixed) neighbourhood U of x in $M(A)$ such that $f_{\mid U} \equiv 0$ for each $f \in \hat{A}$ which vanishes in an arbitrary neighbourhood of x.

It follows from the theory of several complex variables that A satisfies the weak identity theorem in x if A has analytic structure in x. Since we can naturally identify $P(X)$ with $\widehat{P(X)}$ and X with $M(P(X)$, we have an example where the identity theorem does not depend on analytic structure in the spectrum.

The example

We shall show that $P(X)-X$ the polynomially convex compact set of Wermer's example (cf. [1]) - is an analytic algebra.

First we recall shortly the construction of X. We denote by a_{1}, a_{2}, \ldots the points in the disc $\{|z|<1 / 2\}$ with rational real and imaginary part. For each $j \in \mathbf{N}$ denote by B_{j} the algebraic function

$$
B_{j}(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \ldots\left(z-a_{j-1}\right) \sqrt{\left(z-a_{j}\right)}
$$

and set

$$
g_{j}(z)=\sum_{k=1}^{j} c_{k} B_{k}(z)
$$

where c_{1}, \ldots, c_{j} are positive constants. Denote by $\Sigma\left(c_{1}, \ldots, c_{n}\right)$ the subset of the Riemann surface of g_{n} which lies in $\{|x| \leqq 1 / 2\}$, i.e.

$$
\Sigma\left(c_{1}, \ldots, c_{n}\right)=\left\{(z, w):|z| \leqq 1 / 2, w=w_{j}^{(n)}(z), j=1, \ldots, 2^{n}\right\}
$$

where $w_{j}^{(n)}(z), j=1, \ldots, 2^{n}$ are the values of g_{n} at z.
(1) For a sequence of positive constants $\left(c_{n}\right)$ define $X_{\left(c_{n}\right)}$ to be the set of all points $(z, w) \in \mathbf{C}^{2}$ such that
i) $|z| \leqq 1 / 2$, and
ii) there is a sequence $\left(z, w_{n}\right) \in \Sigma\left(c_{1}, \ldots, c_{n}\right)$ with $w_{n} \rightarrow w$ as $n \rightarrow \infty$.
(2) There exists a sequence of positive constants $\left(c_{n}\right)$ with $c_{1}=1 / 10$ and $c_{j+1} \leqq$ $1 / 10 c_{j}(j=1,2, \ldots)$ such that $X=X_{\left(c_{n}\right)}$ is a polynomially convex compact set in \mathbf{C}^{2} which contains no analytic disc. (cf. [1], Lemma 1, Lemma 2 and p. 132).
(3) X is the polynomially convex hull of the compact set

$$
Y=X \cap\{|z|=1 / 2\} \quad([1], \text { Lemma } 3)
$$

(4) In the following we set $\Sigma_{n}=\Sigma\left(c_{1}, \ldots, c_{n}\right)$ and remark that g_{n+1} has at z the values

$$
w_{j}^{(n)}(z) \pm c_{n+1} B_{n+1}(z), \quad j=1, \ldots, 2^{n}
$$

(5) As a direct consequence of (4) or (1) we see that for each $i \in \mathbf{N}$ the set $X \cap\left\{z=a_{i}\right\}$ contains exactly 2^{i-1} points which we denote by $\left(a_{i}, b_{1}\right), \ldots,\left(a_{i}, b_{2^{i-1}}\right)$.

It is proved in [1] (cf. Assertion 4. (12) resp. Assertion 2.) that for each $n \in \mathbf{N}$.

$$
\begin{equation*}
\left|w_{j}^{(n)}(z)-w_{l}^{(n)}(z)\right| \geqq 3 / 2 c_{n}\left|B_{n}(z)\right| \quad(|z| \leqq 1 / 2, j \neq l) . \tag{6}
\end{equation*}
$$

(Note that this inequality remains true if $z=a_{l}$ for $l \in \mathbf{N}$.) If $(z, w) \in X$ is an arbitrary point, there is $j \in\left\{1, \ldots, 2^{n}\right\}$ such that

$$
\begin{equation*}
\left|w_{j}^{(n)}(z)-w\right| \leqq 1 / 2 c_{n}\left|B_{n}(z)\right| \tag{7}
\end{equation*}
$$

(cf. proof of [1] Assertion 4. and note again that this inequality remains true if $z=a_{l}$).

Let $\left(z, w_{j}^{(n)}(z)\right)$ be an arbitrary point of Σ_{n}. For $k>n$ set

$$
w_{k}=w_{j}^{(n)}(z)+\sum_{l=n+1}^{k} c_{l} B_{l}(z)
$$

where for each $l B_{l}(z)$ denotes one of the values of B_{l} at z, chosen arbitrarily. Then $\left(z, w_{k}\right) \in \Sigma_{k}$ and it follows that $\left(z, w_{k}\right)$ converges to a point (z, w) - hence $(z, w) \in X$ by (1) - with

$$
\left|w-w_{j}^{(n)}(z)\right| \leqq 1 / 2 c_{n}\left|B_{n}(z)\right|
$$

To prove this use

$$
\left|w_{k}-w_{j}^{(n)}(z)\right| \leqq\left(\sum_{l=n+1}^{k} c_{l}\right)\left|B_{n}(z)\right|
$$

and $c_{l+1} \equiv(1 / 10) \quad c_{l}$ by (2).
Thus, for each $(x, y) \in \Sigma_{n}$ there is $(x, w) \in X$ with

$$
\begin{equation*}
|w-y| \leqq 1 / 2 c_{n}\left|B_{n}(x)\right| . \tag{8}
\end{equation*}
$$

Denote by Π the projection

$$
\mathbf{C}^{2} \rightarrow \mathbf{C}, \quad(z, w) \rightarrow z
$$

It follows from (8) that

$$
\begin{equation*}
\Pi(X)=\{|z| \leqq 1 / 2\} \tag{9}
\end{equation*}
$$

(10) Finally we claim that the set

$$
L=\bigcup_{i \in \mathrm{~N}}\left\{\left(a_{i}, b_{1}\right), \ldots,\left(a_{i}, b_{2^{i-1}}\right)\right\}
$$

is dense in X.
To prove this choose an arbitrary point $(x, y) \in X \backslash L$ and $\varepsilon>0$. By (1) we can choose $n \in \mathbf{N}$ such that there is a point $(x, w) \in \Sigma_{n}$ with $|w-y|<\varepsilon / 4$ and $c_{n}<\varepsilon / 4$. Choose a positive constant $\delta<\varepsilon$ such that $g_{n}(z)=\sum_{j=1}^{n} c_{n} B_{n}(z)$ has 2^{n} singlevalued continuous branches defined on $\{|z-x|<\delta\}$. Denote by $w_{1}^{(n)}(z)$ the branch with $w_{1}^{(n)}(x)=w$. Choose $j>n$ such that $\left|a_{j}-x\right|<\delta$ and

$$
\left|w_{1}^{(n)}\left(a_{j}\right)-w_{1}^{(n)}(x)\right|<\varepsilon / 4
$$

By (8) there is a point $\left(a_{j}, b\right) \in X$ - this implies $\left(a_{j}, b\right) \in L$ by (5) - with

$$
\left|w_{1}^{(n)}\left(a_{j}\right)-b\right| \leqq 1 / 2 c_{n}\left|B_{n}\left(a_{j}\right)\right|<\varepsilon / 4
$$

Hence $|b-y|<\varepsilon$.
(11) We recall the notion of a maximum modulus algebra (m.m.a.) from [3].

Let X be a locally compact Hausdorff space and A be an algebra of continuous complex-valued functions defined on X, let Ω be a region in \mathbf{C} and f an element of A with $f(X) \subset \Omega$. We call (A, X) a m.m.a. over Ω with projection function f provided
i) A separates the points on X and contains the constants.
ii) For each compact set $K \subset \Omega$

$$
f^{-1}(K)=\{x \in X: f(x) \in K\} \text { is compact. }
$$

iii) If N is a compact subset of $X, x \in N$ and $g \in A$, then

$$
|g(x)| \leqq \max _{\partial N}|g|,
$$

where ∂N denotes the boundary of N.
Claim 1. If $g \in P(X)$ vanishes in an open neighbourhood U of $\left(a_{1}, b_{1}\right)=$ $\left(a_{1}, 0\right)$ then $g \equiv 0$.

We first note that there is an open neighbourhood W of a_{1} in $\{|z|<1 / 2\}$ such that $\Pi^{-1}(W) \cap X$ is contained in U. (Assume W does not exist. Then there is a sequence $\left(d_{n}, y_{n}\right)$ in $X \backslash U$ with $d_{n} \rightarrow a_{1}$. By compactness a subsequence converges to a point $\left(a_{1}, y\right) \in X \backslash U$. This is a contradiction to

$$
\left.X \cap\left\{z=a_{1}\right\}=\left\{\left(a_{1}, b_{1}\right)\right\} .\right)
$$

Since X is polynomially convex we can identify the spectrum of $P(X)$ with X. By (2) the Shilov boundary of $P(X)$ is contained in Y, hence $\left(\left.P(X)\right|_{X \backslash Y}, X \backslash Y\right)$ is a m.m.a. with projection function $\left.\Pi\right|_{X \backslash Y}$ over $\{|z|<1 / 2\}$ by Rossi's maximum modulus principle ([2], Theorem 9.3) and (9). (Clearly $\left.\left.\Pi\right|_{X \backslash Y} \in P(X)\right|_{X \backslash Y}$ and $\left.\Pi^{-1}\right|_{X \backslash Y}(N)$ is a compact subset of $X \backslash Y$ for each compact subset $N \subset\{|z|<1 / 2\}$.)

By Wermer's subharmonicity theorem ([3], Lemma 1)

$$
\log Z_{g}:\{|z|<1 / 2\} \rightarrow \mathbf{R} \cup\{-\infty\}, \quad z \rightarrow \log \max _{I^{-1} \mid \boldsymbol{X} \backslash \mathbf{r}^{(z)}}|g|
$$

is a subharmonic function. Since $\log Z_{g} \equiv-\infty$, on W, g vanishes on $X \backslash Y$. Hence - by the continuity of g and (10) - $g \equiv 0$.

Now we proceed by induction. We assume that $g \equiv 0$ if $g \in P(X)$ vanishes in an open neighbourhood of one of the points $\left(a_{n}, b_{1}\right), \ldots,\left(a_{n}, b_{2^{n-1}}\right)$.

Let $g \in P(X)$ vanish in an open neighbourhood U of one of the points $\left(a_{n+1}, b_{1}\right), \ldots,\left(a_{n+1}, b_{2^{n}}\right)$. For abbreviation denote this point by (a, b). In the following we have to make slight modifications in the case $n>1$.

Let γ be a simple closed curve in $\{|z|<1 / 2\}$ such that a_{1}, \ldots, a_{n-1} lie outside and a, a_{n} lie inside γ (if $n>1$). Then $g_{n-1}(z)$ has 2^{n-1} single-valued continuous branches on the domain G which contains a, a_{n} and is bounded by γ. By (4) there is one branch of $g_{n-1}(z)$ on G, which we denote by $w_{1}^{(n-1)}(z)$, such that

$$
b=w_{1}^{(n-1)}(a)+c_{n} B_{n}(a)
$$

or

$$
b=w_{1}^{(n-1)}(a)-c_{n} B_{n}(a)
$$

Claim 2. g vanishes in an open neighbourhood of $\left(a_{n}, w_{1}^{(n-1)}\left(a_{n}\right)\right)$, hence $g \equiv 0$ by the induction hypothesis (here set $w_{1}^{(0)}(z)=0$ for $|z| \leqq 1 / 2$).
(12) We first note that no point (z, w) of $X \cap\{|z|<1 / 2\}$ is an isolated point of X, since otherwise the function

$$
f: X \rightarrow \mathbf{C}, \quad(x, y) \rightarrow\left\{\begin{array}{lll}
1 & \text { for } & (x, y)=(z, w) \\
0 & \text { for } & (x, y) \neq(z, w)
\end{array}\right.
$$

would be an element of $P(X)$ by Shilov's idempotent theorem ([2], Theorem 8.6), contradicting the fact that (z, w) is a point of the polynomially convex hull of Y (cf. (3)).

If $n=1$ choose an arbitrary point $\left(x_{0}, y_{0}\right) \in X \backslash Y$ with $x_{0} \neq a_{1}$. If $n>1$ set

$$
W=\left\{(z, w) \in X: z \in G \text { and }\left|w-w_{1}^{(n-1)}(z)\right|<2 / 3 c_{n-1}\left|B_{n-1}(z)\right|\right\} .
$$

W is an open neighbourhood of $\left(a_{n}, w_{1}^{(n-1)}\left(a_{n}\right)\right)$.
Let $\left(x_{0}, y_{0}\right) \in W, x_{0} \neq a_{n}$, be an arbitrary point. We shall show in both cases that $g\left(x_{0}, y_{0}\right)=0$. This proves claim 2 by (12).

Now let S be a simple closed curve in $\{|z|<1 / 2\}$ (if $n=1$), resp. in G (if $n>1$), such that a_{n} lies inside and x_{0} and a_{n+1} lie on S. Set $S^{\prime}=\left\{\left(z, w_{1}^{(n-1)}(z) \pm c_{n} B_{n}(z)\right): z \in S\right\}$. Here $\pm c_{n} B_{n}(z)$ denotes both values of $c_{n} B_{n}(z)$ at z, i.e. $\left(z, w_{1}^{(n-1)}(z) \pm c_{n} B_{n}(z)\right)$ denotes two points. S^{\prime} is a closed curve in Σ_{n} which contains (a, b). Set
$S^{\prime \prime}=\left\{(z, w) \in S^{\prime}:\right.$ There is an open neighbourhood V of (z, w) in Σ_{n} such that g vanishes in all points $(x, y) \in X$ with
i) there is $w^{\prime} \in \mathbf{C}$ with $\left(x, w^{\prime}\right) \in V$ and
ii) $\left|y-w^{\prime}\right|<3 / 4 c_{n}\left|B_{n}(x)\right|$. $\}$.

We want to show that $S^{\prime \prime}=S^{\prime}$.
i) $S^{\prime \prime}$ is an open subset of S^{\prime} by definition.
ii) $S^{\prime \prime} \neq \emptyset$.

Let (d_{k}, y_{k}) be a sequence of points in Σ_{n} converging to (a, b) and assume there is a sequence of points $\left(d_{k}, y_{k}^{\prime}\right)$ in X such that $g\left(d_{k}, y_{k}^{\prime}\right) \neq 0$ and

$$
\left|y_{k}^{\prime}-y_{k}\right|<4 / 5 c_{n}\left|B_{n}\left(d_{k}\right)\right| .
$$

By compactness and since g vanishes on U by induction hypothesis a subsequence of (d_{k}, y_{k}^{\prime}) converges to a point $(a, y) \in X \backslash U$ with

$$
|y-b| \leqq 4 / 5 c_{n}\left|B_{n}(a)\right| .
$$

But this implies that $y=b$ by (5) and (6), a contradiction to (a, y) $\in X \backslash U$.
iii) $S^{\prime \prime}$ is a closed subset of S^{\prime}.

Let $\left(x_{1}, y_{1}\right)$ be a boundary point of $S^{\prime \prime}$ in S^{\prime}. Choose $\delta>0$ (in particular $\left.\delta<1 / 2\left(1 / 2-\left|x_{1}\right|\right)\right)$ such that $g_{n}(z)$ has 2^{n} single-valued branches on $\left\{\left|z-x_{1}\right|<\delta\right\}$. Denote by $w_{1}^{(n)}(z)$ the branch with $w_{1}^{(n)}\left(x_{1}\right)=y_{1}$.

Set

$$
W^{\prime}=\left\{(z, w) \in X:\left|z-x_{1}\right|<\delta \text { and }\left|w-w_{1}^{(n)}(z)\right|<2 / 3 c_{n}\left|B_{n}(z)\right|\right\}
$$

W^{\prime} is an open set in X and

$$
\left\{\left(z, w_{1}^{(n)}(z)\right):\left|z-x_{1}\right|<\delta\right\}
$$

is a neighbourhood of $\left(x_{1}, y_{1}\right)$ in Σ_{n}.
It follows from (8) that

$$
\Pi\left(W^{\prime}\right)=\left\{\left|z-x_{1}\right|<\delta\right\}
$$

and from (6) and (7) that

$$
\partial W^{\prime} \subset\left\{\left|z-x_{1}\right|=\delta\right\}
$$

hence $\left.\Pi^{-1}\right|_{W^{\prime}}(L)$ is a compact subset of W^{\prime} for each compact subset $L \subset\left\{\left|z-x_{1}\right|<\delta\right\}$. Let $\left(x_{2}, w_{1}^{(n)}\left(x_{2}\right)\right)$ be a point of $S^{\prime \prime}$ with $\left|x_{2}-x_{1}\right|<\delta$. Choose a neighbourhood V of $\left(x_{2}, w_{1}^{(n)}\left(x_{2}\right)\right)$ in $\left\{\left(z, w_{1}^{(n)}(z)\right):\left|z-x_{1}\right|<\delta\right\}$ according to the definition of $S^{\prime \prime}$. $\Pi(V)$ is an open subset of $\left\{\left|z-x_{1}\right|<\delta\right\}$ and $g(z, w)=0$ for all points $(z, w) \in W^{\prime}$ with $\Pi(z) \in \Pi(V)$ by the definition of $S^{\prime \prime}$ and W^{\prime}.

Now we can apply Wermer's subharmonicity theorem as in the proof of claim 1 to $\left(\left.P(X)\right|_{W^{\prime}}, W^{\prime}\right),\left\{\left|z-x_{1}\right|<\delta\right\},\left.\Pi\right|_{W^{\prime}}$ and g to show that $\left.g\right|_{W^{\prime}} \equiv 0$, hence $\left(x_{1}, y_{1}\right) \in S^{\prime \prime}$ by (6) and (7).

If $n=1$ we have

$$
\left|y_{0}-w_{i}^{(1)}\left(x_{0}\right)\right| \leqq 1 / 2 c_{1}\left|B_{1}\left(x_{0}\right)\right| \quad \text { for } \quad i=1 \quad \text { or } \quad i=2
$$

by (7), hence $g\left(x_{0}, y_{0}\right)=0$ by the definition of $S^{\prime \prime}$ (recall that $x_{0} \in S$).
If $n>1$

$$
\left|y_{0}-w_{j}^{(n-1)}\left(x_{0}\right)\right|>3 / 4 c_{n-1}\left|B_{n-1}\left(x_{0}\right)\right| \text { for } j>1
$$

by (6), (7) and the definition of W. Hence

$$
\begin{equation*}
\left|y_{0}-w_{j}^{(n-1)}\left(x_{0}\right) \pm c_{n} B_{n}\left(x_{0}\right)\right|>3 / 4 c_{n-1}\left|B_{n-1}\left(x_{0}\right)\right|-c_{n}\left|B_{n}\left(x_{0}\right)\right|>6 c_{n}\left|B_{n}\left(x_{0}\right)\right| \quad \text { by } \tag{2}
\end{equation*}
$$

It follows again from (7) and (4) that

$$
\left|y_{0}-w_{1}^{(n-1)}\left(x_{0}\right)+c_{n} B_{n}\left(x_{0}\right)\right| \leqq 1 / 2 c_{n}\left|B_{n}\left(x_{0}\right)\right|
$$

or

$$
\left|y_{0}-w_{1}^{(n-1)}\left(x_{0}\right)-c_{n} B_{n}\left(x_{0}\right)\right| \leqq 1 / 2 c_{n}\left|B_{n}\left(x_{0}\right)\right|
$$

and $g\left(x_{0}, y_{0}\right)=0$ by the definition of $S^{\prime \prime}$.
If $g \in P(X)$ vanishes in an arbitrary open set $U \subset X$ then g must vanish in a neighbourhood of a point $\left(a_{n}, b_{i}\right)$ for suitable $n, i \in \mathbf{N}$ by (10), hence $g \equiv 0$.

Remark 1. Originally I used in the proof a lemma of Glicksberg (cf. [2] Lemma 10.4) instead of Wermer's subharmonicity theorem. The use of this theorem was pointed out to me by Tom Ransford and Bernard Aupetit.

Remark 2. Let $X \subset \mathbf{C}^{n}$ be a compact set and denote by \hat{X} the polynomially convex hull of X. There is no general principle which implies that $P(\hat{X})$ satisfies the local identity theorem in a point $x \in \hat{X} \backslash X$. Take for instance
then

$$
\begin{gathered}
X=[0,1] \times \partial E \subset \mathbf{C}^{2} \\
\hat{X}=[0,1] \times \bar{E} .
\end{gathered}
$$

(\bar{E} denotes the closed unit disc, $[0,1]$ the closed unit interval.) Let $(x, y) \in[0,1] \times E$. Choose for each $n \in \mathbf{N}$ a continuous function f_{n} on $[0,1]$ such that $f_{n}\left(x^{\prime}\right)=0$ if $\left|x^{\prime}-x\right| \leqq 1 / n$ and $f\left(x^{\prime}\right) \neq 0$ if $\left|x^{\prime}-x\right|>1 / n$. Then

$$
g_{n}: \hat{X} \rightarrow \mathbf{C}, \quad(z, w) \rightarrow f_{n}(z)
$$

defines an element of $P(\hat{X})$ by the Stone-Weierstraß theorem for each $n \in \mathbf{N}$. Hence $P(\hat{X})$ does not satisfy the local identity theorem in (x, y).

References

1. Wermer, J., Polynomially convex hulls and analyticity, Ark. Mat. 20 (1982), 129-135.
2. Wermer, J., Banach algebras and several complex variables, 2nd edition, Graduate Texts in Mathematics 35, Springer-Verlag (1976).
3. Wermer, J., Potential theory and function algebras, Texas Tech. U. Math. Series 14 (1981), 113-125.

Received Sept. 4, 1987
Helmut Goldmann Mathematisches Institut der Universität Bayreuth Postfach 101251
D-8580 Bayreuth, Germany

