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I f f  is an analytic function defined in the unit disk, A, let 

(f . . . .   dxdy] ~ ( f )  = ~ y tz) "-"-~-~) (z  = x + iy) 

be the Dirichlet integral o f f .  In this note, we will give a new proof of the following 
theorem. 

There is a constant C <  oo such that i f  f is analytic on A, f(O) =0, Theorem 1 [4]. 
and ~( f )<= 1 then 

f 2n elf(elO)[~ dO <= C. 
0 

See [4] for motivation. Following a suggestion of L. Carleson, we give a proof 
of  this theorem based on an unpublished result of A. Beurling. In Section l, we give 
a proof of a version of Beurling's theorem. In Section 2, we use Beurling's theorem 
to reduce our problem to an integral inequality due to J. Moser [7]. Finally, in 
Section 3, we give a proof of Moser's inequality. We would like to thank P. Jones 
for helpful discussions. 

1. Beurling's theorem 

I f f i s  analytic on A, let 7t be the level curves o f f  defined by ~t = {zE A" I f(z)l = t } 
and let I f(w,)l denote the length of the image of these curves under the map J; 
In other words, If(~,)l =re, IT(z)[ Idzl where Idzl denotes arc length. I r E  is a sub- 
set of the complex plane, let cap (E) denote the logarithmic capacity of E. 
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Foundation. 
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T h e o r e m  2 (Beurling). Suppose f is analytic in a neighborhood of the closed unit 
disk andsuppose that [f(z)l<=M whenever Izl<=r. Then 

{f~dt} cap {e~~ If(ei~ > x} <- r - 1 / ~  exp - rr If(Yt)l " 

We remark that if f is also univalent and f (0)=0 ,  we may take M to be the 
radius of the largest disk centered at 0 contained in the image f(A). In this case, 
two applications of Koebe's 1/4-theorem show r-1/2 <-4. However, the proof below 

can be modified, in this case, to replace the constant r -1/~ by , which 

is at most 2. This latter result is sharp, for if f is the conformal map to a slit disk 
of radius x, the inequality is actually an equality. This case, with constant 4 can 
also be found in Haliste [6, Theorem 3.2], and is related to a classical distortion 
estimate of Ahlfors. We will use Beurling's estimate to obtain an integral inequality 
that is delicate both in its growth dependence on x and on the initial value M, which 
we must take larger than the distance from 0 to the complement o f f (A)  when f 
is not univalent. Tsuji [8, p. 112] has proved a similar result, where the upper limit 
x is replaced by ~x, ~< 1, and the coefficient r -1/2 is replaced by a coefficient that 
becomes unbounded as ~ 1 .  To prove Theorem 1, we need ~=1. 

Proof. We adopt the notations and definitions of [2]. If  ~ is a domain in the 
plane and if El, E~cO~, let d~(E1, E2) denote the extremal distance between E1 
and E2 with respect to the region fL It will be clear from the context which regions Q 
we consider below, so we will drop the subscript fL For example, if Ca denotes 
the circle centered at 0 of radius a, then d(Ct, C~) =(1/2re) log s/t, for s>t. By Theo- 
rems 2.4 and 4,9 of [2] 

1 
- - -  log (cap E) = !inoa {d(Ct, JE) - -  d(Ct, C1)} 

for subsets E of OA. Since the disk ot radius r is contained in {z: [f(z)l<M} by 
assumption, we obtain 

- - l l o g ( c a p  {e/~ If(ei~ > x}):> limd(Ct't-o Yx)q-~  1Ogt 

:> limt~o d(Ct, Cr)+ d(C,, YM)+ d(yM, ~)+ ~-~ log t 

> 1 logr+d(~M,yx)" 
- -  2rr 
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In the case where f is univalent and f (0 )=0 ,  

lim d(Ct, 7x)+~l-~ --- log t = lim d(~tlS'(0)l, t~)+-~-~ log t 
t~O Z ~  t ~ 0  

limit0 d(~tlY'(~ 7u)+d(~u ,  ~ )  + - ~ -  log t. 

By the conformal invariance of the extremal distance, this latter quantity equals 

M 
d(~u'  ~ )  + ~n  log If '(O)l " 

To prove our theorem, we must finally show 

dt 
d ( ~ ,  Yx) ~ f ~  If(Y,)l " 

We define a metric on A by 

e ( z ) - -  [if(z)[ if z ~ t .  
If(~,)l 

Let f2M, x= {z: M <  I f ( z ) l<x} .  By converting to polar coordinates on the Riemann 
surface f (A) ,  we obtain 

L I f ' ( z )  l Idzl dt 1 x x 

e2(z) dx dy = f M " " fo~,= If(Tt)? = f ~ If(Y')-------( dt" 

If y is a curve in f2~, x such that 7(0)EyM and y(1)Eyx, then 

f ,  e ldzl = f, [f ' fz)[  Idzl = f Idwl >= [ ~  dt 
If(r,)l - s ( ,  If(~,)l - ~  If(r,)l 

O 

dt 
Thus d(g~, y x ) ~ f ~  If(r,)l ' proving the theorem. 

2. Proof  of  Theorem 1 

We need the following elementary lemma. 

Lemma. There is a universal constant r > 0  such that: for  each f analytic on A 
with f ( 0 ) = 0  and ~( f )<=l ,  there is an M (depending upon f )  with 

�9 ~ < z  (1) 0 M =  1 
(ii) {z: Izl<r} is contained in {z: I f ( z ) l < M }  

(iii) fo ~ I f(~,)l dt>-~M2/3. 
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Assuming the lemma for the moment, we proceed as follows. 
We first note that we may supposef i s  analytic in a neighborhood of  the closed 

unit disk. One way to see this is to observe that if f , (z)=f(rz),  then f elr,l'dO= 
~ o  1/n! f [f,12"dO. Since the L ~" norms o f f ,  increase with r to the L ~ norm o f f ,  
we see that lim,~ 1 f elS, l 'dO=f elYl'dO. 

By Theorem 2.7 of [2], the lemma above and Beurling's theorem 

{ -  ~t :~  dt sin I{0: If(e'~ > x/I ~ r _ , n e x p  / "  
4 

where IEI denotes the linear measure of  a subset E of OA. Thus 

f:~ elf(e'~ dO : 2zr + 2 f o [ {~ ]f(ei~ > x}[ e~x  dx 

Let 
, nMx  

__ ~S~  If(Yt)[ de 
~(x) - / r~ dt 

By the lemma e (M) ~ 3, 

(1) 

rllftt~ [ z ~ dt } 
~_ 2n + 4n f~o e~x  dx + nr -1/~ JM exp Ix  - n f~, If(~',)l x dx. 

i f  O ~ _ x ~ _ M  

~rM ~ 

f0 dt 
if  M <= x < Ilflloo. 

and M<_ - 1, so it suffices to bound 

f llfll~ eX2_a(x) x dx. 
o 

Note that e ' ( x )>0  and e(0)=0.  Let 

/ x 
~o(y) = Itfll~ 

Then ~p(0)=0 and f o  ((p,(y))2 dy=flloIIJ| [f(Yt)[ 

of  variables, (I) becomes 

if  y = ~t(x) 

if y > ll~lr~. 

dt=92(f)<= 1. Using this change 
7~ 

f o e~'~')-" ~ (y) q~" (y) dy. 

By an approximation we may suppose q~' is continuous and has compact support 
in (0, ~). Integrating by parts, we find that it suffices to show that there is a con- 
stant C <  oo such that if q~ is absolutely continuous, q~ (0) =0,  and f o  (q~' (y))2 dy ~ 1 
then 

f? e ~~ d~ _~ C. 
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This was done by Moser [71. If the assumption that q~O)=O is dropped, this latter 
estimate fails. That is why we need control on the ratio nM~/fUolf(v,)l dt as pro- 
vided by the lemma, and consequently need the correct lower limit in Beurling's 
integral estimate. 

Proof of the lemma. If f(z) =z~*=1 a,z" then ~ 2 ( f ) = z ~ l  n la, l 2, so by. the 
Cauchy--Schwarz inequality 

Hence If(z)l<M if IzJ<(1--e-M~) 1/~. If the analog of Bloch's theorem for disks 
centered at 0 were true here, i.e. if f covered a disk of some fixed radius Mo, centered 
at O, then the lemma would follow with r=(1--e-M~) 1/2. Unfortunately, this is 
not the case, so we proceed as follows: Note 

f0 If(?,)[ dt >-- ~TR 9 

for smaU R. If f~olf(~,)Idt> for all R, 0 < R < I ,  let m = l  and r =  
2 

(l_e-~)!/~. Otherwise we may assume nm2/3~_f~!f(~t)]dt<-=M2/2 for some 
M, 0<M_-<I. Then f(A) omits at least two points a,b with M/2<-IaI~IbI~_M 
and ]b-a[>-M/2. If .& denotes:the covering map of A onto C~.{0, 1}, then by 

the monodromy theorem g(z)~2-1( f ( z ) - a  ) . can be defined to be analytic and 
b ' a  

11-o 1 i -o 11 ~-N - -  <_-2 b - - - ~ -  that bounded by 1 in A. Note that b-a .  and ->~-, so 

Ig (0) l<c<l  for some universal constant c. By Schwarz's lemma applied to 
g, f ( z ) ,  a 

must l iein a disk of radius at most 1/8, if JzJ<r with r sufficiently 
b - a  

small and independent of f and M. Hence I f (z ) l<g o n  Izl<r. 

In the course of discovering the lemma, the following problem arose, which 
we were unable to solve: 

Does there exist a universal constant r > 0  such that i f f is  analytic on A,f(0)=0, 
and for some M, I f(r,)l d t<rcM2, then {z: [zl<r} is contained in {z: lf(z)l<M}? 
Here, asbefore, ~t={z6A: [f(z)l=t} and If(?,)l=fT, If'(z)l Idzl. I f f i s  univalent, 
r= 1/16 will work by two applications of Koebe's 1/4-theorem. 
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3. Moser's theorem 

In this section, we give a shorter proof of Moser's theorem. 

Theorem 3 (Moser 171). There is a constant C< oo such that if f o  ~b2(y)dy <-1 
then .fo e-r(~ where F ( t ) = t - ( f  o ~(y) dy) 2. 

The key lemma in Adams [1] is a generalization of this theorem. Adams attrib- 
utes the technique of the proof of that lemma to a private communication of A. Garsia 
to J. Moser. Extracting the technique in Adams' lemma and applying it to Moser's 
theorem, as stated, the following remarkably simple proof emerges. 

Proof. Note that [fo ~b(y) dy)2.~t f o  ~:(Y) dY <-t, so that F(t)>=O. Let Ea=  
{t=>0: F(t)<_-2}. It suffices to show that if t 1, t2CEa with 22_-<tx<t2, then t s -  
t1<_-202. For then IE~[<=22A and f 7  e-r(')dt=f7 tE~I e-~d2<=22" Note that if 
tEE~, 

= t  2y  dy<=t_t 2 , 
0 

and so f ~  ~,2(y) dy<_2/t. Thus 

t2-  <- - f".. O(y),y] 2<= [tIl"§ 02(y)dy)l/ ] 
< [t~12§ t )112(2/t )1/212 < t + 2 ( t  t )112~112§ t l ) -  ~ 
= 2 - -  1 1 = 1 2 - - 1  2 - -  �9 

3 
We conclude ~- (t2 - q) <- 2 + 2 (t2 - -  t l )  1122112 § t2 -- tl = (21/2 + (12 - -  t1)1/2) 2 and hence 

2 
t2-- ta ~ 3 1/2 --- 202. ((~-) - 1) 3 

A similar proof shows that if f o  CV(y) dy~=l then f o  e-F~Odt~--C, where F ( t ) =  
1 1 

t - ( f  o ~(y) dy) ~, - - §  l < p <  ~. As Adams remarks, this technique does not 
P q 

seem delicate enough to find the best possible constant C. See Carleson and Chang [3] 
for a numerical estimate of the best C. After this paper was written, a more general 
version of Theorem I was discovered by Ess6n [5], using somewhat different methods. 
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