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w 1. Introduction 

In this paper we prove that there exists an absolute constant I>0 such that, 
for every univalent H 1 function f in the open unit disk D and every zoED, there 
are OER and e, l(1-1z01)<-8-<rc, such that 

if" f(zo) = 2c -~ f (d~  e~9 dr. 

Let f be a holomorphic function in the open unit disk D which belongs to 
the Hardy class H 1 ([4]). According to [11 and [2], every value f(zo), Iz01< l, is of 
the form 

1 ~ 
f(zo) = - ~  f, f(e" ) dS, 

where l i s  an interval on the unit circle with length 1II, 0<lll<=2z. A sketch of the 
proof is given in Prop. l, w 2 below. The proof does not provide information on 
the size or the location of the interval L Extensions of the previous result in [5, 6] 
are related to BMO, measures and holomorphic mappings in several variables; 
still they do not contain quantitative information on the size of L Some preliminary 
quantitative results concerning univalent functions can be found in [7] and [8]. 
Their proof makes use of the classical distortion theorems and especially of the 
1/4-Koebe theorem. 

The purpose of the present paper is to furnish a brief and complete presenta- 
tion of the above quantitative results on univalent functions; the general H 1 case 
is, as far as I know, still open. 

The main result, thus, states that i f f  is H x and univalent then III >=21(1- Iz01), 
where 1>0 is an absolute constant independent o f f  and z0. In the particular case 
where f(z)=log (1-z),  the length II[ is exactly of the order of ( 1 -  Iz01); however, 
I do not know the best value of the constant I. 
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In the special case of a function univalent in a larger disk D,={zEC: Izl<r} 
with r > l  we have lI[>=2Cf(1-lzol) a/z with C s > 0  a constant independent of 
zoED. An easy calculation with the function f ( z ) = z  shows that llI is exactly of 
the order of ( 1 -  Izl) ~/~. 

w 2. Proofs 

L e t f b e  an H 1 function in the open unit disk D. For e, 0<e~zc,  and z, Iz[<=l, 
we denote 

1 
f ( z e  i') dt. A ( z )  : ~ -~ 

We also denote fo(Z)=f(z) for all zED and for almost all z in the unit circle Izl : 1. 
We prove first the following version of Theorem 1 in [2] [see also Theorem 8 in [6]). 

Proposition 1. Let f be an H 1 function in the open unit disk D and let J be a 
Jordan curve in D the closed unit disk. For every point z in the interior o f  J and for 
every ~, O<=~<:rr, there are ~EJ and g, e<-g~rc, 0<[ ,  such that f , (z)=~(~).  

Proof. We distinguish three cases. 
i) e=0  and f~=f0 is constant; then f~=f=cons tan t  for all ~ and the result is 

obvious. 
ii) 0<e-<_rc and f~ is constant; then the result holds with g=~ and ~ any 

point of J. 
iii) f ,  is non-constant in D. We argue by contradiction and thus we suppose 

that f~(~)r for all g, e<g-<rc, and ~EJ (in this case 8<~z, because f ,  is 
non-c0nstant). The curves f~ts, e<g<-rc, are homotopic in C-{ f , ( z )} ;  therefore, 
Ind (f, tsif~(z))=Ind (f~is,f.(z)) for all g, ~<g<- re, where Ind denotes the winding 
number. Since the function f~ is constant, we have Ind (f~Is, f , (z ) )=0  for all 5 ,  
e<g<_-rcl We observe that each function f~ is continuous on ~ and holomorphic 
in D. The argument principle implies that f ,  (w) r  (z) for all g, e < g<=rc, and all 
w in the interior of J. 

We also observe that f ~ f ,  uniformly on compacta in D, as g-~e. Hurwitz's 
theorem states that eitherf,  is constant or f , (w ) r  for all w in the interior of J. 
In our casef ,  is not constant; therefore, f~(w)r  for all w in the interior of J. 
This contradicts the fact that z is in the interior of J and the proof is complete. 
Q.E.D. 

Proposition 2. Let 0<)~<1. Then, there exists a constant lx>0, such that 

for  every univalent function f in Izl < 1 the following holds: 
I f  zo, z and e are such that Izol=l-6, 0<6<-1, Iz-z01=26, 0<~<--~ and 

f(zo)=f~(z), then e>-la6. 
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Proof. Let # be such that 2<  # <  1. We denote D(z o, p6) = {wE C: Iw-z0l <=/~6} 
and Iz,~={ze": -e<=t<=~}. 

The distortion theorems (Ch. 2 in [3] or Ch. 1 in [9]) imply that for wED(zo, p6) 
we have 

2 6 1 
If'(w)l <- (1 -# )3  If'(Zo)l and IF(w)] = ( 1 _ # ) ,  6 If'(z0)l. 

The 1/4-Koebe theorem ([3], [9]) yields the following 

t ZO = 2'0 ~ Z = 2 e  it i 7. t .  

We set g(t)=f(zeU), which defines a C ~ function: thus, we have the Taylor devel- 
opment g(t)-g(O)=tg' (0) +t~/2. u(t), which implies 

sup lu(Ol <-- ---- sup Ig'(t)l. 26 If'(z0)l <= :[g(t - g (0 ) ]  dt <= -ff I,1~-~ 6 i,la, 

Since Iz-z0l =26, one can easily verify that I:,~cD(zo, #6) or e/6>=lx-2. 
We consider the ease Iz.~CO(zo, ix6). Since g ' ( t )= -ze i ' f ' ( z e i ' ) - z~d~ ' f ' ( ze i  5, 

using the above mentioned bounds for If'(w)l and If"(w)l in D(zolX6), we have 
the inequality 

-< 82[ 2 6 
1 ; t 6  If'(zo)l =-~-[ ' (1- - /03 b ( l _ p ) t  l l l f ' ( z 0 ) l "  

Since 0<6<=1, 0 < # < 1  and f'(zo)~O by the univalence o f f ,  we obtain ~/6=> 
C~,~>0. 

If  I~,~ is not contained in D(zo, #6), then e/6>=#-2. Therefore, we always 
have e/6~l~,~=min (C~,,,/~-2)>0. Now the result follows with lx=supu~(~,:) la,~ 

1 + 2  
or 1~=I~,~ with /zz=---- ~ Q.E.D. 

Theorem 3. There is an absolute constant I > 0  such that the following holds." 
For every univalent Ha function f in D={zEC:  Izl<l} and for every zoED, 

Izol=l--6,  0<6<_-1, there exist OER ands, 16<e<=rc, such that 

f(zo) = - ~  ::~f(ei'eii)dt. 

Proof. Let J be the circle with center z0 and radius 6/4. Then, according to 
Prop. 1, there are ~EJ and g, 0 <  "-<e___rc, such that f(zo)=fo(Zo)=f~(g ). Prop. 2 
implies now that ~-->llj~. 6. We use Prop. 1 once more and we obtain ~ER a n d  e, 
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n>=s~_~>=It/4.6>O, such that 

f(Zo) =f~(~) - 2s - ,  f ( d %  ~') dt. 

Therefore, we have the result with 1=11/4. A slight modification in the proof 
gives the result with l=supaE(oa I la. Q.E.D. 

In the particular case of a function univalent in a larger disk we have: 

Proposition 4. Suppose that f is univalent fimction in a disk D, = {zE C: Izl < r } 
with r > l .  Then thereisaconstant cs.>0 such that, for every zo, I z o l = l - &  0<6<-1 ,  
and for every 3ER ands, 0<s<-n,  related by 

f ( z o ) = l  f~_ f (e%")dt ,  

we have S~Cf61[2. 

Proof. We set g(t)=f(d%it), which defines a C ~ function g. Since f is holo- 
morphic in D, with r > l ,  it follows that Ig"(t)l<-Ms.< +co for all tER. The 
Taylor development of g gives g(t)-g(O)=tg'(O)+t2/2 .u(t)  with lu(t)[<-Ms.. 

This implies 

1 . 1 ~ , t2 u ( t )  < = M s . .  f f(eiOd t) dt-- f (e  i~) = --~ f tg (0) + -~- -6-" 

On the other hand the 1/4-Koebe theorem yields 

If(z0)-f(d~)l --> ~- If'(z0)l �9 (1-Iz01) -- If'(z0)l. 

S 2 

1 .~ ,s ,t 6 If'(z0)l<-Ms-~-. As minlzoi~_l If ' (z0)l>0 Since f(zo) =--~ J_,  f(e" e" ) dt, we find ~- 

we find s>=cs..6 ~/~, with cs.>0. 
Q.E.D. 

w 3. Examples 

Let f ( z )=z  and z0, [ z0 l= l -6 ,  0<6<--1. If f(Zo)=f~(ei~), then we easily 
sin e 

obtain 1 - 6 =  ; this implies that e is exactly of the order of 61/3, as 6-~0. 
s 

We see, therefore, that the exponent 1/2 is best possible in Prop. 4. 
Next let us consider the function f ( z )= log  (1-z) ,  which is univalent and 

H x in D. Let 3ER, sE[0, ~] and zoED, z o = l - 6 ,  0 < 6 - 1 / 2 ,  be such that f (zo)= 
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f,(efO). I t  is easy to  see, e.g. geometrically, tha t  e~S= 1; it follows that  

I 8 t 
f ( z o )  l o g a  7fo = = log 2 sin ~- dt. 

25 
This implies tha t  - 1 + log - -  <_- Iog 6 ~  - 1 + l o g  5, which gives e6<_-e-<_lre/2.6. 

x 

Therefore,  the exponent  1 is the best possible in Theorem 3. Finally the exponent  1 

is the best possible in Prop.  2; this can be seen by the examples f ( z )  = l o g  (1 - z )  or 
f ( z ) = ( 1 - z )  -2 as well. 
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