Interval estimates

V. Nestoridis

§ 1. Introduction

In this paper we prove that there exists an absolute constant $l>0$ such that, for every univalent H^{1} function f in the open unit disk D and every $z_{0} \in D$, there are $\vartheta \in \mathbf{R}$ and $\varepsilon, l\left(1-\left|z_{0}\right|\right) \leqq \varepsilon \leqq \pi$, such that

$$
f\left(z_{0}\right)=\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} f\left(e^{i 9} e^{i t}\right) d t
$$

Let f be a holomorphic function in the open unit disk D which belongs to the Hardy class $H^{1}([4])$. According to [1] and [2], every value $f\left(z_{0}\right),\left|z_{0}\right|<1$, is of the form

$$
f\left(z_{0}\right)=\frac{1}{|I|} \int_{I} f\left(e^{i \vartheta}\right) d \vartheta
$$

where I is an interval on the unit circle with length $|I|, 0<|I| \leqq 2 \pi$. A sketch of the proof is given in Prop. 1, § 2 below. The proof does not provide information on the size or the location of the interval I. Extensions of the previous result in [5, 6] are related to BMO, measures and holomorphic mappings in several variables; still they do not contain quantitative information on the size of I. Some preliminary quantitative results concerning univalent functions can be found in [7] and [8]. Their proof makes use of the classical distortion theorems and especially of the 1/4-Koebe theorem.

The purpose of the present paper is to furnish a brief and complete presentation of the above quantitative results on univalent functions; the general H^{1} case is, as far as I know, still open.

The main result, thus, states that if f is H^{1} and univalent then $|I| \geqq 2 l\left(1-\left|z_{0}\right|\right)$, where $l>0$ is an absolute constant independent of f and z_{0}. In the particular case where $f(z)=\log (1-z)$, the length $|I|$ is exactly of the order of $\left(1-\left|z_{0}\right|\right)$; however, I do not know the best value of the constant l.

In the special case of a function univalent in a larger disk $D_{r}=\{z \in \mathbf{C}:|z|<r\}$ with $r>1$ we have $|I| \geqq 2 C_{f}\left(1-\left|z_{0}\right|\right)^{1 / 2}$ with $C_{f}>0$ a constant independent of $z_{0} \in D$. An easy calculation with the function $f(z)=z$ shows that $|I|$ is exactly of the order of $(1-|z|)^{1 / 2}$.

§ 2. Proofs

Let f be an H^{1} function in the open unit disk D. For $\varepsilon, 0<\varepsilon \leqq \pi$, and $z,|z| \leqq 1$, we denote

$$
f_{\varepsilon}(z)=\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} f\left(z e^{i t}\right) d t
$$

We also denote $f_{0}(z)=f(z)$ for all $z \in D$ and for almost all z in the unit circle $|z|=1$. We prove first the following version of Theorem 1 in [2] (see also Theorem 8 in [6]).

Proposition 1. Let f be an H^{1} function in the open unit disk D and let J be a Jordan curve in \bar{D} the closed unit disk. For every point z in the interior of J and for every $\varepsilon, 0 \leqq \varepsilon \leqq \pi$, there are $\tilde{z} \in J$ and $\tilde{\varepsilon}, \varepsilon \leqq \tilde{\varepsilon} \leqq \pi, 0<\tilde{\varepsilon}$, such that $f_{\varepsilon}(z)=f_{\tilde{\varepsilon}}(\tilde{z})$.

Proof. We distinguish three cases.
i) $\varepsilon=0$ and $f_{\varepsilon}=f_{0}$ is constant; then $f_{\tilde{\varepsilon}}=f=$ constant for all $\tilde{\varepsilon}$ and the result is obvious.
ii) $0<\varepsilon \leqq \pi$ and f_{ε} is constant; then the result holds with $\tilde{\varepsilon}=\varepsilon$ and \tilde{z} any point of J.
iii) f_{ε} is non-constant in D. We argue by contradiction and thus we suppose that $f_{\tilde{\varepsilon}}(\tilde{z}) \neq f_{\varepsilon}(z)$ for all $\tilde{\varepsilon}, \varepsilon<\tilde{\varepsilon} \leqq \pi$, and $\tilde{z} \in J$ (in this case $\varepsilon<\pi$, because f_{ε} is non-constant). The curves $f_{\tilde{\varepsilon} \mid J}, \varepsilon<\tilde{\varepsilon} \leqq \pi$, are homotopic in $\mathbf{C}-\left\{f_{\varepsilon}(z)\right\}$; therefore, Ind $\left(f_{\tilde{\varepsilon} \mid J}, f_{\varepsilon}(z)\right)=\operatorname{Ind}\left(f_{\pi \mid J}, f_{\varepsilon}(z)\right)$ for all $\tilde{\varepsilon}, \varepsilon<\tilde{\varepsilon} \leqq \pi$, where Ind denotes the winding number. Since the function f_{π} is constant, we have $\operatorname{Ind}\left(f_{\hat{z} \mid J}, f_{\varepsilon}(z)\right)=0$ for all ε, $\varepsilon<\tilde{\varepsilon} \leqq \pi$. We observe that each function $f_{\tilde{\varepsilon}}$ is continuous on \bar{D} and holomorphic in D. The argument principle implies that $f_{\tilde{\varepsilon}}(w) \neq f_{\varepsilon}(z)$ for all $\tilde{\varepsilon}, \varepsilon<\tilde{\varepsilon} \leqq \pi$, and all w in the interior of J.

We also observe that $f_{\tilde{\varepsilon} \rightarrow f_{\varepsilon}}$ uniformly on compacta in D, as $\tilde{\varepsilon} \rightarrow \varepsilon$. Hurwitz's theorem states that either f_{ε} is constant or $f_{\varepsilon}(w) \neq f_{\varepsilon}(z)$ for all w in the interior of J. In our case f_{ε} is not constant; therefore, $f_{\varepsilon}(w) \neq f_{\varepsilon}(z)$ for all w in the interior of J. This contradicts the fact that z is in the interior of J and the proof is complete. Q.E.D.

Proposition 2. Let $0<\lambda<1$. Then, there exists a constant $l_{\lambda}>0$, such that for every univalent function f in $|z|<1$ the following holds:

If z_{0}, z and ε are such that $\left|z_{0}\right|=1-\delta, 0<\delta \leqq 1,\left|z-z_{0}\right|=\lambda \delta, 0<\varepsilon \leqq \pi$ and $f\left(z_{0}\right)=f_{\varepsilon}(z)$, then $\varepsilon \geqq l_{\lambda} \delta$.

Proof. Let μ be such that $\lambda<\mu<1$. We denote $D\left(z_{0}, \mu \delta\right)=\left\{w \in \mathbf{C}:\left|w-z_{0}\right| \leqq \mu \delta\right\}$ and $I_{z, \varepsilon}=\left\{z e^{i t}:-\varepsilon \leqq t \leqq \varepsilon\right\}$.

The distortion theorems (Ch. 2 in [3] or Ch. 1 in [9]) imply that for $w \in D\left(z_{0}, \mu \delta\right)$ we have

$$
\left|f^{\prime}(w)\right| \leqq \frac{2}{(1-\mu)^{3}}\left|f^{\prime}\left(z_{0}\right)\right| \quad \text { and } \quad\left|f^{\prime \prime}(w)\right| \leqq \frac{6}{(1-\mu)^{4}} \cdot \frac{1}{\delta} \cdot\left|f^{\prime}\left(z_{0}\right)\right|
$$

The $1 / 4$-Koebe theorem ([3], [9]) yields the following

$$
\frac{1}{4} \lambda \delta\left|f^{\prime}\left(z_{0}\right)\right| \leqq\left|f\left(z_{0}\right)-f(z)\right|=\left|f_{\varepsilon}(z)-f(z)\right|=\left|\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon}\left[f\left(z e^{i t}\right)-f(z)\right] d t\right|
$$

We set $g(t)=f\left(z e^{i t}\right)$, which defines a C^{∞} function: thus, we have the Taylor development $g(t)-g(0)=\operatorname{tg}^{\prime}(0)+t^{2} / 2 \cdot u(t)$, which implies

$$
\frac{1}{4} \lambda \delta\left|f^{\prime}\left(z_{0}\right)\right| \leqq\left|\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon}[g(t)-g(0)] d t\right| \leqq \frac{\varepsilon^{2}}{6} \sup _{|t| \leqq \varepsilon}|u(t)| \leqq \frac{\varepsilon^{2}}{6} \sup _{|t| \leqq \varepsilon}\left|g^{\prime \prime}(t)\right| .
$$

Since $\left|z-z_{0}\right|=\lambda \delta$, one can easily verify that $I_{z, \varepsilon} \subset D\left(z_{0}, \mu \delta\right)$ or $\varepsilon / \delta \geqq \mu-\lambda$.
We consider the case $I_{z, \varepsilon} \subset D\left(z_{0}, \mu \delta\right)$. Since $g^{\prime \prime}(t)=-z e^{i t} f^{\prime}\left(z e^{i t}\right)-z^{2} e^{i 2 t} f^{\prime \prime}\left(z e^{i t}\right)$, using the above mentioned bounds for $\left|f^{\prime}(w)\right|$ and $\left|f^{\prime \prime}(w)\right|$ in $D\left(z_{0} \mu \delta\right)$, we have the inequality

$$
\frac{1}{4} \lambda \delta\left|f^{\prime}\left(z_{0}\right)\right| \leqq \frac{\varepsilon^{2}}{6}\left[\frac{2}{(1-\mu)^{3}}+\frac{6}{(1-\mu)^{4}} \frac{1}{\delta}\right]\left|f^{\prime}\left(z_{0}\right)\right|
$$

Since $0<\delta \leqq 1,0<\mu<1$ and $f^{\prime}\left(z_{0}\right) \neq 0$ by the univalence of f, we obtain $\varepsilon / \delta \geqq$ $C_{\lambda, \mu}>0$.

If $I_{z, \varepsilon}$ is not contained in $D\left(z_{0}, \mu \delta\right)$, then $\varepsilon / \delta \geqq \mu-\lambda$. Therefore, we always have $\varepsilon / \delta \geqq l_{\lambda, \mu}=\min \left(C_{\lambda, \mu}, \mu-\lambda\right)>0$. Now the result follows with $l_{\lambda}=\sup _{\mu \in(\lambda, 1)} l_{\lambda, \mu}$ or $l_{\lambda}=l_{\lambda, \mu_{\lambda}}$ with $\mu_{\lambda}=\frac{1+\lambda}{2}$. Q.E.D.

Theorem 3. There is an absolute constant $l>0$ such that the following holds:
For every univalent H^{1} function f in $D=\{z \in \mathbf{C}:|z|<1\}$ and for every $z_{0} \in D$, $\left|z_{0}\right|=1-\delta, 0<\delta \leqq 1$, there exist $\vartheta \in \mathbf{R}$ and $\varepsilon, l \delta<\varepsilon \leqq \pi$, such that

$$
f\left(z_{0}\right)=\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} f\left(e^{i \vartheta} e^{i t}\right) d t
$$

Proof. Let J be the circle with center z_{0} and radius $\delta / 4$. Then, according to Prop. 1, there are $\tilde{z} \in J$ and $\tilde{\varepsilon}, 0<\tilde{\varepsilon} \leqq \pi$, such that $f\left(z_{0}\right)=f_{0}\left(z_{0}\right)=f_{\tilde{\varepsilon}}(\tilde{z})$. Prop. 2 implies now that $\tilde{\varepsilon} \geqq l_{1 / 4} \cdot \delta$. We use Prop. 1 once more and we obtain $\vartheta \in \mathbf{R}$ and ε,
$\pi \geqq \varepsilon \geqq \tilde{\varepsilon} \geqq l_{1 / 4} \cdot \delta>0$, such that

$$
f\left(z_{0}\right)=f_{\varepsilon}(\tilde{z})=\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} f\left(e^{i v} e^{i t}\right) d t
$$

Therefore, we have the result with $l=l_{1 / 4}$. A slight modification in the proof gives the result with $l=\sup _{\lambda \in(0,1)} l_{\lambda}$. Q.E.D.

In the particular case of a function univalent in a larger disk we have:
Proposition 4. Suppose that f is univalent function in a disk $D_{r}=\{z \in \mathbf{C}:|z|<r\}$ with $r>1$. Then there is a constant $c_{f}>0$ such that, for every $z_{0},\left|z_{0}\right|=1-\delta, 0<\delta \leqq 1$, and for every $\vartheta \in \mathbf{R}$ and $\varepsilon, 0<\varepsilon \leqq \pi$, related by

$$
f\left(z_{0}\right)=\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} f\left(e^{i \vartheta} e^{i t}\right) d t
$$

we have $\varepsilon \geqq c_{f} \delta^{1 / 2}$.
Proof. We set $g(t)=f\left(e^{i s} e^{i t}\right)$, which defines a C^{∞} function g. Since f is holomorphic in D_{r} with $r>1$, it follows that $\left|g^{\prime \prime}(t)\right| \leqq M_{f}<+\infty$ for all $t \in \mathbf{R}$. The Taylor development of g gives $g(t)-g(0)=\operatorname{tg}^{\prime}(0)+t^{2} / 2 \cdot u(t)$ with $|u(t)| \leqq M_{f}$.

This implies

$$
\left|\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} f\left(e^{i 9} e^{i t}\right) d t-f\left(e^{i g}\right)\right|=\left|\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon}\left[\operatorname{tg}^{\prime}(0)+\frac{t^{2}}{2} u(t)\right] d t\right| \leqq M_{f} \cdot \frac{\varepsilon^{2}}{6} .
$$

On the other hand the $1 / 4$-Koebe theorem yields

$$
\left|f\left(z_{0}\right)-f\left(e^{i \vartheta}\right)\right| \geqq \frac{1}{4}\left|f^{\prime}\left(z_{0}\right)\right| \cdot\left(1-\left|z_{0}\right|\right)=\frac{\delta}{4}\left|f^{\prime}\left(z_{0}\right)\right| .
$$

Since $f\left(z_{0}\right)=\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} f\left(e^{i s} e^{i t}\right) d t$, we find $\frac{\delta}{4}\left|f^{\prime}\left(z_{0}\right)\right| \leqq M_{f} \frac{\varepsilon^{2}}{6}$. As $\min _{\left|z_{0}\right| \leqq 1}\left|f^{\prime}\left(z_{0}\right)\right|>0$ we find $\varepsilon \geqq c_{f} \cdot \delta^{1 / 2}$, with $c_{f}>0$.
Q.E.D.

§ 3. Examples

Let $f(z)=z$ and $z_{0},\left|z_{0}\right|=1-\delta, 0<\delta \leqq 1$. If $f\left(z_{0}\right)=f_{\varepsilon}\left(e^{i \gamma}\right)$, then we easily obtain $1-\delta=\frac{\sin \varepsilon}{\varepsilon}$; this implies that ε is exactly of the order of $\delta^{1 / 2}$, as $\delta \rightarrow 0$. We see, therefore, that the exponent $1 / 2$ is best possible in Prop. 4.

Next let us consider the function $f(z)=\log (1-z)$, which is univalent and $H^{\mathbf{1}}$ in D. Let $\vartheta \in \mathbf{R}, \varepsilon \in[0, \pi]$ and $z_{0} \in D, z_{0}=1-\delta, 0<\delta \leqq 1 / 2$, be such that $f\left(z_{0}\right)=$
$f_{\varepsilon}\left(e^{i s}\right)$. It is easy to see, e.g. geometrically, that $e^{i s}=1$; it follows that

$$
f\left(z_{0}\right)=\log \delta=\frac{1}{\varepsilon} \int_{0}^{\varepsilon} \log 2 \sin \frac{t}{2} d t
$$

This implies that $-1+\log \frac{2 \varepsilon}{\pi} \leqq \log \delta \leqq-1+\log \varepsilon$, which gives $e \delta \leqq \varepsilon \leqq \pi e / 2 \cdot \delta$. Therefore, the exponent 1 is the best possible in Theorem 3. Finally the exponent 1 is the best possible in Prop. 2; this can be seen by the examples $f(z)=\log (1-z)$ or $f(z)=(1-z)^{-2}$ as well.

References

1. Danikas, N.-Nestoridis, V., Interval averages of H^{1} functions and BMO norms. In: Conference of harmonic analysis at Cortona, Lecture Notes 992, pp. 174-199, SpringerVerlag, Berlin-Heidelberg-New York, 1982.
2. Danikas, N.-Nestoridis, V., A property of H^{1} functions, Complex variables, 4 (1986), 277284.
3. Duren, P. L., Univalent functions, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
4. Garnett, J., Bounded analytic functions, Academic Press, New York, 1981.
5. Nestoridis, V., Holomorphic functions, BMO and measures, Ark. Mat. 24 (1986), 283-298.
6. Nestoridis, V., Averages of holomorphic mappings, Math. Proc. Cambridge Philos. Soc. 100 (1986), 371-381.
7. Nestoridis, V., Interval averages. In: Proceedings of the Ninth Conference on Analytic Functions, Lublin-Poland, June 1-8, 1986 (to appear).
8. Nestoridis, V., Estimates of intervals for univalent functions. In: Proceedings of the Fourth International Conference on Complex Analysis and Applications, Varna, May 10-16, 1987, Bulgaria (to appear).
9. Pommerenke, Сh., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

Received January 8, 1988
V. Nestoridis

University of Crete
Department of Mathematics
P.O. Box 470

Iraklion - Crete
Greece

