Interval estimates

V. Nestoridis

§ 1. Introduction

In this paper we prove that there exists an absolute constant l>0 such that, for every univalent H^1 function f in the open unit disk D and every $z_0 \in D$, there are $\vartheta \in \mathbf{R}$ and ε , $l(1-|z_0|) \le \varepsilon \le \pi$, such that

$$f(z_0) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(e^{i\vartheta} e^{it}) dt.$$

Let f be a holomorphic function in the open unit disk D which belongs to the Hardy class $H^1([4])$. According to [1] and [2], every value $f(z_0)$, $|z_0| < 1$, is of the form

$$f(z_0) = \frac{1}{|I|} \int_I f(e^{i\vartheta}) d\vartheta,$$

where I is an interval on the unit circle with length |I|, $0 < |I| \le 2\pi$. A sketch of the proof is given in Prop. 1, § 2 below. The proof does not provide information on the size or the location of the interval I. Extensions of the previous result in [5, 6] are related to BMO, measures and holomorphic mappings in several variables; still they do not contain quantitative information on the size of I. Some preliminary quantitative results concerning univalent functions can be found in [7] and [8]. Their proof makes use of the classical distortion theorems and especially of the 1/4-Koebe theorem.

The purpose of the present paper is to furnish a brief and complete presentation of the above quantitative results on univalent functions; the general H^1 case is, as far as I know, still open.

The main result, thus, states that if f is H^1 and univalent then $|I| \ge 2l(1-|z_0|)$, where l>0 is an absolute constant independent of f and z_0 . In the particular case where $f(z) = \log(1-z)$, the length |I| is exactly of the order of $(1-|z_0|)$; however, I do not know the best value of the constant l. V. Nestoridis

In the special case of a function univalent in a larger disk $D_r = \{z \in \mathbb{C} : |z| < r\}$ with r > 1 we have $|I| \ge 2C_f (1 - |z_0|)^{1/2}$ with $C_f > 0$ a constant independent of $z_0 \in D$. An easy calculation with the function f(z) = z shows that |I| is exactly of the order of $(1 - |z|)^{1/2}$.

§ 2. Proofs

Let f be an H¹ function in the open unit disk D. For ε , $0 < \varepsilon \le \pi$, and z, $|z| \le 1$, we denote

$$f_{\varepsilon}(z) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(ze^{it}) dt.$$

We also denote $f_0(z)=f(z)$ for all $z \in D$ and for almost all z in the unit circle |z|=1. We prove first the following version of Theorem 1 in [2] (see also Theorem 8 in [6]).

Proposition 1. Let f be an H^1 function in the open unit disk D and let J be a Jordan curve in \overline{D} the closed unit disk. For every point z in the interior of J and for every ε , $0 \le \varepsilon \le \pi$, there are $\tilde{z} \in J$ and $\tilde{\varepsilon}$, $\varepsilon \le \tilde{\varepsilon} \le \pi$, $0 < \tilde{\varepsilon}$, such that $f_{\varepsilon}(z) = f_{\tilde{\varepsilon}}(\tilde{z})$.

Proof. We distinguish three cases.

i) $\varepsilon = 0$ and $f_{\varepsilon} = f_0$ is constant; then $f_{\varepsilon} = f = \text{constant}$ for all ε and the result is obvious.

ii) $0 < \varepsilon \le \pi$ and f_{ε} is constant; then the result holds with $\tilde{\varepsilon} = \varepsilon$ and \tilde{z} any point of J.

iii) f_{ε} is non-constant in D. We argue by contradiction and thus we suppose that $f_{\overline{\varepsilon}}(\overline{z}) \neq f_{\varepsilon}(z)$ for all $\widetilde{\varepsilon}$, $\varepsilon < \widetilde{\varepsilon} \le \pi$, and $\overline{z} \in J$ (in this case $\varepsilon < \pi$, because f_{ε} is non-constant). The curves $f_{\overline{\varepsilon}|J}$, $\varepsilon < \widetilde{\varepsilon} \le \pi$, are homotopic in $\mathbb{C} - \{f_{\varepsilon}(z)\}$; therefore, Ind $(f_{\overline{\varepsilon}|J}, f_{\varepsilon}(z)) = \operatorname{Ind} (f_{\pi|J}, f_{\varepsilon}(z))$ for all $\widetilde{\varepsilon}, \varepsilon < \widetilde{\varepsilon} \le \pi$, where Ind denotes the winding number. Since the function f_{π} is constant, we have Ind $(f_{\overline{\varepsilon}|J}, f_{\varepsilon}(z)) = 0$ for all ε , $\varepsilon < \widetilde{\varepsilon} \le \pi$. We observe that each function $f_{\overline{\varepsilon}}$ is continuous on \overline{D} and holomorphic in D. The argument principle implies that $f_{\overline{\varepsilon}}(w) \neq f_{\varepsilon}(z)$ for all $\widetilde{\varepsilon}, \varepsilon < \widetilde{\varepsilon} \le \pi$, and all w in the interior of J.

We also observe that $f_{\tilde{\epsilon}} \rightarrow f_{\epsilon}$ uniformly on compact in *D*, as $\tilde{\epsilon} \rightarrow \epsilon$. Hurwitz's theorem states that either f_{ϵ} is constant or $f_{\epsilon}(w) \neq f_{\epsilon}(z)$ for all *w* in the interior of *J*. In our case f_{ϵ} is not constant; therefore, $f_{\epsilon}(w) \neq f_{\epsilon}(z)$ for all *w* in the interior of *J*. This contradicts the fact that *z* is in the interior of *J* and the proof is complete. Q.E.D.

Proposition 2. Let $0 < \lambda < 1$. Then, there exists a constant $l_{\lambda} > 0$, such that for every univalent function f in |z| < 1 the following holds:

If z_0 , z and ε are such that $|z_0|=1-\delta$, $0<\delta\leq 1$, $|z-z_0|=\lambda\delta$, $0<\varepsilon\leq \pi$ and $f(z_0)=f_{\varepsilon}(z)$, then $\varepsilon\geq l_{\lambda}\delta$.

Interval estimates

Proof. Let μ be such that $\lambda < \mu < 1$. We denote $D(z_0, \mu \delta) = \{w \in \mathbb{C} : |w - z_0| \le \mu \delta\}$ and $I_{z,\varepsilon} = \{ze^{it}: -\varepsilon \le t \le \varepsilon\}$.

The distortion theorems (Ch. 2 in [3] or Ch. 1 in [9]) imply that for $w \in D(z_0, \mu \delta)$ we have

$$|f'(w)| \leq \frac{2}{(1-\mu)^3} |f'(z_0)|$$
 and $|f''(w)| \leq \frac{6}{(1-\mu)^4} \cdot \frac{1}{\delta} \cdot |f'(z_0)|.$

The 1/4-Koebe theorem ([3], [9]) yields the following

$$\frac{1}{4}\lambda\delta|f'(z_0)| \leq |f(z_0)-f(z)| = |f_{\varepsilon}(z)-f(z)| = \left|\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon} [f(ze^{it})-f(z)]\,dt\right|.$$

We set $g(t)=f(ze^{it})$, which defines a C^{∞} function: thus, we have the Taylor development $g(t)-g(0)=tg'(0)+t^2/2 \cdot u(t)$, which implies

$$\frac{1}{4}\lambda\delta |f'(z_0)| \leq \left|\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon} [g(t)-g(0)] dt\right| \leq \frac{\varepsilon^2}{6} \sup_{|t|\leq \varepsilon} |u(t)| \leq \frac{\varepsilon^2}{6} \sup_{|t|\leq \varepsilon} |g''(t)|.$$

Since $|z-z_0| = \lambda \delta$, one can easily verify that $I_{z,\varepsilon} \subset D(z_0, \mu \delta)$ or $\varepsilon/\delta \ge \mu - \lambda$.

We consider the case $I_{z,\varepsilon} \subset D(z_0, \mu \delta)$. Since $g''(t) = -ze^{it}f'(ze^{it}) - z^2e^{i2t}f''(ze^{it})$, using the above mentioned bounds for |f'(w)| and |f''(w)| in $D(z_0\mu\delta)$, we have the inequality

$$\frac{1}{4} \lambda \delta |f'(z_0)| \leq \frac{\varepsilon^2}{6} \left[\frac{2}{(1-\mu)^3} + \frac{6}{(1-\mu)^4} \frac{1}{\delta} \right] |f'(z_0)|.$$

Since $0 < \delta \le 1$, $0 < \mu < 1$ and $f'(z_0) \ne 0$ by the univalence of f, we obtain $\varepsilon/\delta \ge C_{\lambda,\mu} > 0$.

If $I_{z,\varepsilon}$ is not contained in $D(z_0, \mu\delta)$, then $\varepsilon/\delta \ge \mu - \lambda$. Therefore, we always have $\varepsilon/\delta \ge l_{\lambda,\mu} = \min(C_{\lambda,\mu}, \mu - \lambda) > 0$. Now the result follows with $l_{\lambda} = \sup_{\mu \in (\lambda,1)} l_{\lambda,\mu}$ or $l_{\lambda} = l_{\lambda,\mu_{\lambda}}$ with $\mu_{\lambda} = \frac{1+\lambda}{2}$. Q.E.D.

Theorem 3. There is an absolute constant l>0 such that the following holds: For every univalent H^1 function f in $D = \{z \in \mathbb{C} : |z| < 1\}$ and for every $z_0 \in D$, $|z_0| = 1 - \delta$, $0 < \delta \le 1$, there exist $\vartheta \in \mathbb{R}$ and ε , $|\delta < \varepsilon \le \pi$, such that

$$f(z_0) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(e^{i\vartheta} e^{it}) dt.$$

Proof. Let J be the circle with center z_0 and radius $\delta/4$. Then, according to Prop. 1, there are $\tilde{z} \in J$ and $\tilde{\varepsilon}$, $0 < \tilde{\varepsilon} \leq \pi$, such that $f(z_0) = f_0(z_0) = f_{\tilde{\varepsilon}}(\tilde{z})$. Prop. 2 implies now that $\tilde{\varepsilon} \geq l_{1/4} \cdot \delta$. We use Prop. 1 once more and we obtain $\vartheta \in \mathbf{R}$ and ε ,

 $\pi \geq \varepsilon \geq \tilde{\varepsilon} \geq l_{1/4} \cdot \delta > 0$, such that

$$f(z_0) = f_{\tilde{\varepsilon}}(\tilde{z}) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(e^{i\vartheta} e^{it}) dt.$$

Therefore, we have the result with $l=l_{1/4}$. A slight modification in the proof gives the result with $l=\sup_{\lambda \in (0,1)} l_{\lambda}$. Q.E.D.

In the particular case of a function univalent in a larger disk we have:

Proposition 4. Suppose that f is univalent function in a disk $D_r = \{z \in \mathbb{C} : |z| < r\}$ with r > 1. Then there is a constant $c_f > 0$ such that, for every z_0 , $|z_0| = 1 - \delta$, $0 < \delta \le 1$, and for every $\vartheta \in \mathbb{R}$ and ε , $0 < \varepsilon \le \pi$, related by

$$f(z_0) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(e^{i\vartheta} e^{it}) dt,$$

we have $\varepsilon \ge c_f \delta^{1/2}$.

Proof. We set $g(t)=f(e^{i\vartheta}e^{it})$, which defines a C^{∞} function g. Since f is holomorphic in D_r with r>1, it follows that $|g''(t)| \le M_f < +\infty$ for all $t \in \mathbb{R}$. The Taylor development of g gives $g(t)-g(0)=tg'(0)+t^2/2 \cdot u(t)$ with $|u(t)| \le M_f$.

This implies

$$\left|\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}f(e^{i\vartheta}e^{it})\,dt-f(e^{i\vartheta})\right| = \left|\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}\left[\operatorname{tg}'(0)+\frac{t^2}{2}\,u(t)\right]dt\right| \leq M_f\cdot\frac{\varepsilon^2}{6}.$$

On the other hand the 1/4-Koebe theorem yields

$$|f(z_0)-f(e^{i\vartheta})| \ge \frac{1}{4} |f'(z_0)| \cdot (1-|z_0|) = \frac{\delta}{4} |f'(z_0)|.$$

Since $f(z_0) = \frac{1}{2\epsilon} \int_{-\epsilon}^{\epsilon} f(e^{i\vartheta}e^{it}) dt$, we find $\frac{\delta}{4} |f'(z_0)| \le M_f \frac{\epsilon^2}{6}$. As $\min_{|z_0| \le 1} |f'(z_0)| > 0$ we find $\epsilon \ge c_f \cdot \delta^{1/2}$, with $c_f > 0$.

Q.E.D.

§ 3. Examples

Let f(z)=z and z_0 , $|z_0|=1-\delta$, $0<\delta \le 1$. If $f(z_0)=f_{\varepsilon}(e^{i\vartheta})$, then we easily obtain $1-\delta = \frac{\sin \varepsilon}{\varepsilon}$; this implies that ε is exactly of the order of $\delta^{1/2}$, as $\delta \to 0$. We see, therefore, that the exponent 1/2 is best possible in Prop. 4.

Next let us consider the function $f(z) = \log(1-z)$, which is univalent and H^1 in D. Let $\vartheta \in \mathbb{R}$, $\varepsilon \in [0, \pi]$ and $z_0 \in D$, $z_0 = 1 - \delta$, $0 < \delta \le 1/2$, be such that $f(z_0) =$

Interval estimates

 $f_{\epsilon}(e^{i\vartheta})$. It is easy to see, e.g. geometrically, that $e^{i\vartheta}=1$; it follows that

$$f(z_0) = \log \delta = \frac{1}{\varepsilon} \int_0^\varepsilon \log 2 \sin \frac{t}{2} dt.$$

This implies that $-1 + \log \frac{2\varepsilon}{\pi} \le \log \delta \le -1 + \log \varepsilon$, which gives $e\delta \le \varepsilon \le \pi e/2 \cdot \delta$. Therefore, the exponent 1 is the best possible in Theorem 3. Finally the exponent 1 is the best possible in Prop. 2; this can be seen by the examples $f(z) = \log (1-z)$ or $f(z) = (1-z)^{-2}$ as well.

References

- DANIKAS, N.—NESTORIDIS, V., Interval averages of H¹ functions and BMO norms. In: Conference of harmonic analysis at Cortona, Lecture Notes 992, pp. 174—199, Springer-Verlag, Berlin—Heidelberg—New York, 1982.
- 2. DANIKAS, N.—NESTORIDIS, V., A property of H¹ functions, Complex variables, 4 (1986), 277—284.
- 3. DUREN, P. L., Univalent functions, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
- 4. GARNETT, J., Bounded analytic functions, Academic Press, New York, 1981.
- 5. NESTORIDIS, V., Holomorphic functions, BMO and measures, Ark. Mat. 24 (1986), 283-298.
- 6. NESTORIDIS, V., Averages of holomorphic mappings, Math. Proc. Cambridge Philos. Soc. 100 (1986), 371-381.
- 7. NESTORIDIS, V., Interval averages. In: Proceedings of the Ninth Conference on Analytic Functions, Lublin-Poland, June 1—8, 1986 (to appear).
- NESTORIDIS, V., Estimates of intervals for univalent functions. In: Proceedings of the Fourth International Conference on Complex Analysis and Applications, Varna, May 10-16, 1987, Bulgaria (to appear).
- 9. POMMERENKE, CH., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

Received January 8, 1988

V. Nestoridis University of Crete Department of Mathematics P.O. Box 470 Iraklion — Crete Greece