Linear measure on plane continua of finite linear measure

H. Alexander

1. Introduction

Let Λ be one-dimensional Hausdorff measure in C. Let B be a continuum in C of finite linear measure, i.e., $\Lambda(B) < \infty$. Denote the components of the complement of B in the Riemann sphere by $\{V_j\}$; each V_j is simply connected. Let $f_j: \mathbf{D} \rightarrow V_j$ be a Riemann map, where **D** is the open unit disk.

Theorem.

$$2\Lambda(B) = \sum_{j} \int_{0}^{2\pi} |f'_{j}(e^{i\theta})| \, d\theta.$$

The problem of establishing this identity was raised by Ch. Pommerenke in a letter to the author. The proof has two parts. First we show that the j^{th} integral in the theorem is equal to the integral with respect to Λ of the multiplicity function of f_j ; this is (I). The second part, (II), is to show that the sum of the multiplicity functions is equal to 2 a.e. on B with respect to Λ .

After the proof of the theorem we shall indicate a generalization. This is a decomposition of the restriction of Λ to B as a sum of measures on the boundaries of the V_j .

Finally I want to thank Professor Ch. Pommerenke for writing to me about this problem. A related inequality had been treated in [1].

Supported in part by a grant from the National Science Foundation.

2.

We begin with some general measure theory. For a measurable set $A \subseteq \mathbf{R}$ we denote its Lebesgue measure by |A|.

Lemma 1. Let u be a real-valued absolutely continuous function on an interval (a, b). Then, for every measurable set $A \subseteq (a, b)$, u(A) is measurable and

(*)
$$|u(A)| \leq \int_{A} |u'(x)| \, dx.$$

In particular, if u'=0 a.e. on A, then |u(A)|=0.

Remark. This is just a case of Sard's lemma. For completeness we shall indicate an outline of a proof.

Proof. Let I be an open subinterval such that $\overline{I} \leq (a, b)$. Then u(I) is an interval with endpoints u(c) and u(d) for points c and d in \overline{I} . Hence $|u(I)| = |u(d) - u(c)| = |\int_{c}^{d} u'(x) dx| \leq \int_{I} |u'(x)| dx$.

Now if W is an open subset of (a, b), $W = \bigcup I_j$ where the I_j are disjoint open intervals. Hence $|u(W)| \leq \sum |u(I_j)| \leq \sum \int_{I_j} |u'| \, dx = \int_W |u'| \, dx$. From this it follows that if $N \subseteq (a, b)$ is a null set then u(N) is a null set. Standard arguments then show that u(A) is measurable if A is measurable and then (*) follows easily.

Next, we need the converse to the Sard lemma; cf. [5], p. 322.

Lemma 2. Let u be a real-valued absolutely continuous function on an interval (a, b). If K is a compact subset of (a, b) such that |u(K)|=0, then u'=0 a.e. on K.

Proof. Suppose not. Then, by replacing K by a smaller set, we may assume, without loss of generality, that u' exists and is strictly positive at every point of K. We denote the characteristic function of K by χ_K . Almost every point of K is a Lebesgue point for |u'| and also for $|u'|\chi_K$. Choose such a point $c \in K$. Let $J_{\varepsilon} = (c-\varepsilon, c+\varepsilon)$. Set $\eta = u'(c); \eta > 0$. Then

$$Q(\varepsilon) \coloneqq \frac{1}{2\varepsilon} \int_{J_{\varepsilon} \setminus K} |u'| \, dx$$
$$= \frac{1}{2\varepsilon} \int_{J_{\varepsilon}} |u'| \, dx - \frac{1}{2\varepsilon} \int_{J_{\varepsilon}} |u'| \, \chi_{K} \, dx$$

Therefore, as $\varepsilon \to 0$, $Q(\varepsilon) \to \eta - \eta = 0$.

We have $u(t) = u(c) + (t-c)\eta(1+\sigma(t))$ where $\sigma(t) \to 0$ as $t \to c$. Choose ε so small that $|\sigma(c\pm\varepsilon)| < \frac{1}{3}$. Then $u(J_{\varepsilon}) \supseteq (u(c-\varepsilon), u(c+\varepsilon)) \supseteq (u(c) - \varepsilon\eta(1-\frac{1}{3}), u(c) + \varepsilon)$

 $\epsilon\eta(1-\frac{1}{3})$). Hence $|u(J_{\epsilon})| \ge 2\epsilon \cdot \eta \cdot \frac{2}{3}$. By Lemma 1 we have

$$|u(J_{\varepsilon} \setminus K)| \leq \int_{J_{\varepsilon} \setminus K} |u'| \, dx \leq 2\varepsilon Q(\varepsilon).$$

Now $u(K \cap J_{\epsilon}) \supseteq u(J_{\epsilon} \setminus K)$ and therefore

$$|u(K \cap J_{\varepsilon})| \ge |u(J_{\varepsilon})| - |u(J_{\varepsilon} \setminus K)|$$
$$\ge 2\varepsilon \eta \frac{2}{3} - 2\varepsilon Q(\varepsilon)$$
$$= 2\varepsilon (2\eta/3 - Q(\varepsilon)).$$

If we choose ε so small that $Q(\varepsilon) < \eta/3$ we get $|u(K \cap J_{\varepsilon})| > 2\varepsilon \frac{\eta}{3} > 0$. This contradicts |u(K)| = 0. Q.E.D.

For $z=x+iy\in C$, we have the coordinate projections: $\pi_1(z)=x$ and $\pi_2(z)=y$.

Lemma 3. ("Projection lemma.") Let B be a continuum in C with $\Lambda(B) < \infty$. Let K be a compact subset of B with $\Lambda(K) > 0$. Then either $|\pi_1(K)| > 0$ or $|\pi_2(K)| > 0$.

Remark. Besicovitch ([2], [3]) has constructed sets of positive Λ measure whose projections on all lines have zero measure. By the lemma, these sets are not contained in continua of finite linear measure. A proof of the lemma can also be obtained from [8], Corollary 3.15 and Theorem 6.10.

Proof. First we consider the special case when B is a rectifiable Jordan arc. Let F: $[0, L] \rightarrow B$ parametrize B by arclength. Then $|F(t_2) - F(t_1)| \leq |t_2 - t_1|$ for $0 \leq t_1 \leq t_2 \leq L$; so F is a Lipschitz function, therefore absolutely continuous; |F'(t)| = 1 a.e. on [0, L]. Let $K_0 = F^{-1}(K)$, then $|K_0| = \Lambda(K) > 0$.

Write F=u+iv. Suppose that $|\pi_1(K)|=0$ and $|\pi_2(K)|=0$. Then $u(K_0)=\pi_1(K)$ and so $|u(K_0)|=0$. By Lemma 2, u'=0 a.e. on K_0 . Likewise v'=0 a.e. on K_0 . Hence F'=0 a.e. on K_0 . But |F'|=1 a.e. on K_0 and $|K_0|>0$. This is a contradiction and we conclude that $|\pi_1(K)|>0$ or $|\pi_2(K)|>0$.

In the general case of a continuum B of finite linear measure, Besicovitch ([2], [3]) has shown that B is a disjoint union of a countable set of Jordan arcs and a Λ -null set. Therefore $K \subseteq B$ must meet one of these Jordan arcs in a set K_1 of positive measure. By the first part of the proof, $|\pi_1(K_1)| > 0$ or $|\pi_2(K_1)| > 0$. Q.E.D.

Lemma 4. φ is a Borel measurable function on C.

Proof. Let Π be a finite partition of (a, b) by intervals J which are disjoint, say all of the form (c, d] except the right-most interval. As each J is σ -compact, F(J) is σ -compact and so is a Borel set. Hence

$$\psi_{II} \coloneqq \sum \{\chi_{F(J)} : J \in II\}$$

is Borel measurable. If Π_n is a nested set of partitions whose maximal interval has length converging to zero, it is straightforward that $\psi_{\Pi_n} \dagger \varphi$ on C. Q.E.D.

Let V be a simply connected plane domain with $\Lambda(\partial V) < \infty$ and let $f: \mathbf{D} \rightarrow V$ be a Riemann map (one-to-one, conformal, onto). It is known that f is continuous on $\overline{\mathbf{D}}$ and that f' is in the Hardy space H^1 . Also $f|\partial \mathbf{D}$ is of bounded variation and its variation, denoted by var (f), is equal to $\int_0^{2\pi} |f'(e^{i\theta})| d\theta$. Set $\varphi(z) = #\{e^{i\theta}: f(e^{i\theta}) = = z\}$. By Lemma 4, φ is Borel measurable on C. We shall see below (Lemma 8) that $\varphi \leq 2$, Λ a.e.

Consider a partition Π of $\partial \mathbf{D}$ consisting of a finite number of disjoint halfopen subarcs I. Fix an $I \in \Pi$ with endpoints α_I and β_I . Let J = f(I), an arcwise connected subset of ∂V . By an argument of Besicovitch ([2], p. 311) there exists a Jordan arc in J connecting $f(\alpha_I)$ to $f(\beta_I)$. Let $g_I: I \rightarrow J$ parametrize such a Jordan arc. Since g_I maps I onto the Jordan arc $g_I(I)$, it follows that the variation of g_I on I, denoted var (g_I) , equals the length of $g_I(I) = \Lambda(g_I(I))$.

We claim that $\operatorname{var}(g_I) \leq \operatorname{var}(f|I)$. In fact, the construction of g_I proceeds as follows: Choose the largest subarc $\gamma \subseteq I$ such that the values of f coincide at the endpoints of γ . Set g_I to be the constant value on γ which agrees with f at the endpoints of γ . Continue inductively in this way to modify f on open subarcs until a one-to-one function is obtained. This is g_I . It is then clear that $\operatorname{var}(g_I) \leq \operatorname{var}(f|I)$. We have

(1)
$$|f(\beta_I) - f(\alpha_I)| \leq \Lambda(g_I(I)) \leq \operatorname{var}(f|I).$$

Now define $f_{\Pi}: \partial \mathbf{D} \to \partial V$ by $f_{\Pi}|I=g_I$ for each $I \in \Pi$. Let $\varphi_{\Pi}(z) =$ = $\{e^{i\theta}: f_{\Pi}(e^{i\theta})=z\}$. Then f_{Π} is continuous and φ_{Π} is Borel measurable. Since the g_{Π} are one-to-one and the $\{I\}$ are disjoint, it follows that $\varphi_{\Pi} = \sum_{I \in \Pi} \chi_{q_I(I)}$. Hence

(2)
$$\sum_{I} \Lambda(g_{I}(I)) = \sum_{I} \int \chi_{g_{I}(I)} d\Lambda = \int (\sum_{I} \chi_{g_{I}(I)}) d\Lambda = \int \varphi_{II} d\Lambda.$$

Summing in (1), using (2), we get

(3)
$$\sum_{I \in \Pi} |f(\beta_I) - f(\alpha_I)| \leq \int \varphi_{\Pi} \, d\Lambda \leq \operatorname{var}(f).$$

Denote the sum in (3) by var (f, Π) .

Choose a sequence of partitions Π_n so that $\operatorname{var}(f, \Pi_n) \rightarrow \operatorname{var}(f)$. Set

$$\psi_n = \varphi_{\Pi_n}$$

and $F_n = f_{II_n}$. Then $F_n \rightarrow f$ uniformly on $\partial \mathbf{D}$. By (3),

$$\operatorname{var}(f,\Pi_n) \leq \int \psi_n \, d\Lambda \leq \operatorname{var}(f).$$

It follows that $\int \psi_n d\Lambda \rightarrow \text{var}(f)$. Also, for any partition Π and $I \in \Pi$, $g_I(I) \subseteq f(I)$, hence $\chi_{g(I)} \leq \chi_{f(I)}$. Summing over I we get $\varphi_{\Pi} \leq \sum_I \chi_{f(I)} \leq \varphi$. Taking $\Pi = \Pi_n$ we get $\psi_n \leq \varphi$ for all n. We have proved the following

Lemma 5. $\int \psi_n dA \rightarrow \operatorname{var}(f)$.

We set $\psi = \lim \inf \psi_n$, then $\psi \leq \varphi$.

Lemma 6. $\psi = \varphi$ holds Λ a.e.

Proof. We suppose not, arguing by contradiction. Then there exists a compact subset K of ∂V such that $\Lambda(K) > 0$ and $\psi < \varphi$ on K. Let $E = f^{-1}(K) \subseteq \partial \mathbf{D}$. Then |E| > 0. In fact, by Lemma 3, we may suppose that $|\pi_1(K)| > 0$, then |u(E)| > 0 and so, by Lemma 1, $\int_E |u'| d\theta \ge |u(E)| > 0$; i.e. |E| > 0. By shrinking K we may assume also that the derivative f' exists at each point of E. Finally set N(t) =# $\{z \in \partial V : \operatorname{Re} z = t\}$ for $t \in \mathbf{R}$. Since $\Lambda(\partial V) < \infty$, it is known that $\int_{-\infty}^{\infty} N(t) dt < \infty$. Hence $N(t) < \infty$ a.e. Again by shrinking K, we may suppose that $N(t) < \infty$ for each $t \in \pi_1(K)$ $(|\pi_1(K)| > 0)$.

Since φ takes on only the values 1 and 2 on ∂V , Λ a.e., we may assume that one of the following two cases holds:

- (a) $\psi \equiv 0$ on K and $\varphi \equiv 1$ on K or
- (b) $\psi \leq 1$ on K and $\varphi \equiv 2$ on K.

First consider case (a). Take $\zeta \in E$ and let $z=f(\zeta) \in K$. Then $\psi_{n_j}(z)=0$ for some subsequence. Let δ be the distance from z to the nearest other point of $\partial V \cap l$, where l is the vertical line thru z; we know that $\partial V \cap l$ is finite. Let Δ be the disc centered at z of radius $\delta/2$. Choose a connected neighborhood W of ζ in $\partial \mathbf{D}$ such that $f(W) \subseteq \Delta$. Since $F_{n_j} \rightarrow f$ uniformly on $\partial \mathbf{D}$, $F_{n_j}(W) \subseteq \Delta$ for j large. But $z \notin F_{n_j}(W) \subseteq \partial V$ and since $\partial V \cap l \cap \Delta = \{z\}$ it follows that the connected set $F_{n_j}(W)$ lies on one side of l, for large j. Therefore also f(W) lies on one side of l. It follows that $u = \operatorname{Re} f$ has a local maximum or minimum at ζ . Therefore $u'(\zeta) = 0$. Hence $u' \equiv 0$ on E. By Lemma 1, $0 = |u(E)| = |\pi_1(K)|$. This is a contradiction.

Now consider case (b). If $\psi = 0$ on a subset of K of positive measure, then the argument of case (a) carries over to show that u'=0 on a set of positive measure. Just as above this yields a contradiction. Thus we may assume that $\psi \equiv 1$ on K and $\varphi \equiv 2$ on K. Fix $z \in K$. Then $f^{-1}(z)$ consists of two points ζ' and ζ'' . Choose a subsequence: $\psi_{n_j}(z)=1$ for all j. Then $F_{n_j}^{-1}(z)=\zeta_j$, a single point of $\partial \mathbf{D}$. By passing to a subsequence we may assume that $\{\zeta_j\}$ converges in $\partial \mathbf{D}$. The limit must be ζ' or ζ'' because $F_{n_j} \to f$ uniformly and so f maps the limit point to z. Say $\zeta_j \to \zeta'$.

Then F_{n_j} does not take on the value z near ζ'' . The connectedness argument of case (a) then shows that $u'(\zeta'')=0$, just as before.

Let $A=E \cap \{\zeta \in \partial \mathbf{D}: u'(\zeta)=0\}$. By the last paragraph, f(A)=K. Hence $|u(A)|=|\pi_1(K)|>0$. But u'=0 on A. This contradicts Lemma 1. Q.E.D.

Lemma 7. $\int \psi_n d\Lambda \rightarrow \int \varphi d\Lambda$ as $n \rightarrow \infty$.

Proof. By Lemma 6, $\varphi = \liminf \psi_n$, a.e. Also, since $\psi_n \leq \varphi$ for all n, $\limsup \psi_n \leq \varphi$. It follows that $\limsup \psi = \varphi$, Λ a.e. The lemma then follows from the Lebesgue dominated convergence theorem.

Now by Lemmas 5 and 7 we have

(I)
$$\int \phi \, d\Lambda = \int_{\partial \mathbf{D}} |f'| \, d\theta.$$

3.

We now let Λ denote the restriction of one-dimensional Hausdorff measure to B. By assumption $0 < \Lambda(B) < \infty$. We have $\overline{\mathbb{C}} \setminus B = \bigcup V_j$ and $f_j: \mathbb{D} \to V_j$ a fixed Riemann map. Let $\varphi_j(z) = \#\{\zeta \in \partial \mathbb{D}: f_j(\zeta) = z\}$ for $z \in B$. By Lemma 4, φ_j is Borel measurable and therefore

$$\Phi \equiv \sum_{i} \varphi_{i}$$

is also Borel measurable. The second half of the proof of the theorem consists of showing that

(II) $\Phi = 2$ holds A a.e.

Lemma 8. $\Phi \leq 2$ except on a countable set.

Remark. The case $\varphi_j \leq 2$ except on a countable set for any *j* was observed by Rudin [7]. We used this fact in the proof of Lemma 6.

Proof. Let $P = \{p \in B: \Phi(p) \ge 3\}$. We construct a triod T(p) at p as follows. There are three cases:

(1) $\varphi_j(p) \ge 1$, $\varphi_k(p) \ge 1$ and $\varphi_l(p) \ge 1$ for some *j*, *k* and *l* distinct.

(2) $\varphi_i(p) \ge 2$ and $\varphi_k(p) \ge 1$ for some $j \ne k$.

(3) $\varphi_i(p) \ge 3$ for some *j*.

In Case 1, there are points ζ_j , ζ_k , ζ_l in $\partial \mathbf{D}$ such that $f_i(\zeta_l) = p$, i = j, k or l. Let T(p) be the union of the image by f_i of the half radius $\{r\zeta_i: \frac{1}{2} \le r \le 1\}$ for i = j, k, l.

In Case 2, we repeat this for $\zeta_j \neq \zeta'_j$ and ζ_k in $\partial \mathbf{D}$ and in Case 3 for distinct ζ_j , ζ'_j , ζ''_j in $\partial \mathbf{D}$.

174

We get in each a triod and as p varies over P, these triods T(p) are disjoint. It follows from a theorem of R. L. Moore [4] that P is countable. Q.E.D.

Lemma 9. $\Phi > 0$ holds Λ a.e.

Proof. Define $B_0 = \{z \in B: \Phi(z) = 0\}$. Since φ_j maps $\partial \mathbf{D}$ onto $\partial V_j, \varphi_j \ge 1$ on ∂V_j and so $B_0 = B \setminus \bigcup \partial V_j$. Suppose $\Lambda(B_0) > 0$. Then, by the projection lemma, $|\pi_1(B_0)| > 0$ or $\pi_2|(B_0)| > 0$. We may assume that $|\pi_1(B_0)| > 0$. Choose $z \in B_0$ such that the vertical line *l* through *z* intersects *B* only finitely often (cf. the proof of Lemma 6). Then some line segment contained in *l* lies in some V_j and has *z* as an endpoint. Then $z \in \partial V_j$, a contradiction. Hence $\Lambda(B_0) = 0$. Q.E.D.

Let $B_1 = \{z: \Phi(z) = 1\}.$

Lemma 10. $\Lambda(B_1) = 0$.

Proof. For all j define

 $A_i = \{z \in B \colon \varphi_i(z) = 1 \text{ and } \varphi_k(z) = 0 \text{ if } k \neq j \}.$

Then $B_1 = \bigcup_j A_j$. It suffices to show $\Lambda(A_j) = 0$ for all j. Without loss of generality, it suffices to show $\Lambda(A_1) = 0$.

Suppose not. Take a compact $K \subseteq A_1$ such that $\Lambda(K) > 0$. By the projection lemma, we may assume that $|\pi_1(K)| > 0$. We may further assume that every vertical line which meets K intersects B only finitely often and that u'_1 exists everywhere on $E = f_1^{-1}(K)$. Here $f_1 = u_1 + iv_1$. We know that |E| > 0.

Fix $\zeta \in E$ and let $z=f(\zeta) \in K$. Let *l* be the vertical line through *z*. Then *l* meets *B* only finitely often. Let l_1 and l_2 be the segments of $l \setminus B$ which have *z* as an endpoint. Then l_i lies in some V_j for i=1, 2. Since $\varphi_j(z)=0$ for $j \neq 1$, we conclude that l_1 and l_2 are both contained in V_1 . Let p_i be an interior point of l_i for i=1, 2. Let l_3 be the closed line segment joining p_1 to p_2 . Then $l_3 \subseteq V_1 \cup \{z\}$. Let γ_0 be a Jordan arc joining p_1 to p_2 in the simply connected domain $V_1 \setminus l_3$. If γ is the Jordan curve $\gamma_0 \cup l_3$, then $\gamma \subseteq V_1 \cup \{z\}$.

Consider $\sigma = f_1^{-1}(\gamma)$. Since $\varphi_1(z) = 1$, $f_1^{-1}(z) = \{\zeta\}$ and σ is a Jordan curve in $\mathbf{D} \cup \{\zeta\}$. The inside of σ is mapped by f_1 onto the inside of γ . Hence the inside of γ is disjoint from *B*. It follows that locally, near *z*, *B* lies on one side only of *l*. This means that u_1 has a local maximum or minimum at ζ . Hence $u'_1(\zeta) = 0$. Hence $u'_1 \equiv 0$ on *E*. As |E| > 0 and $|u_1(E)| = |\pi_1(K)| > 0$, this contradicts Lemma 1. We conclude that $\Lambda(A_1) = 0$. Q.E.D.

Now (II) follows from Lemmas 8, 9 and 10.

Let χ_j be the characteristic function of ∂V_j .

Proposition. $1 \leq \sum_{i} \chi_{i} \leq 2$ Λ a.e., and hence $\Lambda(B) \leq \sum \Lambda(\partial V_{i}) \leq 2\Lambda(B)$.

Remark. The second inequality on measure was obtained in [1].

Proof. Clearly $\chi_j \leq \varphi_j$ for all *j* and therefore $\sum \chi_j \leq \Phi = 2$ by (II). If $z \in B \setminus B_0$ then $z \in \partial V_j$ for some *j* and so $1 \leq \sum \chi_j(z)$. Hence $1 \leq \sum \chi_j$, Λ a.e. by the proof of Lemma 9. Q.E.D.

4. Proof of the theorem

Integrating (II) w.r.t. Λ we get

$$2\Lambda(B) = \int \Phi \, d\Lambda = \sum_j \int \varphi_j \, d\Lambda,$$

by the monotone convergence theorem. Applying (I) to the last integrals gives the theorem.

5.

We now consider a refinement of the theorem. Let $f: \mathbf{D} \to V$ be a Riemann map as in Section 2 with $\Lambda(\partial V) < \infty$ and $\varphi(z) = \sharp\{\zeta \in \partial \mathbf{D}: f(\zeta) = z\}$. Define the "push-forward" measure $\mu = f_*(|f'| d\theta)$ on ∂V by $\int g(z) d\mu(z) = \int_{\partial \mathbf{D}} g \circ f|f'| d\theta$ for every bounded Borel function g on ∂V . By definition $\varphi \Lambda$ is the measure on B given by $(\varphi \Lambda)(E) = \int_E \varphi(z) d\Lambda(z)$ for every Borel set $E \subseteq \partial V$.

Lemma 11. $\varphi \Lambda = \mu$.

Proof. For $S \subseteq \partial \mathbf{D}$ define, for $z \in \partial V$, $\varphi_S(z) = \#\{\zeta \in S : f(\zeta) = z\}$. If J is a subarc of $\partial \mathbf{D}$ then the arguments of Lemmas 4, 5, 6 and 7 show that

$$\int_{J} |f'| \, d\theta = \int_{\partial V} \varphi_J(z) \, d\Lambda(z).$$

Let W be an open subset of ∂V , write $f^{-1}(W) = \bigcup J_j$ where the J_j are disjoint subarcs of $\partial \mathbf{D}$. Then $\int_{f^{-1}(W)} |f'| d\theta = \sum \int_{J_j} |f'| d\theta = \sum \int \varphi_{J_j} d\Lambda = \int \sum \varphi_{J_j} d\Lambda = \int \varphi_{J_j} d\Lambda$. It is clear that $\varphi_{f^{-1}(W)} = \varphi \cdot \chi_W$. Hence we get

$$\mu(W) = \int_{f^{-1}(W)} |f'| \, d\theta = \int_W \varphi \, d\Lambda,$$

for every open $W \subseteq \partial V$. This gives the lemma.

Now for every component V_j of $\overline{\mathbb{C}} \setminus B$ we have $f_j: \mathbb{D} \to V_j$ and a φ_j . Define $\mu_j = f_{j*}(|f'_j| d\theta)$. By Lemma 11, $\varphi_j \Lambda = \mu_j$. Summing over j and applying (II) gives the following decomposition of Λ on B:

$$2\Lambda = \sum_{j} \mu_{j}.$$

176

In this equality of Borel measures, the sum is taken in the strong norm sense. This decomposition is equivalent to saying that

$$2\int g\,dA = \sum_j \int_{\partial \mathbf{D}} g \circ f_j |f_j'| \,d\theta$$

for each bounded Borel function on B. Our theorem is just the case $g \equiv 1$.

References

- 1. ALEXANDER, H., Remark on a lemma of Pommerenke, Bull. London Math. Soc. 20 (1988), 327-328.
- 2. BESICOVITCH, A. S., On the fundamental geometric properties of linearly measurable plane sets (11), Math. Ann. 115 (1938), 296-329.
- 3. BESICOVITCH, A. S., On the fundamental geometric properties of linearly measurable plane sets (III), Math. Ann. 116 (1939), 349-357.
- 4. MOORE, R. L., Concerning triods in the plane and the junction points of plane continua, *Proc.* Nat. Acad. Sci. U.S.A. 14 (1928), 85-88.
- 5. POMMERENKE, CHR., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- 6. RADO, T. and REICHELDERFER, P. V., Continuous transformations in analysis, Grundlehren d. Math. Wiss. 75, Springer-Verlag, Berlin, 1955.
- 7. RUDIN, W., personal communication.
- 8. FALCONER, K. J., The geometry of fractal sets, Cambridge Univ. Press, 1985.

Received June 17, 1988

University of Illinois at Chicago Department of Mathematics P O. Box 4348 Chicago, Illinois 60680 USA