Linear measure on plane continua of finite linear measure

H. Alexander

1. Introduction

Let A be one-dimensional Hausdorff measure in C. Let B be a continuum in \mathbf{C} of finite linear measure, i.e., $\Lambda(B)<\infty$. Denote the components of the complement of B in the Riemann sphere by $\left\{V_{j}\right\}$; each V_{j} is simply connected. Let $f_{j}: \mathbf{D} \rightarrow V_{j}$ be a Riemann map, where \mathbf{D} is the open unit disk.

Theorem.

$$
2 \Lambda(B)=\sum_{j} \int_{0}^{2 \pi}\left|f_{j}^{\prime}\left(e^{i \theta}\right)\right| d \theta
$$

The problem of establishing this identity was raised by Ch. Pommerenke in a letter to the author. The proof has two parts. First we show that the $j^{\text {th }}$ integral in the theorem is equal to the integral with respect to Λ of the multiplicity function of f_{j}; this is (I). The second part, (II), is to show that the sum of the multiplicity functions is equal to 2 a.e. on B with respect to Λ.

After the proof of the theorem we shall indicate a generalization. This is a decomposition of the restriction of Λ to B as a sum of measures on the boundaries of the V_{j}.

Finally I want to thank Professor Ch. Pommerenke for writing to me about this problem. A related inequality had been treated in [1].

2.

We begin with some general measure theory. For a measurable set $A \subseteq \mathbf{R}$ we denote its Lebesgue measure by $|A|$.

Lemma 1. Let u be a real-valued absolutely continuous function on an interval (a, b). Then, for every measurable set $A \subseteq(a, b), u(A)$ is measurable and

$$
\begin{equation*}
|u(A)| \leqq \int_{A}\left|u^{\prime}(x)\right| d x \tag{*}
\end{equation*}
$$

In particular, if $u^{\prime}=0$ a.e. on A, then $|u(A)|=0$.
Remark. This is just a case of Sard's lemma. For completeness we shall indicate an outline of a proof.

Proof. Let I be an open subinterval such that $\bar{I} \leqq(a, b)$. Then $u(I)$ is an interval with endpoints $u(c)$ and $u(d)$ for points c and d in \bar{I}. Hence $|u(I)|=|u(d)-u(c)|=$ $\left|\int_{c}^{d} u^{\prime}(x) d x\right| \leqq \int_{I}\left|u^{\prime}(x)\right| d x$.

Now if W is an open subset of $(a, b), W=\bigcup I_{j}$ where the I_{j} are disjoint open intervals. Hence $|u(W)| \leqq \sum\left|u\left(I_{j}\right)\right| \leqq \sum \int_{I_{j}}\left|u^{\prime}\right| d x=\int_{W}\left|u^{\prime}\right| d x$. From this it follows that if $N \subseteq(a, b)$ is a null set then $u(N)$ is a null set. Standard arguments then show that $u(A)$ is measurable if A is measurable and then $\left(^{*}\right.$) follows easily.

Next, we need the converse to the Sard lemma; cf. [5], p. 322.
Lemma 2. Let u be a real-valued absolutely continuous function on an interval (a, b). If K is a compact subset of (a, b) such that $|u(K)|=0$, then $u^{\prime}=0$ a.e. on K.

Proof. Suppose not. Then, by replacing K by a smaller set, we may assume, without loss of generality, that u^{\prime} exists and is strictly positive at every point of K. We denote the characteristic function of K by χ_{K}. Almost every point of K is a Lebesgue point for $\left|u^{\prime}\right|$ and also for $\left|u^{\prime}\right| \chi_{K}$. Choose such a point $c \in K$. Let $J_{\varepsilon}=$ $(c-\varepsilon, c+\varepsilon)$. Set $\eta=u^{\prime}(c) ; \eta>0$. Then

$$
\begin{aligned}
Q(\varepsilon) & : \equiv \frac{1}{2 \varepsilon} \int_{J_{\varepsilon} \backslash K}\left|u^{\prime}\right| d x \\
& =\frac{1}{2 \varepsilon} \int_{J_{\varepsilon}}\left|u^{\prime}\right| d x-\frac{1}{2 \varepsilon} \int_{J_{\varepsilon}}\left|u^{\prime}\right| \chi_{K} d x .
\end{aligned}
$$

Therefore, as $\varepsilon \rightarrow 0, Q(\varepsilon) \rightarrow \eta-\eta=0$.
We have $u(t)=u(c)+(t-c) \eta(1+\sigma(t))$ where $\sigma(t) \rightarrow 0$ as $t \rightarrow c$. Choose ε so small that $|\sigma(c \pm \varepsilon)|<\frac{1}{3}$. Then $u\left(J_{8}\right) \supseteqq(u(c-\varepsilon), u(c+\varepsilon)) \supseteqq\left(u(c)-\varepsilon \eta\left(1-\frac{1}{3}\right), u(c)+\right.$
$\left.\varepsilon \eta\left(1-\frac{1}{3}\right)\right)$. Hence $\left|u\left(J_{\varepsilon}\right)\right| \geqq 2 \varepsilon \cdot \eta \cdot \frac{2}{3}$. By Lemma 1 we have

$$
\left|u\left(J_{\ell} \backslash K\right)\right| \leqq \int_{J_{\varepsilon} \backslash K}\left|u^{\prime}\right| d x \leqq 2 \varepsilon Q(\varepsilon) .
$$

Now $u\left(K \cap J_{\varepsilon}\right) \supseteqq u\left(J_{\varepsilon}\right) \backslash u\left(J_{\varepsilon} \backslash K\right)$ and therefore

$$
\begin{aligned}
\left|u\left(K \cap J_{\varepsilon}\right)\right| & \geqq\left|u\left(J_{\mathcal{E}}\right)\right|-\left|u\left(J_{\varepsilon} \backslash K\right)\right| \\
& \geqq 2 \varepsilon \eta \frac{2}{3}-2 \varepsilon Q(\varepsilon) \\
& =2 \varepsilon(2 \eta / 3-Q(\varepsilon)) .
\end{aligned}
$$

If we choose ε so small that $Q(\varepsilon)<\eta / 3$ we get $\left|u\left(K \cap J_{\varepsilon}\right)\right|>2 \varepsilon \frac{\eta}{3}>0$. This contradicts $|u(K)|=0$. Q.E.D.

For $z=x+i y \in \mathbf{C}$, we have the coordinate projections: $\pi_{1}(z)=x$ and $\pi_{2}(z)=y$.
Lemma 3. ("Projection lemma.") Let B be a continuum in \mathbf{C} with $\Lambda(B)<\infty$. Let K be a compact subset of B with $\Lambda(K)>0$. Then either $\left|\pi_{1}(K)\right|>0$ or $\left|\pi_{2}(K)\right|>0$.

Remark. Besicovitch ([2], [3]) has constructed sets of positive Λ measure whose projections on all lines have zero measure. By the lemma, these sets are not contained in continua of finite linear measure. A proof of the lemma can also be obtained from [8], Corollary 3.15 and Theorem 6.10.

Proof. First we consider the special case when B is a rectifiable Jordan arc. Let $F:[0, L] \rightarrow B$ parametrize B by arclength. Then $\left|F\left(t_{2}\right)-F\left(t_{1}\right)\right| \leqq\left|t_{2}-t_{1}\right|$ for $0 \leqq t_{1} \leqq t_{2} \leqq L$; so F is a Lipschitz function, therefore absolutely continuous; $\left|F^{\prime}(t)\right|=1$ a.e. on $[0, L]$. Let $K_{0}=F^{-1}(K)$, then $\left|K_{0}\right|=\Lambda(K)>0$.

Write $F=u+i v$. Suppose that $\left|\pi_{1}(K)\right|=0$ and $\left|\pi_{2}(K)\right|=0$. Then $u\left(K_{0}\right)=$ $\pi_{1}(K)$ and so $\left|u\left(K_{0}\right)\right|=0$. By Lemma 2, $u^{\prime}=0$ a.e. on K_{0}. Likewise $v^{\prime}=0$ a.e. on K_{0}. Hence $F^{\prime}=0$ a.e. on K_{0}. But $\left|F^{\prime}\right|=1$ a.e. on K_{0} and $\left|K_{0}\right|>0$. This is a contradiction and we conclude that $\left|\pi_{1}(K)\right|>0$ or $\left|\pi_{2}(K)\right|>0$.

In the general case of a continuum B of finite linear measure, Besicovitch ([2], [3]) has shown that B is a disjoint union of a countable set of Jordan arcs and a Λ-null set. Therefore $K \subseteq B$ must meet one of these Jordan arcs in a set K_{1} of positive measure. By the first part of the proof, $\left|\pi_{1}\left(K_{1}\right)\right|>0$ or $\left|\pi_{2}\left(K_{1}\right)\right|>0$. Q.E.D.

Suppose that $F:(a, b) \rightarrow \mathbf{C}$ is continuous. For $z \in \mathbf{C}$, define $\varphi(z)=$ $\#\{t \in(a, b): F(t)=z\}$, here \# denotes the number of elements in a set. This is the so-called crude multiplicity function. It is known to be measurable under very general conditions; see [6]. For completeness we shall give the proof in our simple setting.

Lemma 4. φ is a Borel measurable function on \mathbf{C}.

Proof. Let Π be a finite partition of (a, b) by intervals J which are disjoint, say all of the form $(c, d]$ except the right-most interval. As each J is σ-compact, $F(J)$ is σ-compact and so is a Borel set. Hence

$$
\psi_{\Pi}: \equiv \sum\left\{\chi_{F(J)}: J \in \Pi\right\}
$$

is Borel measurable. If Π_{n} is a nested set of partitions whose maximal interval has length converging to zero, it is straightforward that $\psi_{n_{n}} \uparrow \varphi$ on C. Q.E.D.

Let V be a simply connected plane domain with $\Lambda(\partial V)<\infty$ and let $f: \mathbf{D} \rightarrow V$ be a Riemann map (one-to-one, conformal, onto). It is known that f is continuous on $\overline{\mathbf{D}}$ and that f^{\prime} is in the Hardy space H^{1}. Also $f \mid \partial \mathbf{D}$ is of bounded variation and its variation, denoted by $\operatorname{var}(f)$, is equal to $\int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i \theta}\right)\right| d \theta$. Set $\varphi(z)=\#\left\{e^{i \theta}: f\left(e^{i \theta}\right)=\right.$ $=z$ \}. By Lemma 4, φ is Borel measurable on C. We shall see below (Lemma 8) that $\varphi \leqq 2, \Lambda$ a.e.

Consider a partition Π of $\partial \mathbf{D}$ consisting of a finite number of disjoint halfopen subarcs I. Fix an $I \in \Pi$ with endpoints α_{I} and β_{I}. Let $J=f(I)$, an arcwise connected subset of ∂V. By an argument of Besicovitch ([2], p. 311) there exists a Jordan arc in J connecting $f\left(\alpha_{I}\right)$ to $f\left(\beta_{I}\right)$. Let $g_{I}: I \rightarrow J$ parametrize such a Jordan arc. Since g_{I} maps I onto the Jordan arc $g_{I}(I)$, it follows that the variation of g_{I} on I, denoted var $\left(g_{I}\right)$, equals the length of $g_{I}(I)=\Lambda\left(g_{I}(I)\right)$.

We claim that $\operatorname{var}\left(g_{I}\right) \leqq \operatorname{var}(f \mid I)$. In fact, the construction of g_{I} proceeds as follows: Choose the largest subarc $\gamma \subseteq I$ such that the values of f coincide at the endpoints of γ. Set g_{r} to be the constant value on γ which agrees with f at the endpoints of γ. Continue inductively in this way to modify f on open subarcs until a one-to-one function is obtained. This is g_{I}. It is then clear that $\operatorname{var}\left(g_{I}\right) \leqq \operatorname{var}(f \mid I)$. We have

$$
\begin{equation*}
\left|f\left(\beta_{I}\right)-f\left(\alpha_{I}\right)\right| \leqq \Lambda\left(g_{I}(I)\right) \leqq \operatorname{var}(f \mid I) \tag{1}
\end{equation*}
$$

Now define $f_{\Pi}: \partial \mathbf{D} \rightarrow \partial V$ by $f_{\Pi} \mid I=g_{I}$ for each $I \in \Pi$. Let $\varphi_{\Pi}(z)=$ $\#\left\{e^{i \theta}: f_{\Pi}\left(e^{i \theta}\right)=z\right\}$. Then f_{Π} is continuous and φ_{Π} is Borel measurable. Since the $g_{I I}$ are one-to-one and the $\{I\}$ are disjoint, it follows that $\varphi_{\Pi}=\sum_{I \in \Pi} \chi_{g_{I}(I)}$. Hence

$$
\begin{equation*}
\sum_{I} \Lambda\left(g_{I}(I)\right)=\sum_{I} \int \chi_{g_{I}(I)} d \Lambda=\int\left(\sum_{I} \chi_{g_{I}(I)}\right) d \Lambda=\int \varphi_{\Pi} d \Lambda \tag{2}
\end{equation*}
$$

Summing in (1), using (2), we get

$$
\begin{equation*}
\sum_{I \in \Pi}\left|f\left(\beta_{I}\right)-f\left(\alpha_{I}\right)\right| \leqq \int \varphi_{\Pi} d \Lambda \leqq \operatorname{var}(f) \tag{3}
\end{equation*}
$$

Denote the sum in (3) by var (f, Π).
Choose a sequence of partitions Π_{n} so that $\operatorname{var}\left(f, \Pi_{n}\right) \rightarrow \operatorname{var}(f)$. Set

$$
\psi_{n}=\varphi_{I_{n}}
$$

and $F_{n}=f_{I_{n}}$. Then $F_{n} \rightarrow f$ uniformly on $\partial \mathrm{D}$. By (3),

$$
\operatorname{var}\left(f, \Pi_{n}\right) \leqq \int \psi_{n} d \Lambda \leqq \operatorname{var}(f)
$$

It follows that $\int \psi_{n} d \Lambda \rightarrow \operatorname{var}(f)$. Also, for any partition Π and $I \in \Pi, g_{I}(I) \subseteq f(I)$, hence $\chi_{g(I)} \leqq \chi_{f(I)}$. Summing over I we get $\varphi_{I} \leqq \sum_{I} \chi_{f(I)} \leqq \varphi$. Taking $\Pi=\Pi_{n}$ we get $\psi_{n} \leqq \varphi$ for all n. We have proved the following

Lemma 5. $\int \psi_{n} d \Lambda \rightarrow \operatorname{var}(f)$.
We set $\psi=\lim \inf \psi_{n}$, then $\psi \leqq \varphi$.
Lemma 6. $\psi=\varphi$ holds A a.e.
Proof. We suppose not, arguing by contradiction. Then there exists a compact subset K of ∂V such that $\Lambda(K)>0$ and $\psi<\varphi$ on K. Let $E=f^{-1}(K) \subseteq \partial \mathbf{D}$. Then $|E|>0$. In fact, by Lemma 3, we may suppose that $\left|\pi_{1}(K)\right|>0$, then $|u(E)|>0$ and so, by Lemma $1, \int_{E}\left|u^{\prime}\right| d \theta \geqq|u(E)|>0$; i.e. $|E|>0$. By shrinking K we may assume also that the derivative f^{\prime} exists at each point of E. Finally set $N(t)=$ $\#\{z \in \partial V: \operatorname{Re} z=t\}$ for $t \in \mathbf{R}$. Since $\Lambda(\partial V)<\infty$, it is known that $\int_{-\infty}^{\infty} N(t) d t<\infty$. Hence $N(t)<\infty$ a.e. Again by shrinking K, we may suppose that $N(t)<\infty$ for each $t \in \pi_{1}(K)\left(\left|\pi_{1}(K)\right|>0\right)$.

Since φ takes on only the values 1 and 2 on $\partial V, \Lambda$ a.e., we may assume that one of the following two cases holds:
(a) $\psi \equiv 0$ on K and $\varphi \equiv 1$ on K or
(b) $\psi \leqq 1$ on K and $\varphi \equiv 2$ on K.

First consider case (a). Take $\zeta \in E$ and let $z=f(\zeta) \in K$. Then $\psi_{n_{j}}(z)=0$ for some subsequence. Let δ be the distance from z to the nearest other point of $\partial V \cap l$, where l is the vertical line thru z; we know that $\partial V \cap l$ is finite. Let Δ be the disc centered at z of radius $\delta / 2$. Choose a connected neighborhood W of ζ in $\partial \mathbf{D}$ such that $f(W) \subseteq \Delta$. Since $F_{n_{j}} \rightarrow f$ uniformly on $\partial \mathbf{D}, F_{n_{j}}(W) \subseteq \Delta$ for j large. But $z \notin F_{n_{j}}(W) \subseteq \partial V$ and since $\partial V \cap l \cap \Delta=\{z\}$ it follows that the connected set $F_{n_{j}}(W)$ lies on one side of l, for large j. Therefore also $f(W)$ lies on one side of l. It follows that $u=\operatorname{Re} f$ has a local maximum or minimum at ζ. Therefore $u^{\prime}(\zeta)=0$. Hence $u^{\prime} \equiv 0$ on E. By Lemma $1,0=|u(E)|=\left|\pi_{1}(K)\right|$. This is a contradiction.

Now consider case (b). If $\psi=0$ on a subset of K of positive measure, then the argument of case (a) carries over to show that $u^{\prime}=0$ on a set of positive measure. Just as above this yields a contradiction. Thus we may assume that $\psi \equiv 1$ on K and $\varphi \equiv 2$ on K. Fix $z \in K$. Then $f^{-1}(z)$ consists of two points ζ^{\prime} and $\zeta^{\prime \prime}$. Choose a subsequence: $\psi_{n_{j}}(z)=1$ for all j. Then $F_{n_{j}}^{-1}(z)=\zeta_{j}$, a single point of $\partial \mathrm{D}$. By passing to a subsequence we may assume that $\left\{\zeta_{j}\right\}$ converges in $\partial \mathbf{D}$. The limit must be ζ^{\prime} or $\zeta^{\prime \prime}$ because $F_{n_{j}} \rightarrow f$ uniformly and so f maps the limit point to z. Say $\zeta_{j} \rightarrow \zeta^{\prime}$.

Then $F_{n_{j}}$ does not take on the value z near $\zeta^{\prime \prime}$. The connectedness argument of case (a) then shows that $u^{\prime}\left(\zeta^{\prime \prime}\right)=0$, just as before.

Let $A=E \cap\left\{\zeta \in \partial \mathbf{D}: u^{\prime}(\zeta)=0\right\}$. By the last paragraph, $f(A)=K$. Hence $|u(A)|=$ $\left|\pi_{1}(K)\right|>0$. But $u^{\prime}=0$ on A. This contradicts Lemma 1. Q.E.D.

Lemma 7. $\int \psi_{n} d \Lambda \rightarrow \int \varphi d \Lambda$ as $n \rightarrow \infty$.
Proof. By Lemma 6, $\varphi=\lim \inf \psi_{n}$, a.e. Also, since $\psi_{n} \leqq \varphi$ for all n, $\lim \sup \psi_{n} \leqq \varphi$. It follows that $\lim \psi=\varphi, \Lambda$ a.e. The lemma then follows from the Lebesgue dominated convergence theorem.

Now by Lemmas 5 and 7 we have

$$
\begin{equation*}
\int \varphi d \Lambda=\int_{\partial \mathbf{D}}\left|f^{\prime}\right| d \theta \tag{I}
\end{equation*}
$$

3.

We now let A denote the restriction of one-dimensional Hausdorff measure to B. By assumption $0<\Lambda(B)<\infty$. We have $\overline{\mathbf{C}} \backslash B=\cup V_{j}$ and $f_{j}: \mathbf{D} \rightarrow V_{j}$ a fixed Riemann map. Let $\varphi_{j}(z)=\#\left\{\zeta \in \partial \mathbf{D}: f_{j}(\zeta)=z\right\}$ for $z \in B$. By Lemma 4, φ_{j} is Borel measurable and therefore

$$
\Phi \equiv \sum_{j} \varphi_{j}
$$

is also Borel measurable. The second half of the proof of the theorem consists of showing that

$$
\begin{equation*}
\Phi=2 \text { holds } A \text { a.e. } \tag{II}
\end{equation*}
$$

Lemma 8. $\Phi \leqq 2$ except on a countable set.
Remark. The case $\varphi_{j} \leqq 2$ except on a countable set for any j was observed by Rudin [7]. We used this fact in the proof of Lemma 6.

Proof. Let $P=\{p \in B: \Phi(p) \geqq 3\}$. We construct a triod $T(p)$ at p as follows. There are three cases:
(1) $\varphi_{j}(p) \geqq 1, \varphi_{k}(p) \geqq 1$ and $\varphi_{l}(p) \geqq 1$ for some j, k and l distinct.
(2) $\varphi_{j}(p) \geqq 2$ and $\varphi_{k}(p) \geqq 1$ for some $j \neq k$.
(3) $\varphi_{j}(p) \geqq 3$ for some j.

In Case 1 , there are points $\zeta_{j}, \zeta_{k}, \zeta_{l}$ in $\partial \mathrm{D}$ such that $f_{i}\left(\zeta_{i}\right)=p, i=j, k$ or l. Let $T(p)$ be the union of the image by f_{i} of the half radius $\left\{r \zeta_{i}: \frac{1}{2} \leqq r \leqq 1\right\}$ for $i=j, k, l$.

In Case 2, we repeat this for $\zeta_{j} \neq \zeta_{j}^{\prime}$ and ζ_{k} in $\partial \mathbf{D}$ and in Case 3 for distinct ζ_{j}, $\zeta_{j}^{\prime}, \zeta_{j}^{\prime \prime}$ in $\partial \mathbf{D}$.

We get in each a triod and as p varies over P, these triods $T(p)$ are disjoint. It follows from a theorem of R. L. Moore [4] that P is countable. Q.E.D.

Lemma 9. $\Phi>0$ holds Λ a.e.
Proof. Define $B_{0}=\{z \in B: \Phi(z)=0\}$. Since φ_{j} maps $\partial \mathbf{D}$ onto $\partial V_{j}, \varphi_{j} \geqq 1$ on ∂V_{j} and so $B_{0}=B \backslash \bigcup \partial V_{j}$. Suppose $\Lambda\left(B_{0}\right)>0$. Then, by the projection lemma, $\left|\pi_{1}\left(B_{0}\right)\right|>0$ or $\pi_{2}\left|\left(B_{0}\right)\right|>0$. We may assume that $\left|\pi_{1}\left(B_{0}\right)\right|>0$. Choose $z \in B_{0}$ such that the vertical line l through z intersects B only finitely often (cf. the proof of Lemma 6). Then some line segment contained in l lies in some V_{j} and has z as an endpoint. Then $z \in \partial V_{j}$, a contradiction. Hence $\Lambda\left(B_{0}\right)=0$. Q.E.D.

Let $B_{1}=\{z: \Phi(z)=1\}$.
Lemma 10. $\Lambda\left(B_{1}\right)=0$.
Proof. For all j define

$$
A_{j}=\left\{z \in B: \varphi_{j}(z)=1 \text { and } \varphi_{k}(z)=0 \text { if } k \neq j\right\}
$$

Then $B_{1}=\bigcup_{j} A_{j}$. It suffices to show $\Lambda\left(A_{j}\right)=0$ for all j. Without loss of generality, it suffices to show $\Lambda\left(A_{1}\right)=0$.

Suppose not. Take a compact $K \subseteq A_{1}$ such that $\Lambda(K)>0$. By the projection lemma, we may assume that $\left|\pi_{1}(K)\right|>0$. We may further assume that every vertical line which meets K intersects B only finitely often and that u_{1}^{\prime} exists everywhere on $E=f_{1}^{-1}(K)$. Here $f_{1}=u_{1}+i v_{1}$. We know that $|E|>0$.

Fix $\zeta \in E$ and let $z=f(\zeta) \in K$. Let l be the vertical line through z. Then l meets B only finitely often. Let l_{1} and l_{2} be the segments of $\lambda \backslash B$ which have z as an endpoint. Then l_{i} lies in some V_{j} for $i=1,2$. Since $\varphi_{j}(z)=0$ for $j \neq 1$, we conclude that l_{1} and l_{2} are both contained in V_{1}. Let p_{i} be an interior point of l_{i} for $i=1,2$. Let l_{3} be the closed line segment joining p_{1} to p_{2}. Then $l_{3} \subseteq V_{1} \cup\{z\}$. Let γ_{0} be a Jordan arc joining p_{1} to p_{2} in the simply connected domain $V_{1} \backslash l_{3}$. If γ is the Jordan curve $\gamma_{0} \cup l_{3}$, then $\gamma \subseteq V_{1} \cup\{z\}$.

Consider $\sigma=f_{1}^{-1}(\gamma)$. Since $\varphi_{1}(z)=1, f_{1}^{-1}(z)=\{\zeta\}$ and σ is a Jordan curve in $\mathbf{D} \cup\{\zeta\}$. The inside of σ is mapped by f_{1} onto the inside of γ. Hence the inside of γ is disjoint from B. It follows that locally, near z, B lies on one side only of l. This means that u_{1} has a local maximum or minimum at ζ. Hence $u_{1}^{\prime}(\zeta)=0$. Hence $u_{1}^{\prime} \equiv 0$ on E. As $|E|>0$ and $\left|u_{1}(E)\right|=\left|\pi_{1}(K)\right|>0$, this contradicts Lemma 1. We conclude that $\Lambda\left(A_{1}\right)=0$. Q.E.D.

Now (II) follows from Lemmas 8, 9 and 10.
Let χ_{j} be the characteristic function of ∂V_{j}.

Proposition. $1 \leqq \sum_{j} \chi_{j} \leqq 2 \quad \Lambda$ a.e., and hence $\Lambda(B) \leqq \sum \Lambda\left(\partial V_{j}\right) \leqq 2 \Lambda(B)$.
Remark. The second inequality on measure was obtained in [1].
Proof. Clearly $\chi_{j} \leqq \varphi_{j}$ for all j and therefore $\sum \chi_{j} \leqq \Phi=2$ by (II). If $z \in B \backslash B_{0}$ then $z \in \partial V_{j}$ for some j and so $1 \leqq \sum \chi_{j}(z)$. Hence $1 \leqq \sum \chi_{j}, \Lambda$ a.e. by the proof of Lemma 9. Q.E.D.

4. Proof of the theorem

Integrating (II) w.r.t. Λ we get

$$
2 \Lambda(B)=\int \Phi d \Lambda=\sum_{j} \int \varphi_{j} d \Lambda
$$

by the monotone convergence theorem. Applying (I) to the last integrals gives the theorem.

5.

We now consider a refinement of the theorem. Let $f: \mathbf{D} \rightarrow V$ be a Riemann map as in Section 2 with $\Lambda(\partial V)<\infty$ and $\varphi(z)=\#\{\zeta \in \partial \mathbf{D}: f(\zeta)=z\}$. Define the "push-forward" measure $\mu=f_{*}\left(\left|f^{\prime}\right| d \theta\right)$ on ∂V by $\int g(z) d \mu(z)=\int_{\partial \mathrm{D}} g \circ f\left|f^{\prime}\right| d \theta$ for every bounded Borel function g on ∂V. By definition $\varphi \Lambda$ is the measure on B given by $(\varphi \Lambda)(E)=\int_{E} \varphi(z) d \Lambda(z)$ for every Borel set $E \subseteq \partial V$.

Lemma 11. $\varphi \Lambda=\mu$.
Proof. For $S \subseteq \partial \mathbf{D}$ define, for $z \in \partial V, \varphi_{S}(z)=\#\{\zeta \in S: f(\zeta)=z\}$. If J is a subarc of $\partial \mathbf{D}$ then the arguments of Lemmas 4,5,6 and 7 show that

$$
\int_{J}\left|f^{\prime}\right| d \theta=\int_{\partial V} \varphi_{J}(z) d \Lambda(z)
$$

Let W be an open subset of ∂V, write $f^{-1}(W)=\bigcup J_{j}$ where the J_{j} are disjoint subarcs of $\partial \mathbf{D}$. Then $\int_{f^{-1}(W)}\left|f^{\prime}\right| d \theta=\sum \int_{J_{j}}\left|f^{\prime}\right| d \theta=\sum \int \varphi_{J_{j}} d \Lambda=\int \sum \varphi_{J_{j}} d \Lambda=$ $\int \varphi_{f^{-1}(W)} d \Lambda$. It is clear that $\varphi_{f^{-1}(W)}=\varphi \cdot \chi_{W}$. Hence we get

$$
\mu(W)=\int_{f^{-1}(W)}\left|f^{\prime}\right| d \theta=\int_{W} \varphi d \Lambda
$$

for every open $W \subseteq \partial V$. This gives the lemma.
Now for every component V_{j} of $\overline{\mathbf{C}} \backslash B$ we have $f_{j}: \mathbf{D} \rightarrow V_{j}$ and a φ_{j}. Define $\mu_{j}=f_{j^{*}}\left(\left|f_{j}^{\prime}\right| d \theta\right)$. By Lemma 11, $\varphi_{j} A=\mu_{j}$. Summing over j and applying (II) gives the following decomposition of Λ on B :

$$
2 \Lambda=\sum_{j} \mu_{j}
$$

In this equality of Borel measures, the sum is taken in the strong norm sense. This decomposition is equivalent to saying that

$$
2 \int g d \Lambda=\sum_{j} \int_{\partial \mathrm{D}} g \circ f_{j}\left|f_{j}^{\prime}\right| d \theta
$$

for each bounded Borel function on B. Our theorem is just the case $g \equiv 1$.

References

1. Alexander, H., Remark on a lemma of Pommerenke, Bull. London Math. Soc. 20 (1988), 327-328.
2. Besicovitch, A. S., On the fundamental geometric properties of linearly measurable plane sets (II), Math. Ann. 115 (1938), 296-329.
3. Besicovitch, A. S., On the fundamental geometric properties of linearly measurable plane sets (III), Math. Ann. 116 (1939), 349-357.
4. Moore, R. L., Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85-88.
5. Pommerenke, Chr., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
6. Rado, T. and Reichelderfer, P. V., Continuous transformations in analysis, Grundlehren d. Math. Wiss. 75, Springer-Verlag, Berlin, 1955.
7. Rudin, W., personal communication.
8. Falconer, K. J., The geometry of fractal sets, Cambridge Univ. Press, 1985.

Received June 17, 1988
University of Illinois at Chicago Department of Mathematics PO. Box 4348
Chicago, Illinois 60680
USA

