
Regularity of averages over hypersurfaces 

Lennart  Brrjeson 

Abstract. Averages over smooth measures on smooth compact hypersurfaces in R n are studied. 
With assumptions on the decay of the Fourier transform of the measure we obtain mixed norm 
estimates for these means, for example L p estimates of multiparameter maximal functions over 
compact hypersurfaces. 

1. ln~oducfion 

Let S be a smooth compact hypersurface (possibly with boundary) in R n, da the 
induced Lebesgue measure on S and # a smooth mass distribution which is van- 
ishing near the boundary. Set ~p(t, y)=(~bl(t)yl . . . . .  ~,(t)y,),  where ~k~ECo(R"), 
i = l ,  ..., n, and yER ~. We define the average 

Fx (t) = fs f (x--  ~b (t, y)) It (y) dtr (y) 

for  fEL~oc(R" ). It  follows from Fubini's theorem that for every tER m Fx(t) is 
well-defined for almost all x. I f  S = S  "-1, the unit sphere in R", m = l ,  ~k(t,y)=ty 
and /1 ~- 1, then Fx (t) becomes the ordinary spherical mean. In this case J. Bourgain 
[B1]--[B3], n=2 ,  and E. M. Stein [St2], [SWa], n=>3, showed that the corresponding 

n 
maximal function supt,.0 [Fx(t)l is bounded on LP(R ") if  p >  . For  n_~3, this 

n - 1  
was extended to more general hypersurfaces by M. Cowling and G. Mauceri [CM], 
A. Greenleaf [G] and J. L. Rubio de Francia [R]. Greenleaf assumes that S has a 
fixed number of  principal curvatures different from zero while the other authors 
have (weaker) assumptions on the decay of  the Fourier transform of  the measure 
I1 da. The lower limit of  p then depends on these assumptions. In [(3] and [R] it is 
also shown that without loss of  generality one can replace qt (t, y) = ty by the non- 
isotropic dilation ~(t ,y)=(taly 1 . . . .  , t~-y,), 2 i>0,  i=1 ,  ..., n. The results in this 
note are closely related to these. C. D. Sogge [So] considers hypersurfaces which 
depend on both  x and t, but  have nowhere vanishing Gaussian curvature, and 
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L. Colzani [C] considers mixed norms of spherical means on compact symmetric 
spaces. See also [SS1] and [SS2]. In the main part of this note we study mixed norm 
estimates of the type considered by P. Sj61in and others in [B6], [OS, Appendix], [PS], 
[S1]--[$5], where they obtain L p estimates of L q, BMO and Besov--Lipschitz norms 
in the parameter t of the spherical mean. Our results extend these to more general 
hypersurfaces and to averages depending on a multiparameter t. As a consequence 
we get L p estimates of multiparameter maximal functions. In the last section we give 
further results and extensions of the main results in the third section. 

2. Preliminaries 

The mixed norms that we are going to use involve various function spaces. 
B~q (R ~) is the Besov space of tempered distributions with norm 

It ~oll ~; ,  = Ilg * ~oll ~ + ( Z  ~,=~ (2"' II g,* ~oll ,)q)l/q 1 < p ,  q <co= 0~a, 

Here {~t}~_= is a dyadic partition of unity on R"~',~{0} and ~ = l - ~ = a  ~t. 
Hfl OR =) is the generalized Sobolev space of tempered distributions normed by 

More details of B~q(R m) and Hfl(R m) are to be found in [BL], e.g. B22--H~,.# --  # 

BMO (R "~) is the space of functions of bounded mean oscillation normed by 

II~II.~o = s~p [IQI -~ f Q [:p(t)-IQl -I f o. :p(s)ds[ dt], 

where Q is any cube in R m. Cf. [Stl, p. 164]. 
An(Rm), 6 >0, is the Lipschitz space with norm 

II~olh, = I[q~ +sup Y k - r t ,  r - ~ -  (t, y) 

where u ( t ,  y), tER =, y>0 ,  is the Poisson integral of q9 and k is the smallest integer 
greater than 6. See [Stl, Ch. V, w 4]. 

Throughout this paper we take the dimension n to be _->2. Finally, we shall 
stick to the convention that C denote a constant which is not necessarily the same 
at each occurrence. 
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3.  M a i n  r e s u l t s  

Let the Fourier transform of the measure defining the averages satisfy 

A )1 I~do'(OI = f s e -~X~(x )d~(x  ~= C( l+ l~ l ) - " ,  

for a->O. We note that if S has k principal curvatures different from zero and if ~ 
vanishes near the boundary of S, then a result of W. Littman [L] shows that a=& 2 

will suffice. 

1 . 1 - 1  Theorem 1. Let fELP(R ") and -F- t -7 -  . Assume that 

a) ~kiECoORm), i=1 . . . . .  n, and that ~ECo(Rm), where 

supp q~ c ni'=l {t; ~ki(t) ~ 0}. 

2a 
I f  l<=p<_-2 and ~----~-, then 

(1) ( f R" [Iq~F~tl~,,dx) xlp <= Cllfllp. 

2a 
I f  2<=p=~< and ~ = - - ,  then 

P 
(2) (L-IkoF llw dx) ~/p <- C Ilfllp. 

Assume that 

b) S lies in the boundary of a set which is star-shaped with respect to the origin 
and that S does not possess a tangent plane containing the origin, ~k~ ( t )= (max (t, 0)) ~,, 
2i>0, i=1,  . . . ,n ,  and that q~ECo(R ) with suppq~c(0, ~). 

2a 
/ f  l ~ p ~ 2 ,  ~=--~-;- and p<=r<-p ', then 

(3) ( SR" II~Fxlt;~,, dx)  ~'' <- c Ilfll , .  

By various continuous embeddings of/Vp~ in larger spaces we obtain a corollary. 

Corollary. Let  ~ and q~ satisfy a) and take fELP(R"). 

1 =,_ = r ' <  n < 1 + Am----~ and ~ = - -  1 + - , then I f  --2a =2  q P 

( f "dx)'/" < c llfll (4) R" II~F~II~ : , , .  

m 
I f  p = r = l + - ~ < - 2 ,  then 

(5) ( f R. IIq~F~ll~M~ 1" <- Cl l f l lp .  

m m + 2 a  2a--m 
I f  l+~--<p=r<_--2 and 6=2a - - ,  or i f  2<=p=r~_~ and ~ = ~ ,  

2a P P 
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t h e n  

(6) (fR. II vxll , <= cIi:tl,. 

I f  in the above conditions we replace a) by b), take m = l  and allow p~=r~_p ' 
(for 1_~p-<2), then (4)--(6) still hold. 

: k Remark. If r e= l ,  a=-~, kC{0, 1 . . . .  , n - l } ,  and 1_~p<-2, then the theorem 
and the corollary are best possible in the following sense. 

It is possible to find S,/~ da, ~ and ~0 satisfying b) such that the following holds. 
1 1 

When k ~ l  and l<_-p<l+~-~a=1+ ~ ,  or when k = 0  and 1~p_<-2, then 

1 1+2a  k + l  
(4) implies that --~_ - 2 a =  - k .  

q P P 
1 1 

If k_~ 1 and p = 1 + ~-a = 1 + -~, then we cannot replace the BMO-norm in (5) 

by the supremum-norm. 

Assume that k=>2 and 

1+2a  k + l  
- -  - - k - -  

P P 

1 1 
1 +=- -=  1 + -7-<p_2 and that (6) holds, then 6~_2a - 

2 a  

2a k 
A consequence of these results is that a < - - - =  - is necessary for (3), if 1 -< p" p'  

p<--2, because the corollary follows from various imbeddings of/Vp~, into L q, BMO 
and A~. It is also necessary to have p<-r<-p" in (1)--(6), if l=<p<=2 (and re=l).  
The proofs are contained in the proof of the corollary. There are however hypersur- 
faces where one can obtain better estimates. For example, if we take 

and set 

Trn--I 1 S = {xER"; x, = 11i=1 xi', 0 < xi < 1, 2iCR, i = 1 . . . . .  n} 

{ ~ . - 1  if i =  l . . . . .  n--1 
~i(t)----- t~,, if i =  n, 

i=1 

and if p vanishes near the boundary of S the corresponding maximal function 

s u p  {[Fx( t ) [  , t 1 . . . .  , tn_ 1 > 0}  

then becomes bounded on LP(R"), for all p > l .  This result of H. Carlsson, P. Sj6gren 
and J.-O. Str6mberg is contained in [CSS] and was extended in [CS]. See also [Wa] 
for a survey of the theory of averages and singular integrals over lower dimen- 
sional sets. 
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If b) holds, a> f f  and ~k(t,y)=ty the corollary contains the following esti- 
mates of the maximal function sup,<t<a IF~(t)l (since AacL**). 

IIL ?  IF(011I,--< c llfll,, 
I 

for l + ~ - < p _ ~ 2  and p<-r~_p'. This isa weaker form of the following theorem. 

1 1 
Theorem 2. Assume that b) holds and set ~(t, y)=ty. I f  a~--~, l+~a<p_-<2 

and p<-r<-p ", then 
I t s u p  It n((1.p,-{1.r,) F(t)[]l r ~ C IIfl[p" 
t>O 

:For r=p this theorem is contained in JR] and [CM], and is an extension of 
Stein's theorem on the continuity of the maximal spherical function. 

Define the operator Mt ~ by 

(Mt~f) ̂  (4) = It~l-(n/2)-Q+lJ(n/a)+0-1 (It~l)f(~), 
tCR, ~CR n. J(n/~)+o_~ is the Bessel function of order ~ + 0 - 1 .  For its definition 
and fundamental properties see [SWe] or [W]. A consequence of the proof of Theo- 
rem 2 is the following extension of part (a) of  Theorem 2 in [St2]. 

Theorem 3. I f  l<p<-2, p<-r<:p" and Q>l--~r,, then 

[Isup It n((l/p)-(ll ')) nt~flH, <= c llfll,. 
t 0 

Q =0  corresponds to the spherical mean. Theorem 3 also gives an estimate of 
u(x, t)=CtM~Z-~)/2f(x), the solution of the wave equation with the boundary va- 
lues u(x, 0)=0, Ou/Ot(x, 0)=f(x). Theorem 3 is related to the estimates of M~f(x) 
in [B6]. 

4. Proofs 

Proof of Theorem 1. Assume that fC Co (W). We start with the proof of the 
end-point estimate where p =2 and a = a. 

We compute the Fourier transform of F~(t), to get a multiplier, and obtain 

P , ( 0  = fro e-'X'*F~(t) dx 

= fRe -'~'̀  fsf(x-q/(t, y)).(y) d~(y) dx 

= f~ e -i*O' ")': f~o e-'f~-*ft, Y))'r y)) dx #(y) da(y) 

= fs e-lY'~(t' 0 #(y) da(y)f(r 

= m(~(t, o)f( r  
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where 

Ix da(O = m(O.  

We consider the L~(R~)-norm of II~oF~l[/~,~ 
norm of  H~ (R ~) is equivalent to the norm 

ilgllz+z~'=x [ID~Vgll~, where 

Therefore, 

for a non-negative integer N. The 

c3U g 

( f , .  Uq, F~IL~ dx) 1'~ <: C ( f . .  (ILq, F:~ + ZL1LIO~ ~q,F~)tI~) ~ dxV 

< - r  ~ ~:= ,. 

and one of the terms in the last sum can be estimated using the Fubini and Plancherel 
theorems. 

= " ~oD~F,,II~ ax) 1/z < C Z j = o (  fR.  IID~-~ 

" I~F~(O- dx d ) = . C Z ~ = o ( f . , . I D ~ - J q ~ ( o I ~ f . .  ~ t ~t, 

= c Zj \o  ( f.. ID~-J ~(t)l ~ fR. ID~/~(t)]' d~ dO 11~ 

= c ~ \ o  ( f .~ IDa-, ~(o:f .~ IDi(~(0~,, o) ) : (o l  ~ dr a,) 1'~. 

The differentiation of m (~ (t, O) gives 

DJ(m(~b (t, 0))  = OJ f s e-lx"l'(t' 0 #(x) de(x) 

= f s m { ( e  -i"*(' 'o) #(x) de(x) 

= f s  ZL,~-~ e~,(t) x, ~'e -i~''~'(`' 0 Ix(x ) de(x) 

= ZI,I~_j~'F,(t) g~ f~  e-':~"l'(t'C)x~'Ix(x) da(x). 

Here Pk r are polynomials in D~p~, l<-j, of degree less than or equal to j,  for multi- 
indices y=(y~ . . . . .  y,)CN ~, N={0,  1, 2 . . . .  }, having length lYI=Y~+...+Yn, 
k = l ,  ..., m, i =  1, ..., n , . /=  1, ..., N, and xr-x~:.- ... �9 x,,r,'. 

We claim that the Fourier transform of  the measure xrp(x )da(x )  is r -a) 
as [~[-~oo. Take a function h in Co(R  ~) which is equal to 1 on S. For such h we 
have that 

x~'h(x) Ix(x) d~r(x) = x~' , (x )  da(x) 
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is a compactly supported distribution # da multiplied by a compactly supported 
C = function x~'h, but the Fourier transform of this product gives a convolution of  

d~(=O(l~l-~)) with a rapidly decreasing C = function. Thus, we have that the con- 
volution is 0(1~1-"), as 1~1-*oo, and since supp (o is contained in NT=i {t; ~ i ( t )#0}  
we get that 

inf  IO(t, r -> min  inf  I~(01141 = c I~1, t E Supp~a i t ~supptp 

and as a consequence, if tEsupp q~, 

C Zl~'l~-i (l +l~h(t, 01)" 

< c ( l+lr = c(1+1~1)'- '. 
- ( I+I~IP 

we  apply this estimate to (7) and get 

( IR. IIDE (~oF,,)II~dx)" ~_ C Z':=o ( f ,r. ID:--'~(t)i=f.. {(I +ir162 = dr dr)"- 

<- c(  f . .  l0 + I~1)'-~ = de} "=. 
Consider the L = (H~)-norm of ~pF. 

(s) ( f , .  ii ~F, II:,; a=)'" <_ c [( f . .  l l~ll~,-) '" + Z ; . ,  ( L .  II~(~,)ll:d-)'"] 

<_- c [( f . .  I(1 + Ir176162 ' , r  + Z;=,  ( f . .  10 + I~1:-~ '''1 

<_- c( f . .  I(1 + lel:-~162 = dr 

The estimate of the L=(L=)-norm above corresponds to the case N=0,  i.e. 

(9) ( fRn il(~Fzil~/: dx) 1/2 = C( fR-1t~9Fx1122 dx) 1/` ~ C( fR- I(1 "~-I~i)-af(~)l' d~)l/'" 
Choose N such that N>=a and interpolate between (8) and (9), which gives (see 
[BE, pp. 17--18, 107, 152--153]) 

(fa.ll~of=ll~:dx) '/= <= C( f . .  I(1 + I~l)"-a f(#)l = d~)  1/2, 

for 0 <_- q <_- N. Putting 1/= a gives 

(10) (f,.Itq, F,,ll~dx)'" <=c(fi,,IY(Ol'dr 
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Now assume that fEL2(R ") and take a sequence {f~}~o in C~~ ") converging 
to f in L 2 (R") and set 

F~(t) = f s f~(x-t~(t, Y))B(Y)da(y). 

Assume for a moment the following: 

(ll) (f..lO(F~-F2))^(~)]~ax)~J~o, as l - ~ ,  

Then 

foral l  s~R ~. 

~irn ( f . .  l(q~(F~)) ̂  (s)12dx)al~= ( fR. [ (~~ (s)12dx) a'2' 

for all sER", and by Fatou's lemma 

(f.o ll~Fxll~ dx) 1'~- ( fR. fR ~ I(~~ (S)? (1 + Isl0" dsdx) 11~ 

= ( L - ,  fa-](q~F~)^ (,)12 dx(1 + ]s]0" d,) 11~ 

= (f , ,) imf, , l(~oF~)^(s)?dx(l+ls?)ads) 1'' 

lira ( f . . ,  f . .  I(~ FI) ~ (s)l 5 ax (1 + N0" a~)"" 

-- lim ( / . .  1 ,  dx)l/2 It~oF~'ll.t 

lirnC ][Al]2 = C []fl]2. 

In the proof of  (11) we use Minkowski's inequality and some trivial estimates. 

= ( f . .  I f~ ,e  -'~' ~o (t) f~ ( f - Z ) ( x -  4, (t, y)) u (y) d~ (y) d,I ~ dx)l/2 

( f . - (S . -  f~ Io(o(s-~)(~-~(,, . ) , (y)l  

~= f .., f ~ ( f R. [ ~~ -f~)(x-'l'('' Y))'(Y)[ ~ dx)'" d~(y) d, 

I (01L I,( ,I  ( f . .  (,, ,)1" 1'~ d, 

= CIl~olhf~ [#(Y)I da(y)Ilf-f~]12. 

The right hand side tends to 0 as k tends to ~ thus proving (11). 
This proves Theorem 1 in the case p = 2  and a = a ,  but for the coming inter- 

polation we also need that ~oF~ be strongly measurable with values in B~(R m) if 
fEL~(R"). But this can be shown by the method applied in [$5, p. 156]. 
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We continue with the other end-point estimates where p =  1 or oo and ~=0.  
For  fELl(R"), consider the Ll(L~)-norm of  40F. 

SR. II~Fil, a~ = S,<- SR-I~(0 S~ f(x-~,(,, y)) ,Cy) d~(y) Iax dt 

f=.. I~(t)l is I,(Y)I f= .  I f (x-~(t ,  Y))i dx dry(y)dt 

= [l~o[h f s  I~(y)[ da(y)[I f i b  

= C l l f l l l .  

Since LI(R ~) is continuously embedded in B ~ tR m~ 1 ~  ~ we also have 

(12) f ,<. IlqJFllBi dx <= ell fill, 

which is Theorem 1 for p = 1 and ~=0.  
If  fCLI(R ") we claim that tpFx is a strongly measurable function of  x with 

values in B~= (Rm). It is enough to prove that 4oFx is a strongly measurable function 
of  x with values in LI(Rm), since LI(R m) is continuously embedded in B~ 
But because LX(R m) is separable we only have to verify that 4PFx is weakly measurable 
since then strong and weak measurability are equivalent notions. See [HP, p. 73]. 
Take therefore gCL**(R m) and set 

H(x) ---- fR. ~ (0 r~ (0 g(t) dt = fR. ~ (0 g (t) f~ f ( x -  ~k (t, y)) Ix (Y) da (y) dt. 

Then H(x) becomes measurable since all functions involved are measurable. 
This proves the claim. 

By an application of  the interpolation theorem for vector-valued functions (see 
[BL, p. 107]) to (10) and (12), and the fact that 

0 a a (Bx:., Hd)tol = (B~l**, B,~)t0 ] =/i~p,, 
we get 

( f~ exll;~; dx) ''p < C Ilfn . l l<P . ,  = ., 

2a 
where l<-p<=2 and cr This is (1). 

If  f E L - ( R  ") take a bounded f0EL~*(R ") such that f(x)=fo(x) almost every- 
where and define the mean F o f f  by 

Fx(t) ---- f s  f o ( x -  ~(t, y)) Ix(y) dtr(y). 

We get the trivial estimate 

Ie~(01 ~ Cllf011:~ = Cllfll** 
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and also 
ess sup 1[ ~oFxll:| ~- C ess sup II ~0F~ll o. <- C Ilfl[ 0.. 

x E R  n x E R  n 

Interpolating this with (10) gives (2). 
(2) can also be obtained by a dual argument. Set Tf(x, t)=q~(t)F~,(t) and 

consider the dual operator T* of  T applied to the function g(x, t). For g E D ( R  n+•) 
we get by definition 

(T*g, f )  = (g, T f )  

= fr: . ,~g(x,  t)tp(t)F~(t) dx dt 

= fs fR" ~(0 fRn f ( x -~ / ( t ,  y))g(x, Odx art tt(y)da(y) 

= fR. fR- fs qg(t)g(x+~k(t, y), 0 It(y) dtr(y) dtf(x) dx. 

Estimating the Ll(Rn)-norm of  T*g gives 

tl7"*gI1~ = f ~. l f ~. f s qg ( t) g(x + ~ ( t, y), t) it (y) da(y) dt dx 

~- f ,  f~.  I~(01 f R. ]g(x +g,(t, y), t) I dx dt IIt(Y)l da(y) 

<= 11911. f ~ f ~. f R. Ig(x, t)l dx dt IIt(Y)l dtr(y) 

= I1~11~ f s  IIt(y)l da(Y)fR . llg(x, �9 )111 dx 

and by the continuous embedding B~l l (R ' )cLI(R m) also 

<-C [tT*glh - f~~ [Ig(x, ")lifo 1 dx, 

for gELX(B~) (which makes T*g measurable). Interpolating this with the dual 
estimate of  (10) 

-~ {f .)ll.;..x) JlT*gl]2 = C an I[g(x,  2 a/~ 
gives 

< c ( f  [IT*gl[p = 3- 

2a 
where l < p < 2  and ~=~-7.  The dual estimate of  this is 

(f.. c I):)I,, 
2a 

if 2<p-~ co and 0~=~, which is (2). 
P 
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Here we have used that 

(L'(B))* = L"W*), 

if 1 < p <  ~, for a reflexive Banach space B. 
We continue with the proof of  (3). 
Let S, ~p and ~k satisfy b), and therefore also a) with m =  1. We claim that 

(13) sup II~oF~llx <-- c If f i l l ,  fELl(R"). 
x E R  n 

From the proof of (1) we have 

(14) f .. I[q~F~lll dx  <= C Itfltl, fEL~(R") �9 

Interpolation between (13) and (14) gives 

( L .  ax)',' c ll:Jll, 

for l ~ r =  <~o and fELl(R"). See [BP, p. 316]. Thus, by the embedding LXfll)c 
cB~ we get, as before, that 

( fR" 114~ dx)'/" ~ C l l f l l , ,  L , ( l i . ) ,  

for l<=r_--__~ and fELX(R"), and as in the proof o f ( l )  we now obtain (3) by inter- 
polation with the end-point p=2 ,  ~=a,  of (1). (In this interpolation the case r =  ~, 
needs some special care. The function space used for interpolation is L o (B~a=), 
the completion in sup-norm of all simple functions on R" with values in/7~ But 
such an approximation is possible by the construction in [$5, p. 155] which also 
applies here.) 

We now turn to the proof of the claim. 
To emphasize that ff (t, y) is a non-isotropic dilation we adopt the usual conven- 

tion and set 6 t (y )=  ~/, (t, y). By the assumption b) the map h (y)=Y/IYl ,  y E S, is a dif- 
feomorphism from S onto its image S in S"-1. We extend h to f2 = {rt (y); t>0,  yE S} 
by h ( f t ( y ) )= th (y ) ,  and as a consequence, for s > 0  and yE[2, 

h(6~(~)) = h(6~rt(y)) = h(6~(y)) = sth(y)  = sh(rt(y))  = sh(~). 

The extension h becomes a diffeomorphism from f2 onto its image ~ = {ty; t >0, yE ;S }. 
We also extend # to f2 by #(6 , (y) )=kt (y) ,  t>0,  yES .  

We get that the condition 

Ih(y)l-  1 = 0, yet2, 

becomes equivalent to yES. If u is the Dirac measure (see [GS, Ch. III]), then the 



200 Lennart B6rjeson 

average Fx(t) can be written as follows: 

F~(t) = f ~ f~(6t(y)) ~(y)u(1-]h(y)]) dy, 
where fx = f ( x -  �9 ). 

A change of variables, z=h(y), gives 

F~(t) = f ~ f~(6,(h-l(z))) u(h-l(z)) u(1 -Iz[) I(h-1)'(z)l dz, 

where (h-l)" is the Jacobian determinant of h -1. But 6t(h-~(z))=h-l(tz), because 
h( &t(h-l(z)))= th (h-l (z))= tz. 

Consequently, 

IF~(t)l ~ f a ] f'(h-l(tz))~(h-~(z))(h-x)" (z)] u(1 -Izl)  dz 

<= c f .lL(h-~(tz))] u(1-]z])dz 

= c f s  ]L(h-l(t~ ao. 

This is because #oh - t  and (h-t)" are bounded on ~=  S"-L Here dO is the induced 
Lebesgue measure on S "-~. 

Let I be a closed bounded interval in ((3, ~) containing supp q0. We estimate 
the L~(R)-norm of oF  and obtain 

]](pf~llLX(m <= C f1 f s ](P(Ofx(h-X (tO))ldO dt 

= c f ~  l~(lwl)lwl-"+~L(h-~(w))l dw 

~_ C f . Ifx(h-l(w))] dw, 

since A={tO; tCI, 0(S} lies in an annulus. With new variables, y=h-l(co),  this 
becomes 

II~oFAIL10a~ <---- C fn-lCA) If~(Y) h'(y)l dy 

<- c f . _ ~  If~(y)l dy 

~_ C IIf~lh = c [Iflh, 

because h-l(A) is contained in an annulus where h'(y) is bounded. This proves 
ottr claim and the theorem. 

Proof of the Corollary. We start with the proof of (4) by showing that for 
certain values of p, B~p, (R') is continuously embedded in La(R'). 

We have that 

(15) /~p,(R') = H~(R*), 



Regularity of averages over hypersurfaces 201 

FF/ m �9 0 q 2a  
if l < p < t < ~ o  and c~---~-=fl----[-, by [T, p. 206]. Hence B p q c H ~ = L ,  if p--7- -- 

m( = m / m 1 1 [ 1  
or (equivalently) + - - / ' - -  (>0). From the defini- 

T ,  = q - - p  ~ m ,, m 
m 

tion of B~q it follows at once that B~,p, c B~,q, if p '  <= q. But p" <- q, if p => 1 + 
m +  2a " 

m m m 
q if 1+  - - < p < l + - - .  In the case where l = < p < l +  then Thus Bpp, C L  , m + 2a 2a m + 2a 

m 
(4) is obtained by interpolation between (4) in the case p =  1 + ~ ,  r=p,  and (4) 

m +  2a 
in the case r = p =  1. 

If  b) is assumed we use (4) in the case p =  1 and 1 <-r~_ ~o. The latter is in- 
cluded in the proof of Theorem 1. This finishes the proof of (4). 

H~ is embedded in BMO, if fl--i-- ~ (see [Stl, p. 164]) and by (15) Bpp," embeds 
2a m m 

in BMO, if t=p" and - ~ 7 - = ~ = p  but this means that p = l + - ~ -  a . This shows (5). 

(6) is a consequence of  the following embeddings (see [BL, p. 153]). 

B~o(R,0j c BL=(R'9 = Aa(Rm). 

m 2a m m +  2a m 
Here ~ - - - - = 6 > 0  and as a consequence 6 =  - 2 a -  , if  1 + - - <  

p p' p p 2a 
2a rn 2 a - m  

p ~ 2 ,  and 6 . . . . .  , if 2<_-p<=oo. 
P P P 

We continue with the necessary condition in the remark. 
Take a fixed q~Co(R  ) such that 0#supp  9 c ( 0 ,  b), ~ ( t , y ) = t y  and a fixed 

k in {2, 3 . . . .  , n -  1}. Let a prime on a variable denote an element in R k+t and 
double-prime one in R "-k-~, and decompose a variable in R" into these, for example 
x = ( x ' , x " ) ,  where X'=(XI, . . . ,Xk+O and X"=(Xk+~ . . . . .  X,). Let ogCCo(R ) be 
supported in [ -  1, 1] with f a  o~(s) ds= 1 and put 

11 co(xi). 

Denote by dO the induced Lebesgue measure on the unit sphere S k in R k+x and 
define a measure on skx[ - -1 ,  1] T M  in R by: 

d (x) =- dx". 

SkX[ - l, l] T M  has k principal curvatures different from zero. 
Take a gCCo(R T M )  such that gw_l on the cube [ - b - l ,  b + l ]  "-~-1, and 
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as a consequence we have that 

(16) f ~_~_x g(x"- ty")~(y")dy"  = ~k+~f~_~  co(x~) dxi -- 1, 

for tEsupp q~ and x#EQ=[-  1, 1] n-k-1. 
Define, for hELP(Rk+I), the spherical mean in R TM 

B'~,,ft) = f s h(x'- ty ')dO(y') ,  

and put f(x)--h(x')g(x"),  so fELP(Rn). Then for the mean F of f we have by (16) 

F (O = f s f (x - -  ty) ~(y) dtr(y) 

= q~(ofa~_~_~ fs~h(x'- ty')g(x"-ty3 dO(y')~(yqdy" 

= q~(ofR,_~_ ~ g(x"- ty")~(y")dY"fs~h(x ' - ty ' )dO(y ' )  

= ~0(0~,(0 ,  

if x"EQ. 
Estimating II~0Fxll~" gives then 

(fRo ll~F~ll~'dx) 1" => (fR~+lf~ll~oF(=',=",ll~,dx" dx') 1'' 

= (fa~+~foll~oItx, ll~,dx" dx') ~1" 

= c( f. +1 lJ -x, IJr,,"x')'", 
1 ..< and under the assumption of (6) and that 1 + ~ < p = 2  we get 

r l l r  (f~,+, llq, H~,llr,~ dx') I" ~: C(fs. llq'~ll~, dx} 

<= c Ilfl], -- Cllhll,ll gll, 

= c II blip. 

k + l  
But by a counter-example in [$2] this implies that 5<=k - .  

P 
Take a fixed k in {0,1 . . . .  , n - l }  and assume that 1-<_p<l+~ -, if k_->l, 

and l~_p<-2, if k=0.  Replacing A~ by L q in the norms above together with (4) 
1 k + l  

we also obtain (from [$2]) that - - ~  - k .  (The counter-example in [$2] is 
q P 

restricted to k_~l, but can easily be modified to cover the case k -0 . )  
Thus the theorem gives the best possible values of 5 and p. 
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Assume that k=>l and p = l + { -  and set 

h(x')= [x'l-k log , if 0<Ix'l<_- 

[ 0, otherwise. 

Then the mean F of f=hg (g as before), defined by the measure It da above, gives 

sup I (0 e (01 
t : ~ 0  

for x in a set of positive measure. But f belongs to LP(R~). Cf. [St2]. This shows 
that BMO in (3) cannot be replaced by L ~*. 

Using the above construction of S with measure It dtr one also obtains, from 
counterexamples for the spherical mean in [$5], that p~_r~_p" is necessary if 1 <_-p_~2 
in (1)--(4). 

Proof of Theorem 2. The proof is a small extension of the proof of Theorem 2.2 
of [CM], from which we only give the main lines. For a more thorough treatment the 
reader should consult [CM]. 

Assume that fEC~ (R~). Let u be the distribution defined by the measure 
tt dtr and, for 91z>0, set 

-/-.  

z ~ R j  continues analytically into C, and R~u is defined by duality, i.e. 

(R~u,f) = (u, R,f} .  
Note that R0f=f.  

For f l>ff - -a  and fl~_giz~_l, let 

F~,z(O = tr u, f(x--t . )) ,  t > O. 

Let T(x) = Ih (x)l, where h is the function defined in the proof of Theorem 1 and It 
the weight on S extended to 12. Put E(t)={xER~; T(x)~_t}u{O}, t>0. Then, if 
~{z>0, R~u "is" the function 

R=u(x) = ~ 2r(z)-l(1-T(x)~)~-~ IVT(x)l It(z), if xEE(1) 
t 0, otherwise. 

See [CM, Prop. 2.1]. VT is an outward normal vector to S. Hence, if 91z=l, we 
have the following estimate of F~,,=(t). 

I~,,(01 = [tc,c,-mcl-a~ (Rzu, f ( x -  t. ))1 

= I t'2r(z)-I IVT(y) It(y)f(x-ty)l dy] 

<= Ce~l~lt* f lt~ If(x-ty)l  dy 

= Ce ~l~e~l l]f~l, 



204 Lennart B~Srjeson 

since 

if ~lz= 1. 

if 9lz=fl>}-a. 
(17) 

where 1 ~p<=2, 

1 
if f l > = - - a  and p = - -  

2 

1 
for 1 + ~ - < p < - 2 .  

1 
if l + ~ < p < - 2 .  

IVT(x)l and #(y) are bounded on E(1). Therefore 

Ils7 7 IF~.:(')I]I:: ~ Ce,,i~=i i l f l l ,  

But by Theorem 1.4 of [CM] we also have that 

IlsyGIf~ (0ill < ce~=~llfil , Z  2 ~ 2~  

We apply Stein's complex interpolation method and deduce that 

tl~Tp IF~.~(')ill,. ~= CiiSll,. 
f l > - ~ - a  and ~ = ~ ( f l - 1 ) + l .  For ~o=0, this becomes 

Ilsnp i, ̀ -"~)/"-~) F~(,)lll,. ~= c i i f i l , .  

20 -/7) 
1-2/7 ' oreqnivalently 

Ils.p I, "": / ' ) - : )  F~(0ill., ~= Cl l f l l , ,  
t > O  

This can be interpolated with 

Hsup [F~(t)]i]p ~ Cllfllp, 
t > O  

This is Theorem 2.2 of [CM]. We obtain the following result. 

Ilsup I, "< `~ ' ) - ' ' , ,  F~(t)ill. ~ Cl l / t i , .  

Here l+-~-<p<=2 and p<-r<=p '. 

The extension from C O (R") to LP(R ") follows as in [SWa, p. 1285--1287]. 

Proof of  Theorem 3. The proof is partly contained in the proof of Theorem 2. 
n--1 

But if we in this case use that a =  , and set 
2 

Fx,,(O = t("(~-P))t(1-P)MTf(x), t > O, 

then (17) can be rewritten as 

Ilsup 1,"":~"-'M."flll,. ~Cll/ll,, 
t > 0  

with 1-<_p=<2 and 0 > 1 - ~ "  Interpolating this with Stein's estimate [St2, Th. 2] 
i f , .  

llsuop IM, oflll, ~ C Itfil,, 

where 1 <p  <=2 and Q > 1 - ~ ,  gives the full result. 



Regularity of averages over hypersurfaccs 205 

5. Further results 

(1) can be compared to the following estimate. 

(18) { fR :  II~Y~ll.g ax) 's~' <= C Ilfll,, 

+a(m=>l). (18) is the result of interpolation for <=p <_- 2 and /7 = n ~ - -  
n + 2 a  

2a 
between the end-point /~=--~, p=2 ,  which is also an end-point for c~ in (1), and 

/ -  

2n 
the end-point /7=0, p = - -  The latter can be shown by an application of the 

n + 2 a  
continuity of the Riesz potential Ia to (8) (see [Stl, Ch. V, 1]), viz. 

(f,<: ll<pY~ll~e a..,<) '/: <= C( fR: I (1+ Ir 2 dr) '/: 

<- C IIS:fll2 = C IlSofll: 

c l l f l l , ,  
1 1 a 2n n n - -  1 

or (equivalently) p =  . For  =p  =2, a =  m =  1 
if 2 p n n + 2a n 1 2 ' 

2 

and r =  2 we obtain the corollary from (18) by the same type of embeddings which 
proved the corollary. Cf. [$2, pp. 282--283]. Note that this doesn't require any extra 
assumption on ~(t, y)  or onthe orientation of S as was the case in (3). Trying this 

n- -1  
method for a <  we get weaker results than the corollary gives for r=2.  

2 
Consider for example s = s k •  1, 1] n-k-l, l<--k<=n-- 1, with measure p ( x ) d a ( x ) =  

d O ( x ' ) |  dx" defined as in the proof of the corollary. Estimating the Fourier 

transform rn=# da of this measure gives, for an arbitrary number M, that 

[m(Ot = I L e-i"XP(x)da(x)l 

= IS~'d0(~'). ~"~(~")1 

= I I ~ ' l - " ~ - ' l ~ : ~ - , : ~ ( l ~ ' l )  �9 :"~(r  

<- C(1 + l~'l)-(ki~)(1 + I~"t) =~. 

Here ~ '  and o~" denote the Fourier transforms in R k+l and R n - k - 1  respectively. 
The computation of o~' dO and the estimate of the Bessel function can be found 
in [SWe, pp. 154 and 158]. Thus, the decay of m ( 0  is better in some directions. 



206 Lennart BiSrjeson 

The Riesz potential 1~'/, in R k+~ is bounded as an operator from LP(R k+x) to 

L2(Rk+I), if 1 _ 1 k/2 i.e. l < p =  k + l  <2. For  this p choose M such 
2 p k + l  ' k +  1 

that the Riesz potential in R T M  satisfies I~:  La(Rn-k-~)--,-La(Rk-"-x). By Min- 
kowski's inequality for integrals we get an improved estimate of the L ~ (H~ 

( f~. Ilq,~ll~,,. ax} ~'* 

= c ( f R . f R , . l ~ o ( O m ( 7 , ( t ,  ~'), ~(,, r162 at d~) 1/2 

<_- c (  JR. fR.,l~o(t)(l+ I,/,(,, r + I,/,(t, r162162 l ' '  

~- ~(  f:. 1(~ + Ir 1 + Ir <ir l'" 

~ -  n - k - ,  

n - k - - ,  

<- c{ fR~+, ( fR.-~-. I I r  ~")1' <~")": <~')"  

= c ( f~ ,+ ,  (fR._,_, I~"  l~f(x',  ~x")l: d~") t'' dx') itt' 

# #1 p 
~ -  c(L,+, (L . -~- ,  ii~x, x )l ,~-")<""'<~x')" 

= Ilfllp, 
where we have set 

and 

w'l - "  f.~+. llr "y's(r r a~, ar 1,' 

l~'q-2M f R~+li~'Z[,/2~"f(~', ~")l 2 d~' d~") ~/' 

Ir ( fR~§ [y'f(x', r d~') ~" de") *'* 

( f.,<+, IIr -~ '~ ' f (~ ' ,  r ax,)',, <..),,',',,',,, 

@(t, ~') = (~1 (t) ~l ,  . . . .  Ipk+l (t) ~k+l) 

~k(t, ~") = (ffk+2(t)~k+a, . . . ,  ~k,(O~,. ) 

k 2n 2n 
Taking k < n - 1 ,  a=--~,__ and p =  n+2a = n + k  in (18) (/7=0) 

k + l  k + l  
which is larger than ~ .  We note also that 

k+~ k+~ 
k 

of  the corollary it" q=r=2 and a = ~ -  (m= 1). 

we obtain a p 

is the value of  p in (4) 
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A 
That the decay of # d a ( 0 = m ( 0  is better, in certain directions, than [~[_a, 

n - 1  
if a < ~ ,  is a universal property of  smooth measures. This is the content of 

the following theorem of Erik Svensson [Sv]. 

Theorem. Assume that S has k principal curvatureg different from zero. Let  ~ ( 0  
be the least acute angle that a vector ~ forms with any normal vector o f  S. Then, for 
any positive number R, 

Im(OI CR(1 + + 141 sin x(O) -R. 

This improves W. Littman's [L] estimates of  the Fourier transform of  this 
kind of  measures. 

n n - l - 2 a  
If  ~bit, y)=ty,  q~CCo(R ) and q > q 0 = - 7 - 1  p, , then (4)--(6) holds 

with ~oF x replaced by [tl" q~F x. A sketch of the proof goes as follows. It [~ q~F x is split 
up in a sum Z~~ 1 [ t [~ ~o k Fx by a dyadic partition of unity. Each [ t ]~ ~o k Fx is estimated 
by (4)--(6) followed by a dilation argument which collects the dependence on k in 
the constant 2k~oC replacing the constant C in (4)--(6). Then by summing the geo- 

x-,~ 2-~(~-~a which converges if r/>q0, gives the desired result. metric series ~k=l  
n - 1  

Note that the bound r/0 becomes independent of  p if a =  . In the case S =  
2 

n 1 [ n - l ~  
= S  - [ a = ~ J ;  go is best possible. For  details see [$4]. 

If  we also admit the smooth mass # to depend smoothly on tER m and sub- 
stitute the growth condition on the Fourier transform of  /~ d ,  by 

m N 
[~'k=lDk (/it dO^ (0[ <-- c~(1 +l~l) -a, 

for tEsupp ~o and N--0, 1 . . . . .  [ a ]+ l ,  then (1)--(6) are still valid for the average 
N__ ~N 

defined by the measure pt&r. Here D k - 0--~-N and [a] is the integer part of a. This 

can be seen as follows. 
We compute the derivatives of  

mt(tp ( t, 4)) = (lh an) ̂  (~ ( t, O) 
and get 

(m t (r (t, 0)) = f DI (e- '~'r o ~ (x)) da (x) 

fs  J ~',=o D],-~(e-iX'*(t' O)D~,/h(x) d . (x )  

./ 
= Z,=o Zl i=j-, e (O r d.(x), 
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for j =  1 . . . .  , N. But, since 

[((D~pt) da) ^ (4)[ = ID~(pt da) ^ (4)1 <= C(1 + I~l) -a, 

if tCsupp 9 and l =  1 . . . . .  N, we get by the same reasons as before that 

[fse -'x'e x~DLa,(x) da(x)] <- C(1 +Ir -~ 

and consequently 

[hik(m, Op(t, ~)))1 ~ ~lel_~j [Pk~(t)~l . C 0 + I S ( t ,  if)l) -~ <= C(1 +I~D j-~, 

for tEsupp ~0 and l=1  . . . .  , N. From this, the desired L ~ estimate follows as before 
and also the D and L ~~ estimates, since Pt is bounded on supp ~0. The interpolation 
and the extension of  f to LV(R ") is as before. 

Let u be a compactly supported distribution in R". Define ut by 

(ut, f )  = (u, f (tp ( t, Y)))tr], 

where f is a test function and ( , ) t r ]  indicates that we apply the distribution on test 
functions of  y, and an average by 

F~(O = ut*f(x) = { u , f ( x - O ( t ,  Y)))t,], 

for f in C o (R"). Then 

( u ,~ f )  ^ - = ] ~  

as distributions. But since ut has compact support for t in supp ~o the Fourier trans- 
form of  ut is given by the function 

~(~) = (u,, e-'r = (u, e-'r = (u, e-f*("~ ] = a(r  r 

for t~supp (p (see [GS, pp. 196--197]), and we get that 

P~(0 = a(~,(t, ~))](r 

Hence, if I~(~)l~C(l+[~l)  -a, a=>0, Theorem 1 and its corollary are true also in 
the case p = 2 ,  for fECo(Rn), because we consider only the Fourier transform of 
Fx(t), and (u, e-~X'r decreases like fi(~). Cf. [CM, Th. 1.4]. 

We get an example by taking u equal to the function (max (1 - Ix lL  0 ) )  a, ,~ > - 1, 
n + l  

where  a = ~ +  6 will suffice. 
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