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O. Introduction 

In 1964, J. L. Lions and J. Peetre [7] established the following compactness 
theorem 

Theorem L-P. Let (Ao, A1) and (Bo, B~) be compatible couples of  Banach 
spaces, and let The a linear operator such that T: Ao ~Bo is compact and T: AI ~ B  1 
is continuous. 

i) I f  Bo=B1 and E is a Banach space of  class cgx(0; A), then T: E--Bo is 
compact. 

ii) I f  Ao=Ax and E is a Banach space of  class Cgs(O; B), then T: Ao~E is 
compact. 

This originated the question of  whether there are generalizations of  Theo- 
rem L-P to the case Ao~A~ and BomB 1. 

Assuming a certain approximation condition on the couple (B0, B1), A. Persson 
[8] was able to give a positive answer (see also the papers by M. A. Krasnosel'skii [5] 
and S. G. Krein--Ju. I. Petunin [6]). 

For the general case without an approximation property, some positive results 
are also known. They refer to the real interpolation method ( . , . ) 0 , q  that, as is 
well-known, produces spaces of  class cg~ (0) and cg s (0). 

In 1969, K. Hayakawa [4] stated that if T: Aj-+Bj is compact for j = 0 ,  1, 
0 < 0 <  1 and 1 ~ q <  o% then real interpolation preserves compactness of the oper- 
ator T. A transparent proof  of  this result (covering also the cases 0 < q < l  and 
q =  co) has been given very recently by D. E. Edmunds, A. J. B. Potter and the 
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first named author [2]. They also proved that the same conclusion holds when the 
assumption 

T: A1 -~ B~ compactly 
is replaced by 

B1 continuously embedded in B0. 

Note that this last result is a natural extension of Theorem L-P/(i). 
The aim of this paper is to show that the corresponding natural extension of  

part (ii) in Theorem L-P also holds (see Th. 2.1). 
In contrast to [2], where the description of the real interpolation space through 

the K-functional is successfully used, our approach here will be based on the J-func- 
tional. The main ideas of these techniques were developed by K. Hayakawa [4], 
but in a rather involved way. 

We shall also show how to derive by means of  the J-functional the extended 
version of Hayakawa's result given in [2]. 

1. Preliminaries 

Let (A0, A1) be a compatible couple of Banach spaces [that is A0 and A~ are 
continuously embedded in some Hausdorff topological vector space d ] .  We equip 
A0 (q Ax [respectively A 0 + A~] with the norm J(1, .) [respectively K(1, .)] where 
for t > 0  

J( t ,  .) = J(t ,  .; .4o,.41) and K(t,  .) = K(t ,  .; .4o,.4x) 

are the functionals of J. Peetre, defined by 

J( t ,  a) = max {ll a[IAo, t I[ aliA1} 
and 

K ( t , a )  = inf{l[aol[Ao+tlalll.4,: a = ao+al ,  ao~Ao, aaEA1}. 

It is not hard to see that AoC~A1 and A o + A I  are Banach spaces. 
For  0 < 0 < 1  and 0<q<-~,,  the real interpolation space (.40,.40o,q consists 

of  all a6Ao+.4~ which have a finite quasi-norm 

][all0,q =- (fo ( t -~  a))~dt/t) 11~ (if 0 < q <co) 

[lal]0, ~ -- sup { t -~  a)}. 
t > 0  

One can check that if l<_-q-<-~ then ((.40, A~)o,q, II ll0,q) is a Banach space, but 
if 0 < q <  1 it is in general only a complete quasi-normed space (see [1] and [9]). 
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Let (B0,/31) be another compatible couple of Banach spaces, and let T be a 
linear operator which maps Aj continuously into Bj ( j=0 ,  1). The following inter- 
polation property holds 

IlZllo, q <- llZlI~ -~ [IZll, ~ 

where 11TII0, [I TIh and II Tllo, q are the norms of T as a mapping from Ao to B0, A1 to 
BI and (A0, A1)o,q to (B0, B1)o,q respectively. 

In order to establish the main results of [2] certain vector valued I~ spaces 
modelled on the sum Bo+B 1 are used. We shall require here vector-valued/1 spaces 
modelled on the intersection AoC~A1 . 

Let m=0,  --1, --2 . . . .  and denote by Gm the Banach space AortA1 endowed 
with the norm J(e% .); for any 0 with 0=<0=<1, let e-~ stand for the Banach 
space (Aoc~A1, e-Omj(e s, .)). We designate by lq(e-~ the collection of all 
sequences (Um)7~=ocAonA1 such that the quasi-norm 

Ill(um)lllo,q --- (Z~=o (e-~ m, Um))q) l/q Of 0 < q-<co) 

IIl(Um)lllo,*.  = Sup {e-~ ~, urn)} 

is finite. 
For later use we shall now state without proof an interpolation formula between 

these vector-valued sequence spaces. 

Lemma 1.1. Let 0 < 0 < 1  and 0<q=<~. Then we have with equivalent quasi- 
norms 

(lx(Gm), lx(e-mam))O,q = lq(e-OmG~). 

We end this section with a lemma that shows the relationship between lq (e -~ Gm) 
and (Ao, A~)o.q. The lemma can be checked by adapting the proof of the Equiv- 
alence Theorem (see [1], 3.3 and 3.11). 

Lemma 1.2. Assume that Ao and A1 are Banach spacex with A I continuously 
embedded in Ao. Let 0 < 0 < 1  and 0<q<=*o. Then aE(Ao, A~)o,q i f  and only i f  
there exists a sequence (Um)7,goCAonA~ with 

(1.1) 

and 

(1.2) 

a = ~ = o  us (convergence in Ao+Ax) 

II[(Um)lllo.a < o o .  

Moreover 
II all0,q ~inf{lll(um) lll0,q} 

where the infimum is extended over all sequences (Um) satisfying (1.1) and (1.2). 
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2. Main results 

Next we state the compactness theorem. 

Theorem 2.1. Let (B0, B1) be a compatible couple o f  Banach spaces and sup- 
pose that Ao, Az are Banach spaces such that Aa is continuously embedded in Ao. Let 
T be a linear operator such that 

T: Ao ~ Bo 
and 

T: AI ~ BI 

Then i f  0<0<1  and 0<q<_ -~o, 

is compact. 

Proof. Given 

is bounded 

is compact. 

T: (Ao, Ax)o,~ --  (Bo, B1)o,, 

(u~)~l~(G.), n = l ,  2 . . . .  we put 

P . ( u . )  = (Uo, u _ ,  . . . . .  u _ . ,  0, 0 . . . .  ). 

Each one of these operators is linear and bounded on ll(e-J'Gm) where j = 0 ,  1, 
and its norm is equal to 1. Consider also the bounded linear operator 

Q: lx(e-J'G,,) ~ A~, j = 0 , 1 ,  
defined by 

Q(u,,) = Z~=o u,  

and write 2V= To Q. We shall first show that the bounded operator 

I": (ll(G.), ll(e-'G,))o,a ~ (Bo, Sx)e,~ 
is compact. 

The following diagram holds 

B0 / 
- - .  Pn (ll(G,), l~(e G,))o,~--~- lx(e-'Gm)'x lz(G') 

" l ~ ( e - ' a . )  ~ ,  B~. 

In addition, compactness of T as an operator from Az into B~ implies that 

: e ,  = TQP,: (lx(G.), ll(e-"a,.))o,q ~ g~ 

is compact. Whence, applying Theorem L-P/(ii), we have that 

~Pn : ( lx ( G.)  , ll ( e - "  G . )  )om "" ( Bo , Bx)o, ,~ 

is also compact. 
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Hence, for the purpose of  proving compactness of  ~, it is enough to see that 
there exists a subsequence (~Pn,) of  (~Pn) such that 

Ilt-TPn,llo, q --" 0 as n' - ~ .  
But 

[IT- ~'en'llo, q ~ l lT-  ~e,,,llg-~ ~e,,,ll~. 
Thus we only need to show that for some subsequence (TP,,,) 

l l t - ~ P . , l l l - ~ 0  as n ' - ~ .  

With this aim, first note that 

I l t -  ~e~lll <= I[tlll 

so, there is a subsequence (~P~,) of  (TPn) such that (IIt-:D'~,I1D converges. Let A 
be the limit. We can find (x,,,)cll(e-mGm) such that 11[x~,1111,1<_-1 and 

II:~(I--P~,)x.,IIB1 = IK~-~en,)X,,,l[~l --'-~ as n" ~ .  

Call yn,=(I-.Pn,)X,,,. Then we obtain a sequence (y,,,)cll(e-mGm) satisfying 

IllY~'lIh,1 <-- 1, ekYn' = 0 if  k <- n', 
and 

II~Y.,IIB1 -~ & as n" -.co. 

Now, since ~: ll(e-mGm)-,-B1 is compact, there exists a subsequence (y..) of  (y.,) 
such that (~y..)converges to some b~B1. In particular [Ibll~=& and (1"yn.) 
also converges to b in B0+Bx. 

On the other hand, if k>=n ", it follows from 

III(Pk+I-PDY:III0,1 = e-<k+l)lll(Pk+a-eDy,,.llll,', ~ e-<k+X) llly,,-IIh,x ~ e -~k+l) 

that 
II ~(Pk+I--Pk)Yn,,IIBo =< II tl}o e -ok+x). 

Whence 
11  y.,.ll o +. ,  = I :  §  y.nll.o+.l 

-~ ZL~n" II t(e~+~-PDY."II.o 

<----IItll0ZL~..e-r as n"- .oo.  

This yields b=O, and so 4=0 .  Therefore the operator 

T: (ll(Gm), ll(e-mG,n))o.q -" (Bo, B1)o.q is compact. 

Next, in view of  Lemma 1.1, we derive that the composition 

lq(e-~ Q'--~ (.40, A~)o,q ~ (Bo, B1)o,q 

is compact. Finally, we complete the proof  by using Lemma 1.2. I 
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Remark 2,2. The procedure used in Theorem 2.1 still works if we assume 

T: Ao ~ Bo compactly 
instead of  

A1 ~ A0. 

In such a case the sequence spaces should be over Z, operators P~ should be de- 
fined by 

P , ( u ~ ) = (  . . . .  0 , o ,  u_, ,u_ ,+l , . . . ,Uo, . . . ,u ,_ l ,u , ,  0,0,. . .)  

and the projections 

P+ (u~) = ( . . . ,  0, o, u0 . . . . .  u , ,  u,+~ . . . .  ) ,  

e _  = I - P +  

are also needed. Note that now 

[I T -  f'P, IIo, q <= c[[l(T- f'P,) P-llo, q + l](f~- TP,)P+ [Io,~] 

where C is the constant in the quasi-triangle inequality for I[ �9 [Io, q. Hence, in order 
to show that (#P,) has a subsequence which converges to 2P, we can proceed with 
][(~-#P,)P-[]o,q as before, and then we can treat 11(i"- f~P,)P+l]0,, with a similar 
reasoning but  using the fact that 

T: A0-* B0 is compact. 

In this way we derive Hayakawa's result (covering also the cases 0 < q < l  and 
q = ~)  by means of  the J-functional. The resulting proof  is, on the one hand, much 
more direct and simple than the original one [4], but on the other hand, itis slightly 
more involved than the proof  given in [2] using the K-functional. 

Remark 2.3. The techniques used in Theorem 2.1 also work for the (more gen- 
eral) method of  interpolation with a function parameter. We refer to [3] for details 
on this method. 
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