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O. Introduction 

This paper arose while we were working on the problem of classifying regular 
holonomic Ux-modules (X a complex manifold) with a prescribed singular support 
i.e., the projection under 7r: T*X~X of the characteristic variety. In [2] we treated 
the normal crossings case. We believe that such classifications should be done by 
"U-module theoretic" methods. In other words one should not start to translate 
the problem into one on classifying perverse sheaves. 

The theorem on extensions of perverse sheaves of Verdier [12] has of course 
an analogue in the framework of U-modules. This analogy arises by means of the 
Riemann--Hilbert correspondence (cf. [9] or [6]). The main goal of this paper is to 
give a "U-module theoretic" proof of the analogue of the extension theorem (cf. 
Thm. 3.2). Meanwhile we establish some results (Prop. 1;5.1 and Prop. 2.4.3) which 
might be important on their own. 

As a preliminary task one is forced to find analogous versions of the nearby 
cycle functor 7t: and th e vanishing cycle functor ~ :  of Deligne [1], (where f :  X-~C 
is a non-constant holomorphic function) and the natural morphisms can: ku: ~ 4~:, 
var: ~y-~ ~ : .  In [8] Malgrange considered the structure sheaf d~ x and defined U x- 
modules corresponding with ku:C_.x and ~yCx. In [3] Kashiwara treats the general 
case; he defines functors r and ~O such that for every regular holonomic Ux-module 
~g, ~0~g resp. ~kdg agree with ~ : ~  resp. 7~:~, where ~ = R / ~ o ~ x ( J g ,  d~x). 
Furthermore there are natural morphisms c(~r q~J//-~k~r162 v(.g): ~k./g~cpd/ 
corresponding with can, var. The main result (Theorem 3.2) is then as follows 
(cf. [12], c o r .  1). 

Theorem. The functor 

F: 
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defines an equivalence between the category of  regular holonomie Nx-modules and 
the category of  triples v (~,  Jg~l ~ J f f 2 ,  ~). Here ~: .//l-~.//g[f -1] denotes the can- 

onical map and ~r, .4~, ~ are regular holonomic Nx-modules such that: 

~Ar~ .A/" [ f - l ]  ; 
~4/~1, ~ are supported by Xo =f -1  (0); 
U, V are ~x-morphisms; 
~: ~4/j2 --~-. ~kJ/" is an isomorphism satisfying ~UV=c(J/')v(J/')~. 

In w 1 we introduce Kashiwara's filtration and state the main properties 
(Thm. 1.4). Moreover we put forward a nice description of this filtration (Prop. 1.5.1). 
This enables a rather easy proof of  the Artin--Rees property (cf. 1.6.3). 

In w 2 following Kashiwara (cf. [3] and also [8]) we introduce functors (p, ~ on 
mod (~x)hr. We list some properties. Using material from w 1 we deduce the 
existence of a distinguished triangle in Dhr (~x) 

We obtain some corollaries to be used later. We make some comment on relations 
with Deligne's functors and add a remark concerning why one should restrict atten- 
tion to regular holonornic ~x-modules. 

In w 3 we formulate the main Theorem 3.2. This section is rather technical. 
By then it is obvious that the functor F is exact and faithful. However the difficulty 
is to show that F is essentially surjective. To solve this problem we introduce an 
inverse functor G which does the reconstruction for us. The details are in 3.2.3. 

For a moment we return to the classification problem mentioned at the beginning. 
Suppose one wants to classify holonomic Nx-modules with regular singularities 
along X0. The main theorem reduces this to a problem of classifying pairs ~ll=.A/~ 
of  regular holonomic Nx-modules with support contained in X0. In a subsequent 
paper we will return to this question. 

The author is indebted to Prof. A. H. M. Levelt and A. R. P. van den Essen 
for the stimulating discussions with them when studying [3] and [8]. 

N.B. If  we write "module" we always mean "left module". 
~ o d  (~x)hr denotes the category of  regular holonomic ~x-modules. 
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1. The canonical good filtration 

1.1. Definition 

Let Y be a complex manifold and let Z be/t  closed submanifold of Y. Let 
be the defining ideal of Z c  Y i.e., the sections of O r vanishing on Z. Following 
Kashiwara [3], (see also [1]), we define a descending filtration F ' g r  on 9 r  by 

Fk~r  := {PE~yIP~  -i c ~j+k, all jEN}, for all kEZ. 

In local coordinates (yl . . . .  , Ym, Z~ . . . . .  Zn) on Y such that Z is given by yl=0, . . . ,  
ym=0, one has 

zi, O-~iEF~ y jEFI~y ,  O ~ I E F - I ~ r ;  

F ~  is the subring of ~y  generated over Or by 

0 0 0 0 
Ozt . . . .  ' Ozn ' y~ Oz~ . . . .  , Ym Oy,, " 

F ~  is a noetherian sheaf of rings. (Cf. [11], Ch. I I Iw 1.4 and appendix C. 5; cf. 
also [6], Ch. I w 1.1.) The Fk~.~y a r e  coherent modules over F ~  F ~  is 
a coherent sheaf of rings. 

1.2. Definition of good filtration 

Let ~g be a coherent ~r-module. A descending filtration F '~/ /on d /  is called 
a good filtration if 

(1) F i ~ r F k ~ [  c Fk+lJ[/[, for all k, IEZ. 

(2) ~ =UkEz F ~d/. 

(3) Fk~r a coherent F~ for all kEZ. 

(4) Locally one has: 

F l g r F k d l - - - F k + t . g  if (l=>0, k>>0) or (l<--0, k<<0). 

If this is the case then for any kEZ, grk~:=FkJ///Fk+ld/[ is a coherent 
F~ Notice that a coherent 9r-module has locally a good filtra- 
tion. Moreover if d//is a regular holonomic Nr-module, such a filtration exists 
globally. 
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1.3. Definition of canonical good filtration 

From now on we assume Y = X •  C, Xa  complex manifold. Let t be a coordinate 
on C. The ideal ~ =  t0r defines the closed submanifold X •  {0}, which we identify 

0 
with X. Let 0 denote the vectorfield tO on Y, where 0 =--~-. Clearly we have 

[ F ~  t k, if  kEN 
F k ~ r  : ~,~jk=o F~ J, if - k E N .  

The coherent sheaf of rings F ~  may be identified with ~x[O]. 
Let J / / b e  a coherent ~a.-module with a good filtration F'dg. The filtration is 

called a canonical good filtration if 
(5) there exists a non-zero polynomial bE C[O] such that 

(i) b ( O - k ) F k J [  c Fk+i~/r for all kEZ, 

(ii) b-l(0) c {zECI0 -<- Re z < 1}. 

1.4. Theorem. (Cf. [3], T/am. 1 and [7], Thm. 3.1.) Let r be a coherent ~ r -  
module. Then: 

(i) ~ admits at most one canonical good filtration. 
(ii) / f  ~ '  is holonomic, then J/[ carries locally a canonical good filtration. 

(iii) I f  dg is regular holonomic, then r hag a canonical good filtration. 
(iv) I f  ~/[ is regular holonomic, then for all kC Z, grk.///is a coherent ~x-module, 

where F'dg denotes the canonical good filtration. [Notice that ~ x  c ~ x  [tO] = 
F ~  r and in general grk~/ is only coherent over ~x[tO].] In that 
case grkJ[ is a regular holonomic ~x-module. 

1.5, Let d / b e  a coherent ~r -module  equipped with a canonical filtration F'Jt ' .  
We want to give a more explicit description of  this filtration. Therefore we introduce 
the following notation: for a linear subspace .o~cr and any kEN put 

t-k ~ := {mE J[itkmE.~}. 

Consider the descending chain of subspaces of  J /  

... D t-2F~162 D t-~F~ D F ~  D tF~162162 ~ t2F~ ~ . . . .  

We claim that this is just the canonical good filtration. 

1.5.1. Proposition. Let J/[ be a coherent ~r-module carrying a canonical good 
fltration F'~I. Then for all kE Z 

Fk..~t = tk FO~g[. 
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Proof. Let bE C[O] be a non-zero polynomial satisfying condition (5) of 1.3. 
Observe that for kEN*, 

F-k,/[/[ C t-k F~ dr t, tk F~ ~ t C Fkr 

Let us prove the other inclusions. 
(1) Let kEN*. Suppose mEt-kF~ i.e., tkmEF~ Hence ~ktkmEF-kJ[; 

thus (O+k)...(O+l)mEF-kdl. On the other hand there exists NEN, N-->k+l, 
such that mEF-Nd/[; thus b(O+k+l)...b(O+N)mEF-k~r Because of condition 
(ii) of 1.3 (5) (O+k)...(O+l) and b(O+k+l)...b(O+N) are relatively prime. 
This yields reEF-kill. 

(2) Locally there exists j0EN such that FI~yFioJI=Fi+iod[, for all j->0. 
It follows that FJo+~J//l=tJFJod[, for aU j=>0. If jo=0 we are done, so assume 
]o>0. We will derive that Fiojg=tFJo-IJ/[. Let mEF~odg. Then b(O-jo)mEFi*+l~r 
Hence there exists m0E FJoJ /c  Fio-l~/g such that b (0-j0) m =tmo. Writing b (0-j0) = 
Ob(O)+b(-jo), with bEC[tg], we have b(-jo)m=t(mo-Ob(O)m). Note that 
b(-j0)EC*, mo-Ob(O)mEFY~ and thus mEtFlo-ld[. This yields FYo~'c 
tFJo-tdr The other inclusion is obvious. It follows that already F1o-t+J,~/= 
tJFio-~d/[, for all j=>0. By descending induction we arrive at F1~l=t~F~ 
for all j:>0. 

1.6. Using this description of the canonical good filtration we will derive that 
a morphisrn ~o: ~/g~-~d/~ of coherent ~r-modules, carrying a canonical good 
filtration, is a strict morphism between the filtered modules. By this we mean that 

ImfpnFk~/~:9(Fk~x),  for all kEZ. 

This will be done by proving an Artin--Rees lemma for canonical good filtrations. 
As a preliminary step we have: 

1.6.1.  The  canonica l  f i l tration on ~ft~ 

Let us first recall the following. Let Z c  Y be a subvariety defined by an ideal 
~e. For a ~r-module ~r one defines 

Ftz ] J//l li__mm/~z~(d~/~ n, de). 

This is a ~y-module with support contained in Z. (Cf. [4], w 1 or [9].) Let ~tt~] 
denote the k-th derived functor of Ftz ]. If dr is coherent it is not necessarily the 
case that ~[[~] ~ '  is coherent. However Kashiwara proved: 

- -  If d//is holonomic, then ~tzkld/is holonomic. ([4], Thm. 1.4.) 
- -  If d//is regular holonomic, then also ~tzkl~r162 ([6], Thm. 5.4.1.) 
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The ideal tlV r defines the closed submanifold X •  {O}=X. Let ,a' be a coherent 
Nr-module and assume that ~ t~  is also coherent. We make the following ob- 
servations: 

(1) oeft~ {mE,/glthere exists NEN such that tNm = O} 

= Ukc~,~ Ker (t k, ~'/). 

(2) ~ t ~ / c a r r i e s  a descending filtration given by 

Fko~tOx]~ := {Kor (t-k, ~[ ) if - k E N  
if kEN. 

(3) This is a good filtration, because: 

(i) Conditions (1) and (2) of  1.2 are trivially satisfied. 
t t-1 j (ii) 1.2 (4) is true, because Ker ( t ,  rig) ~ Oj=o 0 Ker (t, J//). 

(iii) Ker (t, rig) is a coherent ~x-module  ([4], Prop. 4.2), and thus a coherent 
F~ This implies 1.2 (3). 

(4) Furthermore (t~--k)Fk~t~q./gcFk+ld/dt~ for all kEZ as one easily 
verifies. Thus the filtration given by (2) on ~t~ is the canonical good 
filtration. 

1.6.2. The induced filtration on a quotient 

Let J / /be  a coherent ~ r ' m o d u l e  and let .A/'c Jg be a coherent ~r-submodule.  
Suppose d / i s  equipped with a filtration F L g  which is canonical good. There are 
induced filtrations on J/" and , g / ~ r  defined by 

Fk~/ ' := JVc~Fkd/, for all kEZ, 

Fk(d/l/d() := Fk.r for all kEZ. 

Proposition. The induced filtration F'( d4/J() is canonical good. 

Proof. Clearly the induced filtration satisfies properties (1), (2), (4) and (5) 
of  the definition of  canonical good filtration. Condition (3) is fulfilled, because 
locally Fk(dl]~ r) is a F~ of finite type and it is a F~ of 
the coherent Nr-module dl/Jff. By [I1], Prop. 1.4.2 and the last lines of  1.1 
Fk(gg/A r) is a coherent F~ for all kEZ. 

Note. By the last line Fk,A/" is a coherent F~  all kEZ. 
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1.6.3. The induced filtration on a holonomic submodule 

Proposition. Let dg be a coherent ~y-module and let .A/'~Jf be a coherent 
submodule. Assume dg carries a canonical good filtration F'dg. Then: 

(i) Ker (t, Jg)c~F~ 
(ii) the induced filtration on ~V is canonical good. 

Proof. We begin the proof of (ii) and meanwhile obtain (i) as a special case. 
The induced filtration satisfies conditions (1), (2), (3) and (5). The problem is to 
show that F'.A/" satisfies condition (4) i.e., locally 

Ft~rFkJff=Fk+t..4/" if ( l ~ 0 ,  k>>0) or (l-<0, k<<0). 

We prove this in two steps. 

1. Ft~rFkJV "=F~+~./I z for all l ~ 0 ,  k < = - l .  

It is enough to prove 

F-k-x~/" = F-a~rF-k~4#, for all k => 1. 

Therefore let kEN* and nEF-k-IJV ". Let bCC[O] be a non-zero polynomial 
belonging to the canonical good filtration F ' ~  (cf. 1.3 (5)). Then b(O+k+ 1)nE~Cc~ 
F-k./g=F-kJV ". Write b(O+k+l)=Otb(O+l)+b(k),  b~C[O] and b(k)~C*. 
Further tb(O+l)nEF-k,A/", yielding that nEF-k~/'+OF-~,/V'=F-I~rF-k,U. 

2. The problem seems to be in the tail of the filtration. We shall derive that 

F~rFk~/"  = Fk+ZJV ", for all k, IEN. 

It suffices to show that Fk+l.,UctFk.Ar, for all kCN. 
Let us first treat the special case 

2a. Jr = ~ ] j  J / .  

Let kEN and nCFk+IX=Xc~Fk+I./[[. By Proposition l.5.1 there exists 
mEFkd[ such that n=tm. Because J / '=~t~ there exists NEN such that 
tNn=O. It follows also tN+lm=0, hence m ~ q J / = r  So n=tm with mEFkJV ". 
This yields Fk+ ~JIr c tFk~:. 

Hence in the particular case d =  ~r176 we have established that the induced 
filtration is canonical good and by unicity (Th. 1.4 (i)) equals the filtration given 
in 1.6.1. In particular Ker (t, J Z ) n F ~  so this yields part (i). 

2b. The general case. 

Let kEN and let nEF~+~V. There exists m~F~..r such that n=tm 
(Prop. 1.5.1). Denote with ~ the image of m in ~'/JI r. Then t ~ = 0  in dg/W. 
Hence ~EKer (t, ~g/./Oc~F~ (./g/uV)cKer (t, ~//X)c~F~ By Proposition 
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1.6.2 the induced filtration on ~g/JV" is canonical good, hence by (a) above ~ = 0 .  
It follows that m E ~ n F k ~ = F k . A / "  and n=tmEtFk,A/'. This yields Fk+I,A/'ctFk~A/" 
for all kEN. 

1.6.4. Corollary. Let q~: Jcll-~.tl ~ be a morphism of  coherent ~r-modules. 
Assume ~[1 and J/42 carry canonical good filtrations F's[[1, F ' ~ 2 .  Then q~ is a strict 
morphism of  filtered modules, 

Proof Put A ;= Im (oc t /2 .  Then F'~gl induces a canonical good filtration 
on Ar (Prop. 1.6.2). Also F'dr 2 induces a canonical good filtration on JV" (Prop. 1.6.3). 
But there can be only one canonical good filtration on sV', hence r162 
Fk~g, for all kEZ. 

1.6.5. Corollary. Let ~c-~d/ I2- .§  3 be a short exact sequence of coherent 
~r-modules with a canonical good filtration. Then for all kE Z we have exact se- 
quences: 

O) Fk~/41 c_~ Fk g[2 _~ Fk j/{3 of F~ 

(ii) g rk~ l  c_~ grk~/~ _~ grk~z of  ~x[O]-modules. 

1.6.6. Remark. Let J /  be a coherent ~r 'module  admitting a canonical good 
filtration F'dg. The multiplication with t induces, for all kEN, a bijection grg,/~ ~,  
grk+ld[. This follows from 1.6.3 (i) and 1.5.1. 

2. Vanishing cycles and nearby cycles 

Let X, Y be as in 1.3. Let f :  X ~ C  be a non-constant holomorphic function 
on X. 

Let 
i: X ~ r = X X C ,  x ~-~ (x , f (x))  

be the embedding on the graph o f f  
Finally put X0:=f-l(0).  

2.1. Let ~ / b e  a coherent ~x-module. Then 

i ,  d l  = ( ~ r / ~ r ( t - f ) ) @ ~ , ~  Jg 

(where we have identified X with the graph o f f )  is a coherent ~r-module supported 
on the graph o f f  If ~ '  is holonomic, then i, J/g is holonomic (cf. [6], Lemma 5.1.9). 
If  ~ '  has regular singularities, then i, Jg has regular singularities (ibid.). In fact 
i, is an exact functor and establishes an equivalence between the category of coherent 
~x-modules and the category of coherent ~r-modules with support contained in 
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the graph o f f  (el. [4], Prop. 4.2). The inverse functor of  i, is given by 

Ker (t--f,  �9 ) = No~o,(Or/(t-f) Or, �9 ). 

In fact one has the identification 

i, JZ ~ C [ 0 ] |  

where the ~y-structure on the right-hand side is determined by (in local coordinates 
xl ,  ..., xa, t on Y): for all m E ~ ,  iEN: 

t(Oi| = -iO~-l|174 

O(O~| = Oi+l| 

O~(Oi | m) = O~ | l | m, 

for all eE{1 . . . . .  d},[O~=~O_.]. 
k OX~ / 

2.2. Definitions 

2.2.1. The category of  coherent ~x-modules ~ satisfying the requirement that 
i , d / a d m i t s  a canonical good filtration is by 1.6.2, 1.6.3 and 1.6.4 an abelian cat- 
egory. Let us denote this category by R. Following Kashiwara [3] (see also Mal- 
grange [8] and M. Saito [10]) we define for any d//ER 

~Jr := F ~  

~odg := F-l( i ,c/ l ) /F~ 

where F'(i, Jil) denotes the canonical good filtration on i , ~ ' .  

2.2.2. Left multiplication with t resp. 0 induces maps 

c(JZ): ~0Jz -* ~Jz,  

v ( ~ ) :  ~ --- ~o~'. 

2.2.3. If  we make the identification X-:-XX (0} (see 1.3), then ~O~' and q ~  
have the structure of  a module over F~ ]. Moreover ~h~// and 
go J /  are coherent ~x[tO]-modules. The mappings c(~r and v(J//) are ~x-linear 
and the action of  tO on q~r (resp. ~d//) is given by v ( J / / ) o c ( d / ) - l ~  (resp. 
c(~/)ov(J//)) .  The ~x-modules ~ and ~pd4 have their support contained in 

i (X)n(X• {0}) = graph ( f )n (X•  {0}) = X 0 X {0}. 
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2.3. Restriction to regular holonomic modules 

By Thm. 1.4 (iii) the category ~ contains the category of  the regular holonomic 
modules ~ d  (~X)nr, According to Theorem 1.4 (iv) ~/J/f and q ~ '  are regular 
holonomic ~x-modules if d / i s  regular holonomic, The restrictions of  ~b and 9 to 
r (~X)hr are still denoted ~k and qg. We view then as functors from ~n~d (~X)~r 
to itself. There exist natural transformations c: 9-~k,  v: ~p~o. These satisfy the 
condition that for any ~ 'E ~ d  (~x)~ there exists a non-zero polynomial b6 C [O] 
such that: 

(i) the ff~g-endomorphism c(d/t)v(~l) satisfies b(c(~g)v(Jg))=O, 
(ii) b-~(0)~ {zE CI0<=Re z<: 1}. 

2.4. A distinguished triangle 

Our goal in this subsection is to show the existence of  a distinguished triangle 
in Dhr(~x), the derived category of bounded complexes of  ~x-modules with reg- 
ular holonomic cohomology. For any J//C ~ d  (~x)hr there exists a distinguished 
triangle 

Or in more down to earth terms, there exists an exact sequence of  regular 
holonomic ~x-modules 

- ~  ~cx01Jg. 

We start with a lemma; its proof  is a bit technical. 

2.4.1. Lemma. Let ~ be a ~x-module. There exists a natural isomorphism of 
~x-modules 

~tOo] ~//___E_~ Ker (t, i , ./g) = ~v~er(Or/tOr, i,.1[). 

Proof Recall that (cf. 1.6.1, 2.1) 

~ft~ U ,~NKer ( f " ,  ./g) i, J g =  C[O]| 

Let P = ~ ' = 0  Oi| sg. 
Then tp:-~.-~ OJQ(--(j+ 1)mj+~+fmb)+on| Hence 

p~Ker(t,i,d//) iff fm,  = O, rim, =finn_ 1 .. . . .  ml =fmo 

iff f"+lmo =0, 

j Imj = fJmo for all jE {1 . . . . .  n}. 
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This clearly implies that the injective maps 

e,(~gg): Ker (f", ~/) c+ Ker (t, i .d / ) ,  

m ~-~ ~i=o OJ| for all m, 

induce a bijective ~x-linear map 

~(~) :  ~x01 ~ ~ Ker (t, i,..r 

Clearly ~ is functorial in ~ ' ,  so it remains to check that e(~/) is Nx-linear. Therefore 
let ~CNe~ (~x), m~Ker (f" ,  ~ ) .  Then ~m~Ker ( f ,+ l ,  ~ ) .  Using the description 
of the Nr-structure on C[0]| in 2.1 one obtains 

~e(.///)(m) = ~ ~ ' - 0  4 0 s |  jm 
- -  j i ,  

= ,~:=o-~.c<)'|174 

= Z.~:o  -~. O' | ( p  r +j{  ( f ) f l -  ,) m 

__yn+i 1 
�9 ~--,.#=l ( j - - l ) !  Ol|  

= Z~ _-o ~aJ| = 4 ~ ) ( ~ m )  

2.4.2. Corollary. Let ~ be a ~x-module. Then 

RFtx0]..///--~ R/~o~o, (r i. ~[). 

Proof. The result follows once we have checked that 

.~/ injective ~x-module =* i . d l  is acyclic for ,~o , ( r  - ) .  

But this is clear, because an injective ~x-module J / / i s  injective when considered 
as an 0x-module. Hence J//is divisible by fi .e. ,  multiplication b y f o n  J / i s  surjective. 
This implies that the multiplication with t on i . ~ '  is surjective i.e., 

e ~ 4 . ( ~ . / o r  t, i .  ~ )  = 0, 

for all i>0.  The argument is as follows: Let rnEJ//. There exists n e d /  such 
that fn=m. Proceed by induction on j, using t(OJ|174174 

2.4.3. Proposition. Let ./IIE~ad (~x)h,. In Olar(~x) we have a distinguished 
triangle, functorial in ~[, 

q~d-* ~p.,//-~ RFtxd.//[1] -- r 
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Proof. Let J// be a regular holonomic ~x-module. Consider the short exact 
sequence of  F~ 

FOi,~ t ~ i,.1r --,-~ i,~r176 

where F'i,~lg denotes the canonical good filtration on i,.~'.  The functor 
R ~/gz~% (@r/tOr, - )  applied to this sequence yields a distinguished triangle 

R ~ o r  (0r/tOY , i*dl/F~ gg) 

2 / ",\ 
R Aomor (Or/t@r, F~ ~ R A o ~ y  (@rltOr, i,r 

By 2.4.2 we have 

R Ao~or (Or/tOY, i,. ,g) = RFtx0l,g. 

By Proposition 1.6.3 (i) and Proposition 1.5.1 it follows 

R ~ o ~  (@r/t@r, F~ dl) = F ~ i ,~[/ tF~ [ -  1] = ~ . / / [ -  1]. 

By Proposition 1.5.1 

Ker (t, i,..g/F~ i,..r = t- l  F~ Jg/F~ i , . g  = r 

Let us investigate Coker (t, i, dC/F~ Jg). Therefore let m(i,~Cg. For some 
NEN*, m(F-Ni ,  sg. It follows that a(O)mEF~ where a(O)=b(O+l)...b(O+N) 
and bE C[O] is a non-zero polynomial satisfying (5) of  Subsection 1.3. Then a(0)= 
tOa(O)+a(O) with ~EC[O] and a(0)EC*. Thus a(O)m+tOg(O)mEF~ We 
conclude that Coker (t, i ,~g/F~ 

Finally collecting things we end up with a distinguished triangle 

q~d/-~ ~k~f/-~ RFtxdJg [1] ~ q~Jg [1]. 

2.4.4. Some easy consequences 

Let J//E ~ a d  (~X)h~. There are two natural distinguished triangles in Dhr (~x) 

~o..r ~.//r RFtxol~'[1 ] -,- q~Jg[1] ~ g ~  Jg[f-1]  ~ RFtxoldt'[1 ] ~ ~ [ 1 ] .  

It follows immediately from these triangles. 

2.4.4.1. Proposition. For every ~ E  r (~X)h, the following are equivalent 

(i) . g ~ - . . [ f - ~ ] ;  
(ii) RFtxo~d[=O; 

(iii) c(,,g): q~,4[o@.lt is an isomorphism. 
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2.4.4.2. Proposition. For every ~lC~n~d (~x)h, 

(i) supp (d/) ~ X0; 

(ii) "~C~oj'At = d#; 

(iii) ./g[f-x] = O; 

(iv) 9 d / =  d/ .  

the following are equivalent: 

Furthermore any of  these conditions implies ~kJg=0. 

Proof The equivalence of (i), (ii) and (iii) is well-known. (iv)=~(i) is clear. 
Now (ii)implies i , d / = ~ x { o } j i ,  dg, hence ~kdg=0 (el. 1.6.1)and thus ~oJr 
Rrtxo~ Jg  = Jg. 

Remark. With a little more effort one can show that ~kd/= 0 implies q~dg = gg. 

2.4.4.3. Corollary. Let dl6ca~d(~X)hr and let n: d / ~ d / [ f  -1] be the can- 
onical map. Then: 

(i) ~(z): ~d#-~r is an isomorphism; 
(ii) there exists an exact sequence 

~r 9 j  / ~(-), ~0(jg[f-1]) ..~_,. ~Cold//; 

(iii) c(dl[ f -q)oq~(n)=~(n)oc(dl) .  

2.4.5. An alternative proof of 2.4.3 

The reader who is not happy with the given proof of 2.4.3 is offered a different 
approach. We give a derivation, in the category ~ o d  (~X)hr of an equivalent 
formulation of 2.4.3. We avoid the use of Corollary 2.4.2. First we need some pre- 
liminary results. 

2.4.5.1. Sublemma. Let d l  be a coherent ~x-module with support contained in 

Xo (thus dl=~t~ 
Then 9 J l  = Jg and ~Odg = O. 

Proof Note that i, sg  is coherent ~r-module supported on X=XX{0} i.e., 
i, dg=~ t~  sg. Thus the canonical good filtration F' i ,dr  satisfies (cf. 1.6.1) 
F - l i ,  Jg=Ker  (t, i, dg) and Fki, dg=0,  for all kEN. Thus ~kdg=0 and by 
Lemma 2.4.1 ~odg=Jg. 

2.4.5.2. Sublemma. Let d l  be a ~x-module. Then the map "'multiplication by t'" 

i,(.gtf- j) 
is bijective. 
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Proof. The injectivity follows using Lemma 2.4.1. The surjectivity follows (as 
in the proof of Corollary 2.4.2) by induction on j, using t (OJ |174  
f - lm+OJ|  for all mC~C/[f-i]. 

2.4.5.3. Corollary. Let d[ be a coherent ~x-module such that i,J[l admits a 
canonical good filtration. Assume that the canonical map n: j / / _ ~ , [ f - 1 ]  is an 
isomorphism. Then c (~ ) :  ~p,/g~OJ// is an isomorphism. 

Proof. Consider the commutative diagram with exact rows 

F~ ~ F - l i ,  d/[ --~ q)d/[ 

~l,. I, I. 
Fl i ,~[  ~ F~ sJ[ --,-~ ~df.  

The left arrow is bijective by Prop. 1.5.1 and Prop. 1.6.3 (i). By Sublemma 2.4.5.2 
the middle arrow is injective. This Lemma together with the fact that F-2i ,  d / =  
t - a F ~  (el. Prop. 1.5.1) yield the surjectivity of the middle arrow. Hence e is 
bijective. 

2.4.5.4. Proposition. Let J/gCoC[~d (~X)hr. There exists a natural exact sequence 
of regular holonomic 9x-modules 

~ ~  =-~ ~o~. ", r --~ ~3o1~a. 

Proof. Consider the short exact sequences of ~x-modules 

o 

.t[ ~-~ ~ / [ f - l ]  ..~ ~ ]o l j / /  

where . t l = I m  (~/-*d//[f-~]). In view of Sublemma 2.4.5.1 these give rise to two 
commutative diagrams with exact rows 

~ ~  ~ ~ - ~  ~ 
I I. I. 
0 ~ r  -.+ r  

[. ~1o I 

~,~r162 0 ( . ~ [ f - l ] )  --,§ 0. 

By Corollary2.4.5.3 c(~[[f-1])  is bijective. Hence the second diagram gives 
Ker c( .~)=0,  Coker c(sC[)=o~:d~'. Now using the first diagram it follows that 

Ker c(vg) = ~t~ vg, Coker c(./g) = agt}ol.,//. 



Vanishing cycles and ~-modules 233 

2.5. Relation with Deligne's functors 

2.5.1. It is well-known that the contravariant "solution" functor 

S: ,r -~ Perv (X) 
defined by 

s ( d )  = R ~e,,,,~. (.a. Cx). 

establishes an (anti-)equivalence of categories. Here Perv (X) denotes the category 
of perverse sheaves on X. This is known as the Riemann~Hilbert correspondence 
(cf. [9] or [6]). Via this equivalence the functors ~0 resp. ~ correspond to the van- 
ishing cycle functor q~: resp. the nearby cycle functor kv: as introduced by Deligne [1]. 
More precise for ~'CJC~z~ (~x)hr there are natural isomorphisms (cf. [3], Thm. 2) 

s(~oJC)lxo ~- ~ s ( s ~ g ) [ -  1], 

S(~OJc')lxo --- ~ / ( S J r  1]. 

exp (2niO)- 1 

for every regular holonomic ~x-module J[ .  (Cf. [9], Prop. 1.2.1). So our distin- 
guished triangle corresponds to the fundamental distinguished triangle in Perv (X) 

s(~OlXo -~ ~e:(s..r162 --,. a , . r (S~  ) -~ s(~) lxo[1] .  

2.5.2. We have seen that we might define functors ~0 and ~ on a somewhat 
bigger category ~ (cf. 2.2.1), the abelian category of coherent ~x-modules d / s u c h  
that i, Jg carries a canonical good filtration. To assure that r and ~kvCr are again 
regular holonomic ~x-modules we restricted those functors to the category 
J//od (~X)hr (cf. Thm. 1.4 (iv)). We shall indicate that in some sense this is nec- 
essary too. 

Note that, for ~'CJr (~x)h, S(~DEDc(X), the derived category of bounded 
complexes of C__x-moduies with construcfible cohomology. On this level S is not 
an equivalence. The functors ~ :  and ~ :  are defined on De(X) and take their values 
in De(X0). In Dc(Xo) there exists, for all ~ED,(X) ,  a distinguished triangle 

~lx0 -~ ~ : ~ - ~  a ~ : ~  -~ ~lx0[1]. 

�9 Assume that for any dC~h:=~m,gC~d (~x)h: 

c agrees with the canonical map can: ~I  ~ :  and v 0 agrees with 

the variation map var: ~:-~ ku:, where 0 = cv. The monodromy on ~u$ is given 
by S(exp2rciO) (loc. cit.). 

Furthermore 
S(Rrt~avg) ~ S(~)]~o 
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- -  there exist natural isomorphisms 

s ( ~ ) l x 0  ~ f ( s ~ ) [ - 1 ] ,  s ( ~ ) l x o  ~ ~f(s~)[-l]. 

Note that q3~r162 and ~v/# are holonomic ~x-modules. 
Under these assumptions 2.4.3 still holds i.e., for any ~ ' E ~ r  we have a distin- 

guished triangle in J / o d  (~X)h 

~ r  r Rr~x0~[1] -+ ~ [~]. 
This triangle corresponds via S to the triangle above (take ~=S(~r This 
yields S(RFtxo]~)=S(./It)]x+ i.e., ~/  is regular along X0. So in order that ( , )  
holds, we have to limit ourselves to regular holonomic ~x-modules. 

3. The main theorem 

Let X, Y, f,  X0 be as in w 2. In this section we prove that the mapping, for all 

~ r  (~x)hr: 

.~  ~ ( ~  [f-~], q ~  ~ r162 ff @)) 

(with r~: ~ r  the canonical map), defines an equivalence of categories. 
By the Riemann Hilbert correspondence (el. 2.5.1) this corresponds to Verdier's 
extension theorem of perverse sheaves (el. [12]). Of course this offers a way to prove 
the above claim, but we prefer to give a derivation using only the language of ~-mod- 
ules (without an appeal to the Riemann--Hilbert correspondence). 

3.1. Definit ions and notations 

First of all we introduce some notations in order to be able to formulate the 
theorem correctly. Let d /~d  (gX)Xo ,hr denote the category of regular holonomic 
9x-modules with support contained in X0. 

3.1.1. Let c~(~x)xo, ur denote the category determined as follows: 
- -  Objects: quadruples (~r d/~, U, V) where 

U~ Homu, (-//1, -//z), V~ Homa x (.1r -///1). 

- -  Morphisms: (al, .2)EHom ((d/l, ~ ,  U, V), ( ~ ,  J//~, U', V')) iff 

~lEHom~ x (+//1, J/;) ,  a26Hom~x (.//r .//t~) 
such that 
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~g(~X)Xo, hr is an abelian category. For details we refer to [2, w 1]. Note that for all 
dlE~g~z/(gX)Ur we have (q~d/, ~kd//, c(J[), v(Jg))~c6'(gx), where for convenience 
we dropped "X0, hr". If ~: d / ~ s g "  is a morphism, then (9(~), ~b(~)) is a mor- 
phism in cg(~x). 

U 
Notation. In the sequel we use the notation ~ ' l ~ d / ~  to denote the object 

(de1, dr V, V)C~e(~x). 

3.1.2. Let Re (X, X0) denote the category determined as follows: 
Objects: triples (rig, v - -  v r  a) where 

dg~d/~g(~x)hr such that dg ~, ~r (canonical map); 

a: Jg, -~- ~ d /  is a ~x-linear isomorphism such that 

~ U y  = c ( . , g ) v (dr  

- -  Morphisms: 

(fi, ill, ~2)~Hom ((dg, ,A/1 = d/s, a), (M/', .~/~' = J/~, a')) 

iff t :  d / - ~  vr is ~x-linear and 

(~1, fl~)CHomv (d/x = rig2, dg~ ~ dg~) such that 

~'/~ = r  

Re (X, X0) is an abelian category. Note that for all ~ 'G//~d(~x)hr 

( ~ ,  ~1  ~ ~ , ,  ")5 Rc (X, Xo), 

e(~'):  ~0dC-*~k~/ is an isomorphism (by 2.4.4.1 (iii)). Note furthermore that we 
have a morphism (e(~g/)-laU, a)~Hom~. (d/~=~/~, 9~/=~0~r 

3.1.2.1. Remark 

Let (vg, ~/~r a)~Rc (X, X0). de' a (resp. ~/~) can be given the structure 

of a ~x[tO]-module by defining the action of tO as the ~x-endomorphism VU--1 
(resp. UV) (1 denotes the identity map on ~'a). Let b~C[O] be a non-zero poly- 
nomial belonging to the canonical good filtration F'i.~g (el. (5) of 2.1). This 
imphes: 

b ( ~ ) r  

b - l ( O)  = {zEC[O ~ R e  z < 1}. 
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Hence b(tO)~[2=O. Further Ub(tO+l)Jgl=b(tO)U~gl=O i.e., Otb(Ot),,gl=O. So 
we see that Jgl~Jg~ satisfies the additional requirement (compare with 2.3): there 
exists a non-zero polynomial aEC[O] with: 

a(tO)JIl2 = O, 

a(tO+ l)~gl = O, 

a-l(0)  ~ {zEC[0 <_- Re z < 1}. 

3.1.2.2. Remark 

Let ~gE~lod(~X)hr and denote n: j g o j / / [ f - 1 ]  the canonical map. By 
Corollary 2.4.4.3 we have that r (Tr) is an isomorphism and that ~ (~r)c(~/)v(Jg)= 
=v(Jl[f-1])c(,g[f-x])~p(70. From this it follows that 

(,/g [ f -  1], (pj~ ~ ~]~, I]1 (7~)) ~ RC (X, Xo). 

Furthermore if ~: J g ~ J g '  is a morphism, then (~[f-1], ~o(a), ~(~)) is a 
morphism in Re (X, Xo). 

3.2. Theorem. The funetor 

F; ,/~%,~ (~X)hr ~ Rc (X, X0) 

defined by, for all Jg E dl~g (~X)hr 

~ / ~  (~ , [ f -1] ,  q~//_~--~ ~O,g, ~(n)) 

establixhes an equivalence of categories. 

The rest of  this subsection is devoted to the proof of the theorem. As we men- 
tioned already this theorem is an analogue of a theorem on extensions of  perverse 
sheaves due to Verdier [121. Before we begin with the proof we derive two lemmas. 
These throw some light on how to reconstruct ~ / f r o m  the data F(M/). Needless to 
say that they will be used in the derivation of  3.2. 

The difficulty of the derivation lies in the reconstruction. Given an object 
( ~ , J V ~ I ~ , a ) E R c ( X ,  X0), find a regular holonomic ~x-module M/ such that 
F(ML) is isomorphic to the given element in Rc (X, X0). The idea is to recapture 
the various levels of  the filtration from the given data and thereby reconstructing M/. 
By considerations in w 1 F~ dl, the zeroth-level, must equal F~ The first 
lemma we derive, Lemma3.2.1, tells us how the (-1)-level can be regained. 
Successive applications of the second Lemma 3.2.2 take care of the (-k)-levels 
for all k->2. 

During this process a lot of  things need to be checked. This we plan to do in 
Subsection 3.2.3. Finally in Subsection 3.2.4 we finish the proof of  Theorem 3.2. 
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3.2.1. Lemnla. Let  dgC~/od (~x)u~. Denote F ' i , . t l  the canonical good filtra- 
tion on i , d / .  Denote re: ~g~C/ [ f -~ ]  the canonical map. Consider the commutative 
diagrams 

F ~ i , Jtg -~-~ 4' ~ F - ~ i , Jg -*-~ q~ J/r 

F~ d l [ f - q  .-~-,. C J l [ f - q ,  F - l i ,  J l [ f  -11 .-,~- go~ll[f - q  

where the horizontal arrows are the obvious projections, 
Then these are pull-back diagrams of  F~ 

Proof. By Cor. 2.4.4.3 (i) $(z) is an isomorphism. It follows from the Corol- 
laries 1.6.4 and 1.6.1 (2) that i,z~: FOi,~lloFOi, j g [ f  -1] is an isomorphism. This 
settles the diagram on the left. The assertion about the diagram on the right is easily 
verified by chasing in the following commutative diagram with exact rows and 
exact columns. We leave it to the reader. 

F - l i , ~ t ~  = (p(,~C~olJg) 

F~ j g  ~ F - l i ,  j#  ~-~ 9j[1 

* 4t 

F~ d l [ f - q  ~ F - 1 i , , A t [ f - q  --~ cp(M//[f-1]) 

3.2.2. Lemma. Let ~ be a coherent ~r-module carrying a canonical good 
filtration F'Jg. Then, for any kEN, k#O,  we have a push-out diagram of  p r - ~ x  - 
modules (pr: X •  C ~ X  denotes the projection) 

F-k+xdg c~ F - k d [  

l, [o 
.w-k./lg. ~ F-k-1 j/[. 

Proof. Let kilN, k~0 .  We must show that the following sequence is exact (as 
pr-1 ~x-modules) 

F-~ + ~ Jll --L" ~. F-k  d l  @ F-k d[ -2-s § F - k -  l.t[ ~ O. 

m~-,-(--Om, m) (m,m')~-~m+Om'. 

Clearly sr=O. Now let m,m'CF-k~r be such that s(m,m')=m+Om'=O. Hence 
tOm'=- tm6F-k+~dL But b(tO+k)m'CF-k+~J/l, where bCC[O] is a non-zero 
polynomial as in (5) of 1.3. As kr  tO and b(tO+k) are relatively prime, this 
implies that m'EF-k+Lgl and thus (m, m')=r(m').  This establishes the exactness 
in the middle. 
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Finally let us show that s is surjective. Let nEF-k-lJ[.  Then 

b(tO+ k + l)nE F-k./g. 

As b(tO+k+l)=Otb(tO+l)+b(k), with b(k)EC* (because k~O) and some 
bEC[O], it follows that nEF-k~l+OF-k./[[=Im s. 

Remark. We have seen in 1.1 that pr -1 ~x  is a subring of F~  Elements 
of p r - l ~ x  commute with 0. In fact pr* ~x[tO]=F~ 

Remark. The lemma implies that r gr-kJl+gr-k-l.~[ is bijective for k->l. 
Compare this with 1.6.6. 

3.2.3. The reconstruction procedure 

The reconstruction is rather technical. We begin with defining an abelian cat- 
egory d and an additive subcategory d* .  The category ~r serves as in intermediate 
in the construction of a ~x-module ~r the given data 

N =  (ut/', gt~ ~ ~4~2, ~)ERc (X, X0), 

such that F(Jg)=N.  We define a functor P: ~r  that takes us from the 
(-k)-level to the ( -k -1 ) - l eve l  of the filtration to exist on i.~r Repeated appli- 
cations of P yield an inductive system. Taking the direct limit gives a functor 
P=: ~r +J / /od  (~r) which regains i. Jg from the ( -  1)-level of the filtration. 

Finally in 3.2.3.5 we define a functor Q: Rc (X, X0)+~r that extracts the 
( -  1)-level from the given element NERo (X, Xo). 

In 3.2.3.6 we consider the composition P=Q and introduce the inverse 
a." Rc (X, .e~0)-~,.,~.od (~X)hr" 

3.2.3.1. Denote ~r the category defined as follows: 
- -  Objects: (G, H, z, 6) where G and H are pr -1 ~x-modules and 

t, 6 :  G + H  are pr-1 ~x-morphisms- 
- -  Morphisms: (c~, fl)EHom~t ((G, H, l, 6), (G', H' ,  z', 6")) 

iff ~: G+G', fl: H-,-H' are pr- l~x-morphisms satisfying 
/h=z'~, /~6=~'~. 

~r is an abelian category (because it is a functor category. Cf. [2], w 1). The kernel 
and the cokernel of a morphism in ~r are evident. 

Define a map P: ~ ' - ~  as foUows: for every (G, H, t, 6)E~, let P(G, H, t, 6)= 
(H,/ ,  q, 61)E~r be given by the push-out diagram of pr -1 ~x-modules 

G--2, - H 

H'._S~.,. I 
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Because of  the universal property of  push-out, P is functorial. This yields also that 
P is right exact. 

3.2.3.2. Denote ~r the subcategory of  ~r given as follows: 
- -  Objects: (G, H, z, 6)E~r that satisfy the additional requirements: 

(i) the pr -1 ~x-structure on G (resp. H)  comes from a F~ on 
G (resp. H) ;  

(ii) z is a F~ injection; 
(iii) for all bee r :  ~h-h6=tO(h);  
(iv) t H c I m  z i.e., t: H ~ H  factors through t; [Abusing language we denote 

the factorisation by t: H-~G (thus i t=t) .  There will be no ambiguity for 
t is injective.]; 

(v) the action of  tOEF~ on G (resp. H)  is given by the pr -1 ~x-endo-  
morphism tg (resp. 6 t - 1 ) .  

Morphisms: (~, t )  as above but  ct and fl are now supposed to be F~ 
linear. 

Certainly d *  is an additive subcategory of  ~r it is not  abelian, because of 
the injectivity condition in (ii). But it perfectly makes sense to talk about  exact 
sequences in ~r namely those sequences which are exact when considered in d .  

3.2.3.3. Lemma. P restricts to an exact functor from ~ *  to ~ *  which we still 
denote by P; let (G, 1t, t, 6)E~ r and let us put (11, L q,  tSO=P(G, t l ,  t, 6). Then 
there exists a unique structure of  a F~ on I that satisfies (i) to (v) above. 

Proof. Let us first see that P(~r162 Let (G ,H~t ,g )E~* .  Then 
P(G, 1t, z, 6) is given by the push-out of  pr -x ~x-modules  

Gc-Z , .H  

H~_~_~.I 

I is a pr -~ ~x-module.  We extend this structure to one over F ~  as follows. Let 
hEd) r. Consider the C-linear mappings 

These satisfy 

61h-zlO(h):  H ~ I, tlh: H - ~  I. 

(61h-t l tg(h))l  =61th- t l zO(h)  (t is F~ 

= ~(6h- ,O(h) )  

~h6 (by 0ii) of 3.2.3.2). 
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Thus by the universal property of  push-out there exists a unique C-linear map, 
denoted h: I~I ,  satisfying h61=(51h-zlO(h) and hh=hh. This defines the structure 
of a pr*~x-module on / ,  extending the pr -1 ~x'Structure and satisfying (iii) of  3.2.3.2. 

Further h becomes pr* ~x' l inear.  Observe that h is injective. Note  that (51 t -  
q = h ( ( 5 t " l ) ,  so t: I--~I factors through h: H~I .  This yields 3.2.3.2(iv). 

Denote t: I ~ H  the factorisation. One has t(51=(st-1 i.e., the action of  
tOEF~ on H i s  given by t61. Define the action of  tOEF~ o n / t o  be (51t--1. 
This gives I the desired structure of  a F~  i.e., 3.2.3.2 (i) and establishes 
3.2.3.2 (iv). 

Note  further that (t(5)h=((51t--1)h=61t--tl=h((st--1)=h(tO), hence tl is 
F~ This establishes 3.2.3.2 (ii) and all together P ( ~ C * ) c d * .  

The next thing we must check is the functoriality of  P ig , .  So let 
(~, fl): (G, H, z, (5)-~(G', H ' ,  z', (5') be a morphism in d * .  By the universal property 
of  push-out there exists a unique pr-~ ~x-linear map 7: I~ l "  satisfying ~(5~=(5~fl, 
~h=z~fl, where I is as above and (H', I', t~, (5~)=P(G', H', z', (5'). Thus P(~,/~) = 
(/~, V). We must verify that V is F~ Therefore let hEd~ r and consider the 
C-linear mapping ~h-hv: I~ I ' .  It satisfies: 

( v h -  hv) (51 = ~h61 - h~(51 

= r h - , 1 0  (h))  - h(5; fl 
�9 �9 P .= (51#h-tlflOq(h)-h61fl 

and  = (6~ h - , ~ 0  (h) - h6~) fl = 0 

(vh-hv)h  = 7h h -h t ;~  = t~ (~h-h~)  = O. 

It follows, by the universal property of  push-out, that 7h-hT=O. Consequently 
is pr*Nx-linear. Especially we have h~t=~ht=t~tT, yielding ~t=t7 as t~ is 

injective. This implies 

r(tO) = V(6at--1) = V(51t-V = (5~t-7  = ((5it-- 1)~ = (tO)7 

i.e., ~ is F~ 
Finally the fact that ~ is injective implies that P is exact. 

3.2.3.4. From ~d* to . g o d  (~r )  

Let AE~d*. Lemma 3.2.2 suggests that we should take a series of  push-outs, 
yielding an inductive system {((PkA)1, ,k)[kEN} of  F~ Here for any 
jE{1, 2, 3, 4} ( . ) j  denotes projecting on the j- th factor; for all kEN, w=(P~A)z 
is an injective F~  from (P~A)x into (P~+aA)I. 

Put P ~*A :=inj. lim (P~A)IE.goz[ (F~ 
We give P**A a ~r-s t ructure  as follows. For any kEN define (5~:=(P~A)~ 

a pr -~ ~x-linear map from (P~A)I to (P~+IA)I. These satisfy (5~+lt~=t~+~(5~, for 
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all kEN, yielding a pr -1 Dx-endomorphism 6 of  P'*A. For any hEO r we have 

6h = inj. lim (6k h) = inj. lim (h6k +~k0 (h)) = h6 + 0  (h). 

Consequently P~*A becomes a Dr-module  by defining the action of  0EDr as 
the endomorphism 6. Obviously P=A is functorial in A i.e., we get an exact functor 

Note that (pkA)I may be regarded as a F~ of  P=A. These induce a 
filtration on P*~A. 

Note added in proof. As was kindly pointed out to me by A.H.M. Lever  the above 
procedure can be simplified by noting that (P" (G, H, z, 6))2 =Coke r  (a,: G"-~H "+1) 
for all n E N - { 0 }  and that P=(G, H, t, 6)=Coker  (a.~: G~r)~H~~ Here for all 
(gl . . . .  , g,)E G n we have put 

an ( g l  . . . .  , gn) = (6 (g l ) ,  6 (g$) - -  l ( g l )  . . . .  , 6 ( gn ) - -  1 ( g n -  1), - -  ~ (gn)) 

and ~=(gl,  g2 . . . .  ) = ( 6 ( g 0 ,  6(g2)--t(gO . . . .  ) for all (gl, g~ . . . .  )EG fn). 

3.2.3.5. From Re (X, X0) to ~r 

The final step (that is the first step of  the reconstruction) is to define a functor 
Q: Rc (X, X 0 ) ~  r Its definition is suggested by Lemma 3.2.1. 

Let ( X ,  v ~ J l ~ z ,  ~)ERc(X, X0). One has: 

(i) d = Y [ f - 1 ] ,  thus e(JV') is an isomorphism (of. Prop. 2.4.4.1); 
(ii) ~'~, JV~2, ~o~/', ~ "  have the structure of  a module over gr ~ Dr=Dx[tO] 

(see 2.2.3) and thus a F~ 
(iii) ~ and e(~/')-l~U are F~ 
(iv) U, V, c ( d ) ,  v ( X )  commute with pr -a D x c F ~  

Denote F'i,,A/" the canonical good filtration on i, JV" and define G:=F~ JI/'. 
Consider the diagram of  F~ 

N~ 
Ic(X)- a~U 

F-1i,./F ~ -  (o~. 

Define H to be the pull-back (as F~ This yields a commutative dia- 
gram with exact rows 

G c2_0. I t  --,-~ N~ 

I [ ~(~)-'~v 

FOi, Ar c_~. F - l i ,  j f f  _~. q~X. 
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Evidently we have a pull-back diagram 

G ---~- N2 

By the universal property of  pull-backs V: JI/~-~/~ induces an unique pr -1 ~ x -  
linear map 5: G-~H. 

We verify that (G, H, z, 6)C~ r Clearly 3.2.3.2 (i), (ii) are true. Also 3.2.3.2 (iii) 
is easily checked. Of course U: J l ~  agrees with t: H-~G, which establishes 
3.2.3.2 (iv). Finally the action of  tO on G (resp. H) is given by to5 (resp. 6 t - 1 ) ,  
which takes care of  3.2.3.2 (v). 

Clearly this construction is functorial and therefore yields a functor 

Q : Rc (X, X0) ~ ~* .  

Note furthermore that Q is exact. 

3.2.3.6. The inverse functor G 

In this subsection we investigate the effect of the functor P = Q  on objects 
in the image of F, the one in Theorem 3.2. Does the reconstruction work well? 

Let ~ /Edg~d (~x)hr and denote F ' i ,  dg the canonical good filtration on i , J r  
For  all kCN denote by tk: F - k i , . / / g ~ F - k - X i ,  d{ the inclusion. By Lemma 3.2.1 
and the definition of Q there exists a natural isomorphism 

Q(Fd/)  ~ (F~ F - l  i , . lg, to, 0). 

Applying pk to both sides and using Lemma 3.2.2 yields a natural isomorphism 

PkQ(F.//[) ~ (F-k i ,  Jg, F--k--li, J//,Zk, O), for all kEN. 

Hence there exists a natural isomorphism 

P~~ Q ( F.///I ) ~ i , ~[ . 

Therefore the next definition doesn't come as a surprise. Define 

G: Rc (x ,  x0) -- J # ~  (~x)  

by putting for all MC Rc (X, X0), 

G(M) :=  Ker (t--f, P~Q(M)) .  

The foregoing can then be restated as: there exists a natural isomorphism 
GF(..g.[)'~..r162 for all ~r 
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(i) Let 

quence 

3.2.4. Proof of Theorem 3.2 

It remains to verify that for all ME Re (X, X0): 

(i) G (M) E d//~d (gx)h,; 

(ii) FG(M)~M, functoriaI in M. 

M = ( W ,  v ~ ~ ,  ~)E Re (X, Xo). In c~ (~x) 

Ker U ~ q~/" 

o ~ C w  

we have an exact se- 

Coker U 

1! 
0 

This yields an exact sequence in Rc (X, X0) 

( �9 ) F(Ker U) ~ M ~ F ( ~  r) -->~- F(Coker U). 

Here 
F(Ker U) = (0, Ker U ~ 0, 1), 

F(Coker U) = (0, Coker U = 0, 1), 

Coker U are regular holonomic ~x-modules with support 

i ,  Ker U ~ P= Q (M) ~ i ,  W ~-~ i ,  Coker U. 

It follows that P<*Q(M) is supported on i(X), so applying the functor Ker ( t - f ,  �9 ) 
yields an exact sequence of  ~• 

Ker U ~-~ G (M) ~ d ~-~ Coker U. 

So finally we arrive at the conclusion that G(M) is a regular holonomic ~x-module  
and G(M)[f-O--~r 

(ii) Let MERc(X, Xo) be as above; then i .G(M)=P=Q(M). Let kEN. 
Applying the exact functor pkQ to the exact sequence ( . )  fields (by 3.2.3.6) an 
exact sequence of  F~ 

F-ki,  Ker Uc--, - (PkQ(M))x --,. F-ki,,A r --,.,- F-k i .  Coker U. 

It follows that (PkQ(M)) 1 is a coherent F~ for every kEN. By con- 

because ~ -  JV[f-~]. 
exact) of ~r-modules  

because Ker U and 
contained in X0 (Prop. 2.4.4.2); 

F (W)  -- (~ ,  ~W.~--  q,~, 1) 

By 3.2.3.6 we obtain an exact sequence (for P~  and Q are 
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struction i,G(M)=P~Q(M) carries a filtration F'i,G(M), where for kEZ 

~Im((p-kQ(M))~ ~ i,G(M)), ff -kEN 
Fki*G(M) := [tkFOi, G(M), if kEN*. 

So we have established that this filtration satisfies 1.2 (3). By construction of P~  
it satisfies 1.2, (2) and (4). The definition of the ~r-structure on P~ Q(M) implies 
that the filtration fulfils 1.2 (1). Hence it is a good filtration. By 3.1.2.1 there exists 
a non-zero polynomial bEC[O] with: b-l(O)c{zEC[O<-Rez<l}, b(tO)~=O and 
b(tO+ 1 ) ~ = 0 .  Clearly this implies 1.3 (5) i.e., it is the canonical good filtration on 
i,G(M). Consequently FG(M)~M. 

We leave it to the reader to verify that the isomorphism is functorial in M. 
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