
Approximation of plurisubharmonic functions 

John Erik FornEess* and Jan Wiegerinck** 

Introduction 

Let PSH(X), C(X), C=(X) denote respectively the plurisubharmonic func- 
tions, the continuous functions and the smooth functions defined on a neighborhood 
of  a set X c  C". Let  [2 be a domain in C". How are PSH(f2), PSH(Y2)nC(12), 
PSH(O)nC(O) and PSH(~)nC(~) related? What  if we replace C(O) or C(O) 
by C~(~2), C=(O). More specifically, is it possible to approximate elements of  
one of  these classes with elements of  a smaller one. 

Richberg [4] showed that for every strictly plurisubharmonic fEC(f2) and 
every ~(z)EC(f2), e(z)>0,  there exists a strictly plurisubharmonic ~EC=(Y2) such 
that 0 <  q~(z)-f(z)<a(z). The first author, [2], exhibited a smooth Hartogs domain 
D in C 2 and a plurisubharmonic function f on it, so that f cannot be approximated 
from above with functions in PSH(D)nC(D). Sibony [5] showed that if  f2 is a 
pseudoconvex domain with C=-boundary, then fEPSH(Q)nC(~) can be approx- 
imated uniformly on ~ with fbEPSH(O)nC~(~). He asked if this were true for 
pseudoconvex domains with C 1 boundary also. 

Section 1 deals with Sibony's question. In Theorem 1 it is answered positively 
for arbitrary bounded domains with Cl-boundary. Our proof  is entirely different from 
Sibony's. Assuming in addition that f2 is pseudoconvex, we also show that every 
fEPSH(t'2)nC((2) can be approximated uniformly on compact sets with 
r Theorem 2. Section 2 contains an example that Theorem 2 
without the pseudoconvexity assumption is false. In Section 3 and 4 we show that 
if f2 is a Reinhardt or a tube domain in C", then fEPSH(f2) is pointwise the limit 
of  a monotonically decreasing sequence ~jEPSH(f2)nC*~ 
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1. Approximation of  continuous plurisubharmonic functions 

Theorem 1. Let f2 be a bounded domain in cn with Cl-boundary. Every function 
in PSH(f2)nC(O) can be approximated with functions in PSH(O)nC=(O), uni- 
formly on ~. 

Proof. Using compactness of  ~ and smoothness of  012, we can find a finite 
open cover B0 . . . . .  Bm of  ~ with the following properties: B 0 c c f 2 ;  for every 
j, l<=j~_m there exists xjEOl2nBj such that for all small enough v >0 :  

(I) ~2 = =  U j=0 Bj, v, 

where 
Bj ,  v = {z = ~+vnj, ~'EBjnO}, 

"~-1 the unit outward normal to 0 0  at xj ,  while n0=0; and finally, with nj, j =  , 

(2) distance (00, (Of2nBj) + vnj) > ~ v. 

Then for every O=j_m we can find possibly empty compact sets Kj, k, k c j  such 

that Kj, kCBk and OBjnOCU'~=oKj, k . Put Kk=Uj Kj, k; KkCCBk. Let 
k C j  

d = min distance (K,, OBk). 
k 

For  every k there exists X~EC~*(Bk) with --1 <-Xk<=O, Xk(z)--O for distance (z, Kk)< 
1 

- -  d, while Zk-- -- 1 on OB k. 
2 

Now let fEPSH(f2)nC(~)  and e>0.  Put f (z)=f(z)+elzl".  There exists 
t /0(0>0 such that for 0<t /<t /0  the function 

fk,,1 =: Y + ~IZk 

is continuous and plurisubharmonic on Bknf2. We define f~, = - r  outside 
BknO. Now we set 

(3) g~ (z) = max fk,, (Z-- V nk). 

Of course, g, also depends on ~, q. We will choose v later, but at least O<v<d/4 
and so small that (1) is satisfied. Note that (1) implies that for zEO there is at 
least one k such that z-vnkE Bk n f2. Now g, will approximate f.  For  zE O 

lf(z)--g~(z)l = lf(z)--makx A,,(z--vnk)I 

= If(z)--  max fk .(z--vnk)] <- r l+en+l f (z ) - -_m~xaf(z - -vnk) l ,  
k , ( z _ v n k ) E t 2 n B k  ,', 

where M = m a x  [z[ ~. In view of  the uniform continuity o f f  on D, the last expres- 
zE/] 

sion can be made arbitrarily small for ~, e, v small enough, independently of  zE O. 
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We will now show that given e>O, O<r/<r/0(z ) the function gv will be pluri- 
subharmonic and continuous on a neighborhood of ~ if v is small enough. By (1) 
and (2) we can find neighborhoods f~v, O<v<v0, of ~ such that 12~cUs=oB~ 
and f2~n((Of2nBj)+vnj)=O for everyj. 

Any zEf2~ belongs to at least one/~k,~ and may be in the boundary of some 
other/~j.~. Observe that zE ~2~n0/~j, ~ implies that there exists k such that z-vnjEKk,  
hence B(z, v)CBk, as v<d/4. Therefore 

f1.,(z--vnj) = f(z--vn~)--rl =A. , ( z -vn j ) - - r l  ~ A .~ ( z - vnk ) -n  

+ [f(z--vnj)--f(z--vnk)l <=A,,(z--vnk)--rl/2, 

if v is smaU enough, by uniform continuity o f f .  We conclude that for zEO v, v 
small enough, the maximum in (3) is already obtained by taking only those k into 
account, for which (z--vnk) is an interior point of Bk. Hence gv will be continuous 
and plurisubharrnonic on Or. Finally, approximate g~ with g~EPSH(O)nC~(O), 
by convolving g~ with a suitable approximate identity. [] 

Remark. N. Sibony observed that the proof of Theorem 1 also gives the fol- 
lowing result. 

If a continuous function f on a compact set K c  C n has the property that for 
every e>0, zEK there exists a neighborhood U of z and a plurisubharmonic func- 
tion h on Usuch that lh-fl<e on Kc~U, thenfis  the uniform limit on K o f  smooth 
plurisubharmonic functions defined on a neighborhood of K. 

A continuous plurisubharmonic functions go on a domain f2c C" is called a 
bounded plurisubharmonic exhaustion function if 

a) go(z) _~ 0 VzEI2, 

b) f2 c = { z E f 2 : g 0 ( z ) < c } c c l 2  if c < 0 ,  

c) O =  Uc<0oc. 

K. Diederich and J. E. Fornaess [l] and later N. Kerzman and J. P. Rosay [3] showed 
that such functions exist for bounded pseudoconvex domains with C z, respectively 
C ~ boundary. 

Theorem 2. Let t-2 be a bounded pseudoconvex domain in C" with C ~ boundary. 
Every function in PSH(f2)nC(f2) can be approximated, uniformly on compact sets 
in I2, by functiong in PSH(Q)nC~(O).  

Proof. Let go be a bounded plurisubharmonic exhaustion function for f2. Let 
K~= {zE 12; go(z)<_- --e}. It will be enough to show that the approximation is possible 
on every K,, ~>0. Let fEPSH(f2)nC(O). Let 9,=go+38/4, then fp ,~-~/4  on 
K~ and go,->e/4 on L~=K~/4--K~t ~. We can find N>O such that 

fe,/~ = Max (f, Ngo,) on Ke/a 
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satisfies f , , N = f  on K s, f~,N=N~o, on L~. Thenf~,N extends to a continuous pluri- 
subharmonic function on ~ by setting f,,N=Nq~, outside K./~. By Theorem 1 we 
can approximate f~.N uniformly on ~ by functions in PSH(O)c~C~(O). Hence f 
can be approximated by such functions on K,. [] 

2. An example of non~ 

We next give an example of  a bounded domain with C = boundary in C 2, which 
shows that Theorem 2 without the pseudoconvexity condition is false. 

Example. Let 

O -- { (z ,  w ) ~ C 2 ;  Iw-ei~<l=l)l  2 < r ( lz l ) } ,  

where r and ~o are as in the figure, that is rEC~176 -l<=r~_2 such that r(t)~O 
if and only if t ~ l  or t=>17, r ( t ) = 2  for t = 2 , 9 , 1 6 ,  r ( t ) = l  for 3=<t<=8, 10 <- 
t<=15, r ' (1)=2,  r ' ( 1 7 ) = - 2  and q~CC~(R) such that 

(p( t )<-~z/2 for t ~ 4 ,  t ~ 1 4  

~o(t)>+Tz/2+100 5 ~ t N 6 ,  1 2 ~ t < =  13 

(p (t) < - 7=/2 +100 for 7 < t <  10, 

I O0+rc/2 

100-~ /2  

-~/2 ___.J 
1 ?- 3 4 5 6 "1 8 9 10 11 12 13 14 15 16'1'7 18 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

r 

r(0 
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Clearly g2 is invariant under (z, w)--,-(e~~ w), i.e. f2 is a Hartogs domain, f2 has a 
smooth boundary, as the gradient of  the defining function is non-vanishing at the 
boundary. 

For fixed Zo, f2c~{z=z0} is a disc with radius (r(Izol)) 1/~ and centered at 
e ~(tzo0. When we vary ]z0[ the disc will spin around w = 0  with varying radius. 
The annulus 

A : { ( z , w ) :  w = 0, 2 -<_ Izl <-- 15} 

is contained in ~. The circles C l = { w = 0 ,  Izl=2}, C2={w=0,  Izl=9}, C3= 
{w=0, Izl--16} lie compactly in f2. 

On f2c~{3<lzl<8 or 10<lzl<15} there exists h(z, w), a continuous branch of  
arg w, such that 

~ ( z ) - z / 2  <_- h(z ,  w) <- e ( z ) + ~ / 2 .  
Define 

fl(z, w) = 0 on O {Izl < 4 or Izl > 14} = I21 

f2(z, w) = max {0, h(z, w)} on s {3 < Iz] < 6 or 12 < [z] < 14} = 02 

f3(z, w) = max {100, h(z, w)} on f2 {5 < Izl < 8 or 10 < Izl < 13} = f~3 

A ( z , w ) = l O O  on 7 < [ z [ < l l  =O4.  

The functionsft  are plurisubharmonic on f2~ and f~=fj  on f2~c~f2s so f(z, w):= 
fi(z, w) for (z, w)Ef2i is plurisubharmonic on f2. 

I f  g is plurisubharmonic on a neighborhood of  ~, then the restriction of g to 
the annulus A is subharmonic. Now I g - f l  < 1 on C1, C2 and Ca is impossible, 
because theng  would violate the maximum principle on A. Hencefcannot  be approxi- 
mated on compact sets by functions in PSH(O--). 

3. Smoothing of  famil ies  of  subharmonic functions 

In this section we study the behavior of  families of  subharmonic functions 
on domains in C when convolved with Lebesgue measure of a finite interval. 

For f2 a domain in C, let SH(Q) denote the set of  subharmonie functions on f2. 
1 

Let 0 < R < l / 4 ,  I = ( - 1 / 4 ,  1/4), c =  Let 
2zri 

and 

Fix 

~ =  { , ~ S H ( P ) n C ~ U O :  - 1  < ~ < 0 

q~(z) = cfAq~(O log [z--~[ d~ ̂  d~, supp A~p c - ( R ,  R)2}. 

0 < e <  1 /4 -R .  Let 
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g 

where ~.(z)=T[f_~o(z+Odt, and let 

1 
A(z) = ~ - f _  log Iz+ tl dt. 

Lemma 1. For 5>0, f~(z) is a continuous real valued function on C. Moreover 
f~(z)--log lzl is bounded from below independently of e and tends to 0 as z ~ o .  

Proof. One computes directly, putting z=x+iy ,  

f~(z) = ~---~ [ (x + e) log ((x + e)~ + y~)-  2(x + e) + 2y arc tan x +..__.._~y 

- ( x - -  5) l o g  ( ( x - -  e) 2 + y~) + 2 ( x - -  ~) - 2y arc tan x - -  8 ].  
Y 

The arctan terms are defined as 0 if y=0 .  Now continuity off,(z) is obvious. Note 
that f~(ez)-log 18zl =f~(z)- log Izl. Hence for the second part of the lemma we 
only have to consider f~(z)- log lzl and the result is immediate. [] 

Lemma 2. For every s>0  ~ is equicontinuous on I ~. 

Proof. Pick ~pE ~, z, z' E I ~, then 

(,z 
e,  (z) - e ,  (~') = ---~ ~ f 2 e  I~!<~ A ~ ~ 1 7 6  -[z,_~+tl dt 

= ~ f~t <~ a ~ (0 (A ( z -  ~)-f~ (z ' -  o) de ̂  d(. 
We have 

0 -< c f ~ , ~  ~ ~ (~) aft ̂  a~ _-< 1/log (1/41/2) c f ~ 0  (r I CI dC ̂  dC 

= ~o(0)/log(1/41/2)<2/log 8, independently of q,, because ~o(0) ~ - -  1. 

Now the result follows from Lemma 1. [] 

Lemma 3. For every ~l>O there exists 
zEP, then ~o~(z)>~p(z)--~. 

Proof. Computation gives 

50>0 so that if  0<8<80, cpE~- and 

~0, ( z ) -  ~ (z) = e f~ t . 1  ~ ~o (~) (f~ ( z -  ~ ) -  log I z -  ~1) d~ ^ d~. 

Fix 6>0. For some Q>I, IA(z)-log Izl[<6 if lzl_->~o and also [f~(z)--log Izll<6 
if Izl-->5~, by Lemma 1 and the note in its proof. Hence, 

~ C  
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where - C  is the lower bound given by Lemma 1. We choose 6>0  so small that 

c f~c I  ~ Aqg(06 < q/2, uniformly in ~'. 

Next choose e>0  so small that log lz-(l<=-2C]q if Iz-(l~_pe. Then 

q~8(z)-cp(z) >--q/Z+r//2 c A~o(o log Iz-~ld(  ^ d~ >- -rl.  [] 

Let A={O~<IzI<Q2}=C and S : { z :  ~/l<Imz<r/~}. Let ~a,  ~s  be the sub- 
harmonic functions on .4, respectively S with values in ( -1 ,  0). For e>0  put 

1 . 
where ~p, (z) = -~e f -~ ~o (zd ~ dO and 

1 
where ~os=-~-f~" cp(z+t) tit. 

K3 be compact in S. 

Proposi t ion 1. 

Let K1 be compact in A\{0},/s be compact in .4, 

Proof. First we reduce the case of the (degenerated) annulus to that of the 
strip. Consider the holomorphic map F(w)=e-~W=z, w=u+iv, z = x + i y  on 
S={ln Ql<V<ln ~}. H e r e  In Q~ is interpreted as - ~  if 0x<-0. Let Gj be the 
family of subharmonic functions on ~ of the form ~k = r o F, ~pE ~ If ~0 o FE G~ then 

if" ~o(e-lW+io) dO = (~poF)8(w). (~o, o F ) ( w )  = 2e -8  

In view of the periodicity of functions in Gj equicontinuity of ~a~lrl will follow 
from equicontinuity of ~s~[K. Let R be an open rectangle such that K 3 c R c S  
and letg be Green's function for R with pole in woEK3. Let M = m a x  (--g(w))<O and 

wEK3 { ( 1 1  ) } 
~1~. is 4 - -  max -~-g,  ~-(q~--l) : ~OE~s �9 It will be enough to show that "" 

equicontinuous, since the functions in ~ e  are harmonic on R\{--g~-M[2},  this 

follows from Lemma 2 applied to scaled smoothings of elements of "~R- 
Next (ii) follows in the same way from Lemma 3. [] 

(i) The families ~"ltq, ~s~lr8 are equieontinuous. 
(ii) I f  e>0  is small enough, q~E~a respectively ~s and zEK 2 respectively 

zE K3, then cp.(z)-cp(z)>-r/. 
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4. Smoothing on tubes and Reinhardt domains 

We will show that on tube domains and on Reinhardt domains every pluri- 
subharmonic function can be approximated pointwise and monotonically from above 
by C%strictly plurisubharmonic functions. 

For  q0 a plurisubharmonic function defined on a neighborhood of  zE C" and 
~=(e~, ..., e,), ei>O small enough we put  

1 81 f ~" qo(zlei~ z,  ei~ dO, dO1 
2" ~1...e . �9 .- :_~ ,  " . ,  ~ p J z ) -  ~ [_~, ... 

and 

| f c l  . . . fen (p(Zl+t  1 . . . . .  Zn~-tn) dtn d t  I �9 opt (z ) -  2,ez.. .e" -", -~, ... 

Lemma 4. Let  t) be plurisubharmonic in a neighborhood o f  0 in C"(zl . . . . .  z,). 
Fix a=(el  . . . . .  e,), ei>O. Then 0~(z)~O(0) as z ~ 0 .  

Proof  By upper-semicontinuity of  0, ~ r (z) ~ t) (0). Suppose the lemma 

does not hold. Then 0 ( 0 ) > - -  ~ and there exist z~ 6 > 0  so that 

(4) O,(z (j)) < t)(O)--6. 

Let ~ ( z ) = 0 (  ....... )(z), then ~ ( z ) = ~ ( I z l l  . . . .  , Iz,]) is monotonically increasing in 
each variable and 7p (0) = 0 (0). But (4) and upper-semicontinuity give 

__2__1 r ~  ~ 
~;(zq)) = (2re)" :o  "'" f o $(z(li) e'~ . . . . .  z(,J) e '~ dO1 ... dO, 

1 
< (-g~)" (fc- , , ."" +ft-=,"~~ . . . .  ~ ~  

< (2~)" ((2'On-- (2~)")(0 (0) + 1/2 a ({-)") 
= (2=)" ( 0 ( 0 ) -  3) -~ (2~)" 

for all large enough L a contradiction. [] 

Lemma 5. Le t  ~2 be a tube or a Reinhardt domain in C" and let 9 be a nonnegative 
plurisubharmonic function on ~2. Le t  K be a compact set in ~. Then there exists a 

sequence {9,,k} o f  continuous plurisubharmonic functions on f2 such that 9,,  k ~ ~0 point- 
wise on K. 

Proof  I f  Q is a tube domain we will use q~" to approximate 9, while if f2 is 
Reinhardt, we will use ~0~. The proofs for both cases are similar, but the case of  the 
Reinhardt domain is complicated because of  the "degeneration" of  ~0~ at the co- 
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ordinate hyperplanes. We will restrict ourselves to the case of Reinhardt domains. 
Fix e=(et ,  ..., e,), ei>O. We show at first that cp~ is continuous on f2. Pick z~ 
(z o, o o , ,, , o o ,, , o ..., z2)Eg2. We can assume z =(Zo, Zo) where z ~ Zo=(Z~ . . . .  ,zO, Zo=tZ/+x, ..., 
where O<=k<-n, z~162 if j ~ _ k ,  z~ if j > k .  Let f = ( j ,  jz") be a sequence 
tending to z ~ z ' C C  k, z " C C  "-k ,  and let jw=(z; ,  jz"). We have 

q~ , ( jw) -~o , ( j z )  ~ 0 as j -0-~, 

by repeated application of the equicontinuity part of Proposition 1. Hence it suffices 
to show that 

~o~(jw) ~ ~0,(z ~ as j ~ , .  

By Lemma 4 we have for fixed (01 . . . .  , Ok) 

~n t n ( 2 0 o i O  1 �9 �9 t t  iO n 1 fe +x . . .f_e ~ "e~ a . . . . . .  z~e'%, j z ~ ' + l e ' ~  . . . .  jZ  n e )dO, . . .  dOk+l 
2"-%k+t ... e, -,~+x 

-+ q~ ( z~ e ~~ . . . . .  z~ e % ,  O, 0 . . . . .  0). 

So Lebesgue's dominated convergence theorem gives 

_ l f"* f , 'd~  dot 
2net . . .  e, -,~ "'" - ,~  " '"  " 

1 f"~...f"~.~o(zOe '~ z~,e'~ O)dOk dOt p,(z~ 
2 "  ~ t  . .  . en - 

a s  j - - - ~ .  

The mean value inequalities clearly hold for cp,, so we have shown that % 
is a continuous plurisubharmonic function. Next let tt>0. By repeated applica- 
tion of Proposition 1, if e~ . . . .  , en<-e(q) for small enough e(q), then 

q~,(z)+q > ~o(z) for each z C K .  

Also, by upper-semicontinuity of  (p, l I~mo~O,(z)<=~o(z). Now pick a sequence 

t t ~ \ 0  and corresponding em----ttemt, "" ,  e,~}=e(qm) and let 

= 

Now a suitable subsequence ~o,,~ will approximate q~ monotonically from above 
on K. 

Theorem 4. L e t  f2 be a Re inhard t  domain or a tube domain in C" and let  qo be 

a p lur isubharmonic  f unc t ion  on fL  Then  there ex i s t s  a sequence o f  C ~ s tr ic t ly  pIuri-  

subharmonic  &not ions  converging poin twise ,  monotonical ly ,  f r o m  above to q~. 
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Proof. First assume q~ is bounded from below. Let  {K~}~= 1 be a sequence 
of  compact sets in ~ such that K , , c i n t  Km+~, [J~ Km=s For  each m there exists 
a sequence {~0.,,,}~=1 of  continuous plurisubharmonic functions on f2 with ~o,,,~',,, 
on Kin, by Lemma 5. We now produce a new sequence: For  each m, let n(rn)>m 
be so large that 

1 
~On(m),m < q~m, . i+- -  o n  K j ,  j = 1 . . . . .  m .  

m 

This is possible because by Dini's theorem max (q~,~, ~p.,, j.) converges uniformly 
to ~Pm, j on Kj as l-~ oo. 

Let  qok= SUpm_~k %(m), m" We claim that ~Pk is continuous and plurisubharmonic 
on ~2 and that ~0k\~0. In fact we only need to show that (Pk is upper-semicontinuous. 
Pick zEs ~>0 ,  l > k  so that zEintKl,  1/l<6. Assume m>=n(l) and wEK t. 
Then 

g,.(,.~,,.(w) < q~,..~(w) + 1 < ~o.~z),~(w) + 6. 

Hence 
q~k(w) ~- ( max ~o.,).m(Z)) v q~.(t),l(z)+6 <= q~k(z)+6. 

w~z  k~m~n(l) 

For  general ~0 let q ~ \ m a x  (q~, - -N)  as k ~ .  For  each m let n(m) be so 
large that 

1 
m ~oC.)m < q0~+--= on K~, j =  1 . . . . .  m. 

J 

Form q~k=maxm_~k ~0.~,n ) and repeat the previous argument. 
To obtain strictly plurisubharmonic functions we put 

(Ok(Z) = qOk(Z)+ k [Z]2 + l .  

By Richberg's theorem [4] there exist C ~, strictly plurisubharmonic functions ~k 
such that 

1 
o _~ ~k (z)-  ~k (z) ~_ 7 "  

Then {~k(z)} forms the required sequence. [] 

5. Approximation on Reinhardt and tube domains in C 2 

In this section we will prove that a result similar to Theorem 2 holds for  tube 
domains in C 2. Reinhardt domains can be treated similarly. The proof  will be 
based on some lemmas. Let D be a bounded domain in R 2 with C2-boundary and 
let G be the tube with base D, i.e. G = D X i R  2. We will call a boundary point x 
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of G (strictly) convex if and only if its projection on the base is a (strictly) convex 
boundary point of D and similarly for (strictly)concave boundary points. 

We split the boundary 01) of D in three disjoint parts: 

OD = Scx u Sce u Fit, 

where Scx denotes the strictly convex part of tgD, Sce the strictly concave part of 
OD and Fit the fiat part of 0D, i.e. Flt=OD\(ScxuSce).  

Lemma 6. Let G be a tube domain and f a plurisubharmonic function on G. I f  a 
is a strictly concave boundary point of G, then f is bounded from above in a neigh- 
borhood of a. 

Proof. By an atfine change of coordinates we can achieve that a=(0,  0)E C 2 
and that tgD at (0, 0)ER ~ is parametrized by (t, ~o(t)), where q~: [ - 2 , 2 ] ~ R  is a 
C S-function with 

 0(0) = = 0,  < - l ,  

so that Dr~[-2, 2 ] •  10, 10] is given by x2>q~(xa). 
Consider the family of complex discs A~: {141< 1}--C 2, associated to a 

A~(2) = ( 2 , - - 2 3 / 2 + 0 ,  0~_ 8 <  1. 

To bCOG, []blJ<l we associate a similar family {A~} obtained by translation and 
rotation of  {A~}. The boundary of  such a disc has distance to OG~l/4. It is then 
clear that uOA~ is contained in a compact subset K of G, while uA~ contains 
a neighborhood N of a in G. By the maximum principle for subharmonic functions 
applied to foA~ it follows t h a t f i s  bounded on N by its maximum on K which is 
finite. [] 

I.emma 7. Let G, f and a be as above and assume that f is continuous on G. Let 
L be a complex line tangent to a. Then f lL  extends to a subharmonic function in a 
neighborhood of a relative to L. 

Proof. Without loss of generality we can take a=(0,  0), L =  {z2=0}. Observe 
that f is subharmonic on L \ { R e  zl=O} and by Lemma 6 bounded on a relative 
neighborhood U of (0, 0). There we define f(iy, 0)=: limsupz~y f(z,  0). Clearly 
f (z ,  0) is upper semicontinuous on U. We have to check positivity of  the La- 
placian A~f(z, 0) in distribution sense at z=0.  Let ~o be a nonnegative test func- 
tion on U. Then using Lebesgue's dominated convergence theorem we have 
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The following lemma is very similar to Lemma 2 and Proposition 1. We will 
consider complex lines in G of the form 

(3) L: ~-~(a~+b,c~+d) ,  ~ R ,  a, cER, b, dCC, a 2 + c 2 = 1 ,  

where R is the square IRe ffJ <6"1, [Im ~l < Cz. With f a plurisubharmonic function 
on some tube domain, recall that f ,  was defined as 

1 f ) . . f ( z l + i t ,  z +i,)dtd . 
4el e., 

Lemma 8. Let f ,  f~ and R be as before and let L be a collection of  lines as in (3). 
Suppose that f is bounded from below and that for L ~ ,  L ( R ) c ( D u S c e ) X  
i{ l l lmzl l<M}.  Then for every compact subset K of  R, {f~oL(0}Le~o is an equi- 
continuous family on K. 

Proof. Fix L(Ae. By a Euclidean coordinate transform L ( 0  is transformed 
into ( ~ ( ( ,  0). In view of Lemmas 6 and 7 f (~+is,  it) is a bounded subharmonic 
function on R, while the bound is independent of the choice of L and of  t, s< 
max {sl, e2}. We can assume - 1 <_f<-0 on R and by enlarging R in the imaginary 
direction, K+i[-2][el l ,  2l[ellJc{C: g(C, 0)=>m>0}, where g is Green's function for 
R. As in the proof of Proposition 1 we introduce f ~  by 

f ~  (zl, za) = max { f (z t ,  z~)-  1, - 2 g ( z t ,  0)/m}. 

It will be sufficient to prove the Lemma for f ' .  In fact we only have to consider 
potentials of the form 

F(~ + it, is) = e f l c A . f  ~ (n + it, is)log l~-~/l dtl ^ dgl. 

Now we continue as in Lemma 2, keeping in mind that  as a consequence of  the 
coordinate transformation, the t, s-domain of integration becomes a parallelogram 
P =  PL in the plane and is given by 

P = {(t, s) : tE I(s), sE I}, 

where I and I(s) are intervals of length <-2 lie]I, depending on L. All PL are con- 
tained in a fixed compact set determined by ~ .  Now by Fubini's theorem 

4,~ ~(F,(~,, O)-F~(r 0)) = f ,  F ( ~  + it, is)-F(~2 + it, is) dt ds 

-- f ,  c f . ~, f ~  (~1 + it, is) (log 1~ - r/[ - l o g  1~2- rll) drl ̂  dfl dt ds 

-- f f R A,I- is) f (log n + it] - log 1r q + i t l )  d t  dq  ^ dO ds. 

The inner integral can be computed explicitly, compare Lemma 1. It follows that 
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for I(1--{,,1 small enough the inner integral is uniformly small, independent of 
qER, sEL The proof now ends as that of  Lemma 2. [] 

Lemma 9. Let G, f,  f~(z) and a be as before and assume that f is bounded in a 
neighborhood of a, then for all small enough e f" is continuous at a. 

Proof. We may assume a=(0,  0) and the same parametrization of  OD as in 
Lemma 6. Let , z = , x + , y E G -  tend to a. Because f ,  is a convolution in the fiber 
direction, f " ( . z ) - f . ( . x ) = O ( . z - . x )  and we can assume . y = 0 .  We now consider 
two cases: 

I f  .x~=>O then 

I f ( .x) - f (0) l  -< If(.xl, .x~)-f(5, .x2)l + l f (6,  nx2)-f(5, 0)1 + If(3, 0)-f(0)l ,  

which becomes arbitrarily small if 6 is close to 0 and n is big enough, using Lemma 8 
and the continuity o f f .  on G. 

I f  .x2<=0 then let .b be the point on OD which has minimal distance to .x 
and L" the line through .x parallel to the tangent of  OD at .b. Let .e be the inter- 
section of L" and {x2=0}. Then r.x-.c[<=l.xl and ].c]~[.x[ by concavity, and 
application of Lemma 8 to the family {L"} gives the result. [] 

Lemma 10. Let f be a continuous function on a convex open subset U of RL 
Then there exists a convex function h on U with h>-f. 

Proof We can assume f > 0  on U. Let cp be a convex exhaustion function 
for U, i.e. q~ is convex, Kc:={q~<=c}ccU for every eER and U=ucK~. Replace 
cp by max {~o, 0} if necessary. For every m, m = 0 ,  1, 2 . . . .  we define 

q~.,(y):= (max {f(x): xEK,,+2})(rp(y)-m). 

Now we take h(x)=sup {(pm(x): m=0 ,  1, 2, ...}. On any of  the Kj we only have 
to consider finitely many ~0m, hence h is well defined and convex. On Kr,+~\K,,+I 
we have q~m~f, so h>=f [] 

Lemma 11. Let M be a compact set in the relative interior of Scx. Also, let f 
be a continuous plurisubharmonic function on G. I f  F is a compact subset of G, then 
there exists a pIurisubharmonic function f ~ on G such that f ' [ r = f  and f "  is con- 
tinuous on Gu(MXiR2). I f  K c O D \ M  and f is in addition continuous up to K X i R  ~, 
then so is f ' .  

Proof We can assume f ~ 0  on G, replacing if necessary f by max {f, m } - m ,  
where m = m i n  {f(z): zEF}. If  Scx=OD, then the technique of  the proof of  
Theorem 2 readily gives the result. From now on we assume Sex#OD. It is con- 
venient to consider Sex connected at first. 
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There exist an e > 0  and finitely many strictly convex subsets Cj of  D con- 
tained in slightly larger strictly convex sets Bj, which are not cOntained in D, 
such that 

and 

M = U1 interior (MnOB~), interior (MnOB~) c =  interior (MnOC~) 

{xED\CI: d(x, C 1) < ~} c c  By, 

where the interior is relative to 0D. There exist bounded convex exhaus- 
tion functions gj for  Bj. We multiply gy with a positive constant, so that g j < -  1 
on {xED\Ci: d(x, C/)<e}. We take hi=max {g j , -1 }  on Cj, and extend it 
as - 1  on D - \ C j .  Now put h*=max  hj and consider it as a function on G- .  
Next we set c = - - l / 2 m a x  {h*(z): zCF} and h:=h*+c; h is a continuous convex, 
and hence plurisubharmonic, function on G- ,  h = c on a relative neighborhood of  
M• 2 in OG, h<=-e on F. 

We can find a curve F in contained in D except for  the endpoints Pl, Pz which 
are on Sex \M,  such that the arc determined by Pl,  P2 in Sex contains M. In addi- 
tion we require that F~ {h>c/2} and that at the endpoints F consists of  straight 
line segments Fi:=(pz; q~], i = 1 , 2 ,  which are orthogonal to Sex and so small 
that the line passing through q~ and perpendicular to Fi will meet Sex before it meets 
any other point of  OD, if traversed from q~ in any direction. Let  Gi be the component 
containing Gi• 2 of  the subset of  G which projects orthogonally onto FiXiR2; 
let P~ be the projection. In addition we can take the ~ so small that GInG2=O. 
That  all o f  this is possible is a simple consequence o f  the strict convexity. The set 
G"NFXiR 2 consists of  two components, G ~ containing F and the other one, G 2. 

Let  ~ '  be a line segment in D strictly containing F~. We apply Lemma 10 to f 
restricted to F" XiR 2. This furnishes a convex function ~ - > f  on ~ '  •  2. We 
extend ~k i to Gi by Oi(z):=ff(Pi(z)). The functions ~k i will be continuous on 
GT,\(piXiR~). Let F~=/"N(F~w~) and let 

, ( y )  = max {~(ql+iy),  ~2(q2+iY), max {f(x+iy): xEF~'}}+ 1 

on R 2. Lemma 10 gives a convex function ~3-~q on R 2. We will view fin as a func- 
tion on R z X iR '~ by r (x + iy) = ~3 (Y). Next we define a function ~ as follows: 
on Gi put  ~ = m a x  {~i, if3}, i=1 ,  2, while on G'~(GlwGz) we set ~0=r Ob- 
serve that by definition of  ~z, ~n>'~i on bG~nG. Hence ~O is a convex function 
on G and ~O is continuous on G-\({px,p2}XiR 9. Obviously r  on GXiR 2. 

Now f "  is constructed as follows: we can find a positive constant c such that 
~+ch<f  on F. Also ~+ch:~f on GXiRL Hence the function f ~  defined by 
f '=d /+ch  on G z and by f ~  = m a x  {f, t~+ch} on G'x,G 2 satisfies the require- 
ments o f  the lemma. 

I f  Scx is not connected, then M might consist of  at most finitely many corn- 



Approximation of plurisubharmonic functions 271 

ponents. For  each of  them there exists a function like 0 + ch. The maximum of  
these functions should be used instead of  O+ch in the preceding paragraph to 
obtain f ~  in the general case. 

The second assertion is obvious since h is continuous and the functions ~k~ 
will be continuous up to K• ~ i f  f is. [] 

The next theorem is the main result of  this section. In the proof  the methods 
used in Theorem 1 and 2 are combined. 

Theorem 4. Let G be a tube domain in C 2 with C~-boundary as above. Every 
function in PSH(G)nC(G) can be approximated uniformly on compact sets in G 
by functions in PSH(G-)caC(G-). 

Proof. Let F be a compact set in G and fEPSH(G)caC(G). Replacing f by 
max {f, min {f(z):  zE F}} if necessary, we can assume that f is bounded from 
below. For  e small, f ,  will be uniformly close to f on F, hence it will be sufficient 
to approximate f , .  By Lemma 6 and 9 f~ is continuous up to the strictly concave 
boundary points of  G. 

Since D -  is compact and 0D is smooth, there exists a finite open cover {B0, ..., Bin} 
of  D -  with the same properties as the cover used in the p roof  o f  Theorem I. We 
will use the same notation as in Theorem 1. We can arrange that the cover has the 
additional property: 

(4) For  j = l ,  2 . . . . .  m, OBjnbDcScxuSce .  

Here we used that the normal of  a C2-curve in R ~ remains constant along com- 
ponents of  the flat points. For  all small enough n, (4) remains valid for  B j, ~ :=Bj  + vnj 
instead of  B j,  more precisely, there exists v0 > 0  such that 

{OBj,~caOD, j = 1, 2 . . . . .  m, 0 <- v < v0} c M0 c intMx, 

where 21//0 and 3/1 are compact subsets o f  ScxtJSce. There exist compact 
sets Kj, k, Kk and functions Zk with the same properties as in Theorem 1. Let  
R=max{JJyll:  x+iyEF}. Let B={IlYII<3R}, B j = B j •  B;,,=B;,~• Kk~- 
=Kk+iB, Kj, k=K~,k• and Zk(Z)=Zk(X). 

We use Lemma 11 to modify f~ above M:--Mlc~Scx. This yields a plurisub- 
harmonic function h with h=f~ on F and h is continuous on G up to MXiR~w 
{strictly concave boundary points}. Now we can copy the proof  of  Theorem 1 
verbatim for h, using Bi, B j, v etc., and observing that in Theorem 1 we really needed 
the uniform continuity of  f only on a small neighborhood relative to t2-  o f  the 
Ki, k's. This then yields for arbitrary ~ > 0  a continuous plurisubharmonic function 
h" defined on a neighborhood of  D-XiB ,  with IIh-h'llr<d. However, similar 
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to  ( the p r o o f  of)  L e m m a  10 there  exists a convex func t ion  g ( y ) ,  such tha t  z < h  

on F, b u t  z > h "  on D - •  Hence  the func t ion  g = m a x  {h ~, ~} for  

I ly l l<2R,  g = h "  fo r  Ilyl] > 2 R  is con t inuous  on a n e i g h b o r h o o d  o f  G -  and  a pp rox -  

imates  f on  F. One  can  now s m o o t h e n  g by  convo lu t ion  as usual .  [] 
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