
Poles of f(z, w) and roots of the B-function 

B. Lichtin 

Introduction 

Let f :  (C 2, 8)~(C, 0) be an analytically irreducible germ. To f there is as- 
sociated its local b-function at 0, denoted bs(s ). Properties of by(s) have been found 
by many authors [1, 2, 7, 11, 12, 14, 15, 16, 17]. In this paper a geometric construc- 
tion is used to give precise formulae for roots (not all roots however) of bi(s) in 
terms of the geometry of  the branch (i.e. germ of an analytically irreducible plane 
curve) defined by f at 0. 

Brauner showed that the topological properties of  a branch are determined 
by the finite set of  integers (n,/~1 . . . . .  /~g) comprising its "characteristic sequence". 
That is, the topology of  the link {f=0}c~S,, S, a small 3-sphere centered at 0, 
is completely determined by this sequence. This is discussed in [i9, pgs. 5--13]. 
Moreover, the canonical embedded resolution of f ,  an important component of  
the work described here, is also determined by this sequence. This is discussed in 
[12, See. 1]. 

To state the main result, let e(~ and e(i)=gcd(e(i-1),pi), i = 1 , 2  . . . . .  g. 
For each i=  1, 2 . . . . .  g, define 

/~+n (0.1) r ,  = 

R i ~-. 
~ e(f - 1) + ~ i  - 1 ( e( i -  ~) --  e(Z- 1)) + . . .  + ~ (e(O) _ e(1)) 

e(i) 

Theorem 1. The ratios ~1 . . . . .  , Oo are roots of  by(s). 

and Q i = - r i / R i .  
In [12, pg. 151], it was shown that if f is the complexification of  a real analytic 

germ at 0 and if gcd(ri, Ri)=I,  then Qi was a root of by(s). Here, for any germ 
f as above, and independent of  the god condition, one shows 
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Remark. For the precise relation to polar invariants o f f  see [11, pg. 153]. 
Closely allied to b:(s) is a generalized function, denoted l f l  2~, and defined as 

follows [1]. Let U resp. T be open neighborhoods of 0 resp. 0. Set U*= U - f - l ( 0 )  
and T * = T - { 0 } .  One chooses U and T so that f - x ( t )  is transverse to OU for 
each tET and f:  U*-*T* is a C = locally trivial fibration (Ehresman--Milnor 
fibration theorem). This is a "good representative" of the germ f .  Set 

f2~ 2'2) = {C = forms of type (2,2) with support in U}. 

o(~,~) by the rule Define [f[2~, for Re(s)>>1, on ~v 

(0.2) (Ifl~S' co) = f v  [f[2"co" 

It is more convenient to think of  this as a function ofs. So, (0.2) is denoted by I:(s, co) 
in the following. 

Using Hodge-theoretic techniques, Loeser [14, Th. 1.9] has shown that a con- 
sequence of Theorem 1 is the 

Corollary 1. 01 . . . . .  Qg are poles of the meromorphic continuation of Iy(s, -) .  

Section 2 gives a direct "classical-style" proof of the corollary. In so doing, 
a precise expression for the value of  Ress=Qi I:(s, co) is derived if  gcd(r~, Ri)=I .  
The residue is zero i f  co(0)=0. 

In Section 3, formulae for certain poles of  I:(s, co) are determined even if  
co(0)=0. This is accomplished by extending the analysis in [12, Sec. 1] of the ordering 
properties of candidates for poles of  I:(s, co) arising from the canonical resolu- 
tion o f f  at 0. Section 4 proves a general result about the roots of any local b-func- 
tion b:(s), for a func t ion fon  C" at any point xE cn. It shows that one can estimate 
their numerators by the multiplicities of a jacobian of  an embedded resolution 7r 
(for the germ o f f  at x) along the divisors of  the exceptional locus. Theorem 1 is 
then a specific (and more precise) example of  this phenomenon. 

Section 1 

Because the discussion below uses the canonical resolution, before proceeding 
to the proof of Theorem 1, it is useful to recall certain aspects of  the resolution 
algorithm (cf. [12, See. 1]). 

For f :  U ~ T  a good representative of the germ f ,  as defined in the introduc- 
tion, let re: Xres~U denote the canonical resolution o f f .  rc is determined by the 
characteristic sequence (n, fll . . . . .  fig) at 0 as follows. 
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(1.1)5 

and then 

(1.2) 

It is helpful to think of  n as being segmented into blocks ~0, ~)~ . . . . .  ~ _ 1  con- 
sisting of compositions of  quadratic transformations 

~ :  Xo(O . . . . .  x~<o(O. 

When i=0,  set Xo(i)=U. In general, XN(i_~)(i-1)=Xo(i ). 
To determine the length N(i) of ~ ,  one writes the continued fraction expansion 

for the first Puiseux ratio ~)/n  ~0 of the strict transform of f i n  Xo(i ) 

n"~ = [ k ~ ( 0  . . . . .  /%(0] 

N(/) -- Z~=I kj(0. 

Each quadratic transformation creates one divisor in the exceptional locus of n. 
There are g divisors ~1 . . . . .  ~g of special interest here. Each ~ / i s  created by the 
final quadratic transformation of the block ~i-1.  Moreover, each ~i for i<g, is 
characterized by the property that it intersects three components of ~-1({0}), 
while ~g intersects two components and the desingularized strict transform of 
{f=O}c~U. Any other divisor intersects two other divisors in the exceptional locus. 

Because the proof of Theorem 1 has a geometric and analytic component, it is 
also important to have expressions for f o~  and n*(dzdw) ((z, w) holomorphic 
coordinates in U, cf. (3:6) also) in a neighborhood of each ~i. To this end, one 
finds [12, Props. (2.2), (2.5)] that there are coordinate charts allli(xi, Yi), q/2i(x;, y~) 
such that 

(1.3) 

i) ~i  is contained in r yi)wql2i(x~, y~). 

ii) The overlap aguncg~i is determined by 

x~ = x~ Yi 

y; = 1/x .  

iii) fon(x~, y~) = x f l  yR,(1 +~xi-t- x~(x~y,))S,T~,~(xi, y,) 

get d~[~  (x~, y,) : x'] ~ y'i~-I (1 + ~i x~ + xi ~i (xl yi)) ~- 1212.i (xi, Yi). 

iv) fon (x ; ,  y;) = (X;)R,(y;)A,(y; +~,+$~(X; y;))S'T,,,(x;, y~) 

det dnl~,,,(x', y;) = (M)',-1 (y;)~(y~ +~,+r  y;))',-1J2,,(x~, y;). 

For purposes here, one only needs to know that a~, a~, A~, A2 are positive 
integers. 

v) Ri -- ord~, (fon), ri - l§  
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The important properties concerning the expressions in iii), iv) are the following. 

(1.4) 

i) Ci = Tl, i(O, Yi) = Tj,i(xi, O) = Tl, i(O, O) = T2,i(O,y;) = T~,i(x~, 0) = T2,i(0, 0) 

~ 0 .  

cf = arl.i(0, Yi) = Ya, i(xi, 0) = J~,i(0, 0) = d2,i(0, y;) = J2.i(x;, O) = J2,i(O, O) 
~ 0 .  

ii) The section of  IVx~., which is x~,y~,(1 +a,x,+x,~i(xiy,)) s, in ~ll u and is 

, R~ , a, , , , s, global section of  ~x~. 1%,u%. A similar (xi) (y,) (y, +ai+~,(xiYi) ) in q/~, is a 
conclusion holds for the corresponding product of  factors in det drc. 

iii) Let 
gl(/) = Qi A1 -t- a l ,  

s~(/) = QiS~+ s~- 1, 

g3 ( / )  = Oi A2 -1- a2. 

Then ~2(i), s3(i)C(-1, 0), 81(0C(-2, - 1 )  and the "cocycle relation" 

~1(0+8~(/)+2 = - ~ ( 0  

holds. (For precise formulae of  the ~j(i) el. [12, Prop. 2.12]). 
In order to prove Theorem 1, it suffices to proceed as follows. First, we may 

assume i_->2 because it is already known that 0, is a root of bf(s) [9, pg. 88]. From 
now on an arbitrary i=>2 is chosen and fixed. The basic criterion to find a root 
of  bf(s) is this [15, 17]. I f  one can find a continuous family of  1-cycles ~(t) lying in 
Ut=f - l ( t )nU and if  ~ dz dw is a holomorphic 2-form defined in U satisfying 
ff(0)~0,  then Qi is a root of by(s) if  

(1.5) lim tQ, +~ f r  O. 
t ~ o  a~(t)  

Proof of Theorem 1. The proof has two parts. Part 1 constructs the 1-cycles 
~(t). Part 2 shows (1.5). 

Part 1. This is an adaptation of the construction of  Steenbrink~Varcenko 
[17, Sec. 4]. In the notation (1.3) let Mi=lcm{R i, A1, A2}. Set a:  ~ T  to be an 
M, fold cover branched only at t=0 .  Let �9 be the coordinate in T. Define 

~=(q/ l l  u q/21)/~, ~ the equivalence relation determined by (1.3) (ii). Let W :  5f-~ 
~ W •  be the normalization. This gives the commutative diagram 

~---;+ T 

I f  D is any divisor in Y', set /3=v-~(D). Let rn~=gcd{R i, A1}, m2=gcd{Ri, A2}. 
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In q/ll )<T ~ resp. ~21 Xr T one has the relations 

.cM, = f o ~ ( x .  y~) resp. ~', =fo~(x~, y;). 

Set D O to be the divisor of  3f defined by the conditions 

D o n ~ ,  = {(1 + ~ , x , + x , O ( ~ i y , ) ) r l ,  = 0}, D o n ~ ,  = {(Y" + ~ , + O ( x ~  y~))r,, = 0}. 

Define ~ 5 o = ~ - D o  and 8?0=vg'- l (Sfo• Then, above (3fonq6i)• resp. 
(~0n~215 in ~0 there exist ml resp. m2 disjoint open sets W~ a) . . . . .  W~(~ ) resp. 
Wx (~) . . . . .  W~(~). Outside the singular locus of  ~ are defined coordinates for the 
Wj ~). In the following, we shall refer to "coordinates" for any Wj (k) to mean 
coordinates defined only on the nonsingular part of  W~ (~). 

One can find coordinates (zx (j), z2~), uO)), j =  1 . . . . .  mx resp. ( ~ ) ,  w~ k), V(k)), 
k =  1 . . . . .  rn2 on W~ (x) j =  1 . . . . .  ml resp. ~(2) k =  1 . . . . .  m~ so that the relations 
(1.6) below hold. This is done as follows. 

Let (z[ j), z~J)), j =  1 . . . . .  m~ resp. (w(~ k), W(2k)), k =  1 . . . . .  m~, be coordinates on 
ml resp. m 2 distinct copies of  C z. Define the maps 

Oj : C 2 ~ 0~1i" (Z (j), Z (j)) ~ (Xi, fli) = ((Z(J)) M'[Ax, (2~J)) MJR') 

,~: c~ -,- o~,: (w~), w~)) _,. ( ~ ,  y~) = ((Wl~.),.,~,, (w~))~.,~.._9. 
Next define 

qh (xi,  Yi) = (1 + oh xi  + x i ~  (xi yi))S, T~i(x~, Yi) 

~o~(x', y~) = (y~ +~,+,p(x;  y~))~,T~,(x~, y;) 

and set for each j and k 
~ j , j  = ~o]oOj ~ , k  = q)2Otlk �9 

On the charts Wj (1) resp. Wk(2) of  ~o one defines the (z[ i), z~ y', uCJ)), j =  1 . . . . .  rnl 
resp. (w(1 k), w~ k), v(k)), k = I . . . . .  ms by the maps 0j, ~/k, given by 

(1.6) Oj: z = u 0) 01~ u, e2~ij/M,, X, = (Z(j))MJa,, Yi = (z(~J)) MJR' 

resp. 
~,(k) n51/Mi~2~iklM i " = = (w(k) )MIIA,. ~ik: Z = ~  "~2k ~ , x~ (w(lk))M, IR,, y~ 

Then ~0 n Wy (1) resp. 570 n Wk (2) is defined by the equation 

u(~) = -l"(J) ,~.~(Y) resp. v (k) = w(x k) w(2 k). 

One now constructs a 1-cycle in an open subset of  ~i n 3~. 

Set ~ = ~ i -  U{Dne~o} ZS. Here, D is any component of  the divisor (for0-1(0).  
Choose one chart W1(1) resp. W1 (2) each from {W~ (1)} resp. {Wk(~)}, denote it by zr 1 
resp. zr Let (zl, z2, u) resp. (Wl, w2, v) denote the coordinates on zr 1 resp. zr 
Denote by 0 resp. t / the  maps determined by (1.6) 
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z~ = u = 0 and 

where 7 ,=Mi /A1  resp. 
roots of the equations 

Then one notes that ~" n ~r resp. ~'i' n ~r is defined by 

l+~iZl r l # 0  resp. w~ = v = 0  and w~ ,+0c~#0, 

y2=Mi/A2 .  Define ~={21(1)<...<21(V0} to be the 71 

l + o:i z~. 1 = 0 

ordered by increasing argument. Denote 1/Vl=/~, 1/V~=6. Set col=e 2hi# resp. 

ogz=e ~a.  Define the following 1-cycle A ( e , B )  in ~ .  
Let e be a small positive number, B a large positive number, 4 r  the point 

in ~;c~d~ equal to (1/~3 a. This implies that t ~ t  for any t>0.  
Set A(e,  4 " ,  B)=,~/=~ A, where Ai are the following oriented paths in Ni m ~r 

i) A~ is the segment from B a 4 to ea 4. 
ii) As is the sector of the circle from ~a { to ea ~o~ {. 

iii) A 3 is the segment from e a ~o, ~ to B a co~ 4. 
iv) A4 is the sector of the circle from BPog,{ to Ba4. 

).,(2) / N 

o 

Ftg. 1 
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Because A(s, B) must enclose a root in ~ ,  it follows that the cycle determined by 

A(s, B) is non-homologous to zero in ~[. Moreover, it is clear that for any slE(0, e) 
and BIE(B, ~),  A(el, Ba) is homologous in ~[  to A(s, B). It is sometimes con- 
venient to note that one may view A(e, B) equivalently by describing A4 as 

iv)' the sector of the circle from oa~lB-O~ -o/p to B-o~ -o/p in ~ 'c~d~.  
It is clear by the construction that there exists an open tubular neighborhood 

J" of A(e, B) in ~ which is disjoint from any divisor/~ intersecting ~i. Moreover, 

~Y" may be constructed to lie in ~sp on which f is smooth. As observed by Varcenko 
[17, pg. 489], one can then use the flow of the vector field grad (rio-) to push A(s, B) 
out to the fibers f-~(z) for v=z(0Ia- ) sufficiently small, say in the set ~ .  This 
determines a continuous family of 1-cycles ~('r) with ~(0)=A(s, B). Let ~e~(M) 
denote the group of 1-cycles on any space M. The map D induces a homomorphism 
for each z=z(0lo-) 

(0a,- 
Thus, one defines for these values of z 

(1.7) /~(~(z)) = (v~),(~(z)). 

Because the flow out used to construct the ~(z) is a continuous mapping, it follows 
that the homology class of each ((z) is independent of the choice of e and B. Thus, 
the same holds for the induced classes of  the 1-cycles ((a(z)). In this way a con- 
tinuous section of the 1-homology bundle for the fibration fo  x: ~ - { f o  ~ = 0} ~ T* 
has also been constructed. This completes Part 1. | 

For Part 2, introduce the notation 

Ii(t, ~) = tQ +l f x*(~J/df) 
" . ' ~ ( t )  

for ~k a holomorphic 2-form defined on U. In addition, define the following 1-cycle 
in ~ .  

Given the loop A(e, B) in ~" the map z~-~z~,=xz transforms this loop 
to another loop in ~z which is classically known as a "Hankel contour" [13. pg. 50]. 
Denote this by Z(s, B). Set ~r~= 1/~z by ~0 below. In fig. 2, 2(e, B) is sketched. 

Fi~, 2 
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Part 2. Analysis of limt_~ 0 Ii(t, ~k). 
The main calculation is (cf. (1.4)(iii)) 

Proposition 1. There is a constant b(~b) such that b(~)#O iff ff(0)~0 and 
so that 

lim I i ( t  , ~ )  = b(O) f X~l(i)(1-~O~iXi) e2(i) d x  i. 
t~0 2(e, B) 

Proof. Define the quantity pi=MiQi+l.  Then Varcenko [17, Lemma 4.4] ob- 
served that the 2-form 

f.,(~oo)*~ 
extends to a holomorphic form over ~(  in ~,  so that 

R(r 0 = y.,(~oo)*(r 

is a non-zero holomorphic form over ~ .  By the construction in part 1, one has 

(1.8) ~01im ~fr R(r i) = ~fa(,,~)R(~k, i). 

Moreover, one also has [17, (9) pg. 489] 

(1.9) z-u, f~(o R(~, 0 = M,~.,-1 f..~'o d//df. 

Since M ~ + p i - l = M i ( Q i + l  ) and zu,=t,  one concludes 

f :(o R(~k, i) = M,  Ii(t, ~k). 

The proposition will therefore follow from an evaluation of the right hand side of 
(1.8). This is now easy. 

A straightforward calculation shows the following. 

M, io*(co) on ! 
g( r  0lJn~,  = RTtn*(co) on Jn~ ;n~C~J '  

where co is the following 1-form on ~/=a~f. ~ - L J i o ~ , }  D (cf. (1.3), (1.4)). 

r +a, xi)~(O dxf on . .~na#u/ 

co t-$(O)C~'ci(yi)~.(o(y; +~3~,(O dyi on ~inr 

The proposition follows immediately with the constant 

b (40 - ~ (5) c~, c~ 
Ri 

The is finishes the proof of the proposition, l 
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To conclude the proof of Theorem 1 one proceeds in a classical manner. For 
2E C, define 

J(2) = f x~(1 +0qx,)~ ') dx,.  
a(e, 8) 

This is an analytic function of 4. To evaluate at 2=e1(i), one may interpret this 
value as that obtained by an analytic continuation of J (2 )  constrained to a subset 
of the halfplane Re ( 4 ) > -  1, defined as follows. Let Ae be the region C ~ defined by 

s = {(p, q): p + q  =-e~( / ) ,  Re(p), Re(q) >0}.  

Since -e2(i)C(0, 1) by (1.4)(iii), A~162 Now set 

~ /=  {2: (4+1,  -2--e2(i)-l)E.,~cP}. 

q/is a nonempty open vertical strip in the 2 plane. Define l(r to be the line con- 
necting the points x~=0, ~0, and y~=0 (i.e. x i = ~  ). A classical computation 
[13, pg. 50] shows 

Proposition 2. For kEY/, one has 

J (2 )  = eZ~ia (1 - e  -~i(x+~(0)) f,(r x, ~ (1 + ~ix~)~,(0 dx i . 

Proposition 2 allows the evaluation of J(~l  (i)) to be made. A simple coordinate 
change gives for 2 ~ /  

J(2)  = ~(2)fo t*( l+t)  ~(0 dt, 

with 
V(2 ) = e2~ia(1/~i):t + a ( l --e-2~i(2 +E~(i) )). 

One converts now to an integral over (0, 1) by setting t = v / ( 1 - v ) ,  yielding 

or = v(2) fo ~ v~(1-v)-~-'~(') -~ d~. 

When 2E~/ it follows that the integral equals B(2+  1, - 2 - e z ( i ) -  1), where B(p,  q) 
is the Eulerian beta function. One now uses the identity 

B(2+ 1, - 2 - e ~ ( i ) -  1) = r ( 2 +  1 ) r ( - 2 - ~ d i ) -  1) 

to analytically continue the left-hand side of this identity, and therefore J(2), into C. 
In particular, for 2=,~(i), one obtains 

~,(o ~(or(~, (0) r(~.(O) 
J(~,(0) = ~(~(0) r ( -  ~(0) 

This is well-defined and nonzero by (1.4) (iii), completing the proof of Theorem 1. 
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Section 2 

This section proves the corollary stated in the Introduction. For each i=>2, 
one finds that the value of  Res,=QIi(s, co) is a negative real number multiple 
of  a simple arithmetic expression involving certain coefficients o f f  

For simplicity, an i ~ 2  is fixed and each ej(i) is denoted ej. 

Theorem 2. I f  gcd(r i, Ri)= 1, then ~i is a simple pole of  the meromorphic 
continuation of Iy(s, og) when ooEf2~ "2~ satisfies the condition ~o(0)#0. 

Proof Use is made of  a calculation by H. Cohen, appearing in an article of  
Barlet [3]. 

As in [12, Sec. 2], the value of  Res,=Q, Ii(s, 09) is obtained as follows [6]. 
Let B be a positive number satisfying the condition 

B > max {17,l, 1/Ic~,[}+ t, 
el the coefficient appearing explicitly in (1.3). 

As specified in [12, (2.8)], there is a simple arithmetic expression involving 
coefficients of  f(z,  w) which determine a non-zero constant c such that 

Res~=~i Ii(s, o9) 

= c { fix, l<, Ix'12"111 +~'x~l~2dxdX + fly;l<1/B lYTI~ lYl +~,[~"~ dyl dye}. 

Observe now that because a3r  0), the second integral in y~ is an integral of  
an integrable function in a neighborhood of  y~=0. Thus, as B ~  this integral 
converges to 0. Hence, 

(2.1) Res~=o, Iy(s, o9) = Cfc Ixel ~'1 l1 +e ,  xil z~2 dx7 dx~. 

Remark also that because e2E(-1,  0) the singularity at x~=-l/e~ will not 
contribute effectively to the value of  the residue. This follows from the argument 
just given for the point y~---0. 

If  therefore suffices to show that the right hand side of  (2.1) is not zero. Let 
-~ixi=re ~~ (2.1) becomes 

(2.2) efo 
with a positive constant e. 

(2.2) is interpreted as a value of  the analytic continuation of  

I (a ,b)= e f o  f :~r ' ( l+r2-2rcosO)bdOdr 

where a, b are in the region Re ( a ) > - 1 ,  Re ( b ) > -  1, Re ( a - b ) <  1. Indeed, the 
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theorem is equivalent to determining the value of  the analytic continuation at 
a=2e~+ l ,  b=e2 and showing it is non-zero. 

To do this, the calculation of Cohen found in [3, Sec. 1] is followed. One arrives 
at the value (consulting [18, Chapter 12] when needed) 

r(e~+ 1) r(e3+ 1)F(-  1 -e~-e~) 
I(a, b) : en F( -e l )  r ( -e~)  r ( -c~)  : en 

F ( ~ +  1) F(ez+ 1) F(es+ 1) 
r ( -  r ( -  

c s c  c s c  c s c  
= --eT~ 4 

Indeed, by (1.4) (iii), one sees that I(a, b) is negative. This completes the proof of  
Theorem 2. 

Remark. Igusa has derived Theorem 2 in a different manner [10]. 

Section 3 

The intent of this section is to extend Theorems 1, 2 to certain holomorphic 
differentials ~ such that ~ (8)~ 0. In a fixed pair of  coordinates (z, w) in the neigh- 
borhood U (of Section 1) (chosen to satisfy condition (3.7) below), we assume 

(3.1) ~9(z, w) = zilwi2~K'(z, w)dz dw, 

where "f'(z, w) is an analytic unit in U. Set I =  (il, i2)- 
Let ~ be a C a function, identically 1 on a smaller open neighborhood U' of  

0, U' relatively compact in U, and so that a has support in U. Then set 

(3.2) = 

co belongs to o~,~) 
It is first necessary to identify the ratios analogous to the Qi, i=1  . . . . .  g for 

such r o9. Secondly, one must determine if  the analogue of  (1.4)(iii) holds. Theo- 
rem 3, its corollary, and Theorem 4 describe the success at this determination. Be- 
cause the arguments are quite similar to those in [12, Sec. 1] and the prior sections, 
complete proofs will not be given. 

Let iE{1 . . . . .  g} be chosen and fixed. Let D~={E1, E~,E3} be the divisors 
in Are s intersecting the divisor 9~ (cf. See. 1). One assigns a label to each exceptional 
divisor by indexing the divisor E with subscript u i f  and only if  E is created during 
the u th quadratic transformation of  the canonical resolution n. Recalling the quan- 
tities N(v) defined in (1.2), one has rE{1 . . . . .  Mtot} where 

m t o  t q - 1  = Zo=o N(v). 
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Let (cf. (1.1),-1) 

Set 

t=0 ,  1 . . . . .  q - - l ,  and 

fl(~'-') [k~(i- 1) . . . . .  kq( i -  1)]. 
n(i_l)  - -  

Mr,  i_1 i - 2  t = Z~=o N(V)+Zd=I kd(i-- 1) 

M(/) i-a = Z =o N(v). 

From [12, Props. (1.18, 1.19)], one sees that if the block ~i  of  zc begins in "case 
A"  resp. "case B" [12, pg. 143], then 

Di = {EMq_I,~_~, EM~_~,~_I+k~(I-X)-I, EM(0+I} 
resp. 

D~ = {EM~_~,,_~, E~q_~,,_~+k~q-~)-l, EM(0+k~(0+I} [12, pg. 152]. 

In the following, the "case A"  possibility is assumed. This is a robust assumption 
in the sense that for fixed n, fl~ . . . . .  fl~ there are only finitely many possible values 
for fl~+l which would force ~ to begin in "case B". In any case, the minor modi- 
fications, needed to adjust the arguments below if case B occurs, are left to the 
reader. 

To each divisor E~, associate the ratio 

(3.3) 2 (u) = - [1 + orde.(~* ~)] 
orde. ( fon)  

For  i=1  . . . . .  g, set 
0,(1) = 2(M(i)).  

The analogues of  the ej (i) are defined as particular values of  the function 

e(u) = orde. (fort) qi(I) + OrdE. (~* ~). 
Thus, set 

(3.4) ~1(i, I )  = e ( M q _ l , i _ l ) ,  

e2(i, I) = 8(Mg-1,~-1 + k~(i -  1 ) -  1), 

 3(i, I)  = 1). 
The analogue of  the cocyele condition (1.4) 0ii) is then 

Theorem 3. For each i, I one has 

(3.5) 81(i, I)+e2(i, I ) + 2  = -~s( i ,  I). 

Proof. With ~ the canonical resolution map, let ~(o: Xo(i)-~U be the com- 
position of  the blow-ups comprising blocks d0 . . . .  , ~ i -1 .  In X0(i), for i<=g-1, 
there is a unique non-normal crossing point r between the strict transform f o )  
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o f f  and the divisor ~, .  Define 

NI(0  = multi( o (zozr c~ 

N~(0 = multr 0 (won (~ 

E,(i)  = il Nl ( i )+ izNz(i  ). 
One checks that 

n N , ( 1 )  = /h  
NI(1) = eO ) , # 1 ) ,  

if  the coordinates (z, w) in U are such that 

(3 .6)  f(z ,  w) = w~ + a,(z)w~-' + . . .  + an(Z) 

with ord~ aj(z)>j,  j = 2  . . . . .  n. One remarks that up to an inessential unit factor 
local coordinates can always be found so that (3.6) holds. Geometrically, this con- 
dition means that the curve defined by f i n  U has maximal contact with the z-axis [8]. 

Set 
n (a) = multe(a)f (a), d = i -  1, i. 

Using the set of  recurrence relations within &i-1 [12, (1.7.1, 1.7.2, 1.8)], one de- 
duces that 

/,/(i--1) 
N j ( i ) =  Nj( i - -1)  et 0 , j :  1,2. 

Thus, 
n(i-1) 

0.7)  Ez(/) = E I ( i -  1) eCi) 

For fixed i, t~{0, 1 . . . . .  q - l } ,  and uE[Mt.i_l, Mt+l,i_l--1], define 

a,($)  = orde.  ( fox)  ordg,+ x ( f o x ) { 2 ( u +  1)-2(u)}.  

One shows by induction (exactly as in [12]) that 6t(~k ) depends only upon t and sat- 
isfies St(O) =5,_2(0). 

Moreover, 

0 .8)  50($) = Ri-1--  n ( i -"  (ri-a +El ( i - -  1)) 
al  ( r  = - (R~_1 + # i~-  1)). 

This suffices to determine s2(i, I),  e3(i, I). To evaluate sx(i, /)  one proceeds 
in a manner similar to that in [12, Prop. (1.18)]. Finally, one obtains 

(3.9) q( i ,  I ) + 1  = e l (0+l -~  

e2(i, I ) +  1 = sa(/)+ 1, 

s3(i, I ) + 1  = c a ( 0 + 1  

By (1.4)(iii) and (3.7), Theorem 3 follows. 

n ( i  - 1) E1 ( i  - -  1 ) 

Ri 

n(OEi(O 
Ri 

| 
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Imposing the condition 

(3.10) ~1(i, I), e2(i, I), ~3(i, I)~[Z 

one observes that the proof  of  Theorem 1 applies immediately to ~ and the 
family of  1-cycles {~(t)} constructed in Section 1. Thus, as a corollary one obtains 

Corollary 2. i) I f  01(I)E(--1, 0) and (3.10) is satisfied, then Oi(I) is a root o f  

ii) More generally, i f  (3.10) is satisfied and no ratio o f  the form Oi(I)+k, 
k = 1 , 2  . . . . .  is a root o fbs ( s ) ,  then Oi(I) is a root o f  by(s). 

A further extension of  Section 2 is also possible. Using (3.8) one observes at 
once that if 

(3.11)  R , -  (r, + (0) > o 

is true for each i, then one finds the same situation as in [12, Sec. 1] with respect 
to the ordering properties of  the ratios 2(u) (3.3). In particular, the graph of  the 
function u-~2(u), uE{1 . . . . .  Mtot}, would exhibit the same alternating increase- 
decrease behavior as the graphs on pg. 143--144 of  [12]. Moreover, the same argu- 
ments from Section 1 of  [12] would then show that if (3.11)~ holds for each i then 

(3.12) 01(1) > 03(1) > . . . >  0g(I). 

From these observations one obtains 

Theorem 4. a) Assume (3.11)i is satisfied for  each i= 1, 2 . . . . .  g. I f  01( I )E( -1 ,  O) 
then 01(I) is the largest pole o f  Iy(s, o~), 09 defined by (3.2). 

b) Let r i(I) = 1 + ord~i (z~* ~9). Assume gcd(r i(I), Ri) = 1 and (3.11)i is true for 
each i. Then i f  01(I)E(-1,  0), it is a pole o f  I i ( s ,  ~), ~o defined by (3.2). 

(3.13) Remark. From (3.7), (3.9), and [12, (2.12)], one sees that the condi- 
tions (3.10), (3.11), "0 i ( I )C( -1 ,  0)", and "gcd(ri(I ), R i ) = I "  can all be expressed 
in terms of  and thus checked by simple arithmetic upon the characteristic numbers n, 
fll . . . . .  fli, i :  1 . . . . .  g. 

Section 4 

In [7, Th. (5.i)], Kashiwara proved the rationality of  the roots of  the local 
b-function at any point x of  a complex manifold X for a complex analytic function f. 
In the following this polynomial is denoted bx(s), the function f being fixed 
throughout. In the proof  he also derived a general estimate for the roots in terms of  
the local resolution data near x. 
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Let rc: X ' ~ X  be a resolution of a representative of  the germ of  the function 
f a t  x, defined in a small neighborhood X of x. That is, I=(fon)O x, is locally in 
normal crossing form at each point of  7r-l(f-S(x)). To the divisors {D~}~n=l in 
the support of  I there are associated the multiplicities 

(4.1) M~ = ordD~ (foTr), m i = ordD~ (det dn). 

Kashiwara showed that the set of roots of b~(s) had the form 

u 
(4.2)  0 . . . .  ct, M, 

where uE{1, 2 . . . . .  M/}, dE{0, l, 2 . . . .  }, and iE{1, 2 . . . . .  N}. This general estimate 
can be improved, slightly, as follows. 

T h e o r e m  5. Each root ~ of b~(s) has the form 

(m~+e) 
c ~ =  d, 

M ,  

for some eE{1, 2 . . . . .  M~}, dE{0, 1, 2, ...}, and iE{1, 2 . . . .  , N}. II 

The proof will be given in (4.10). Beforehand, it is useful to make some pre- 
liminary remarks and introduce notation and basic constructions. 

(4.3) Remark. Observe that each element of  the set ~ I  of  poles of the gen- 
eralized function Iy(s, - )  (cf. (0.2)) must have the form described in Theorem 5. 
Thus, this theorem indicates that the roots of  the local b-function behave in a manner 
similar to the poles in NI under pullback o f f  by a morphism of resolution of  sin- 
gularities. It would be interesting to know, in this regard, if  the result of  Loeser 
[14, Th. (1.9)] extends to the n > l  case. 

More generally, Bernstein has asked whether each root of  b~(s) is the pole 
of  some "generalized ( n + l ,  0) current" I t ( s , - ) ,  defined (perhaps) as follows. 
Let F be a relative cycle class in H,,+t(U, Uc~{f=0}), where U is some neigh- 
borhood of  x. Assume F" is a representative of  F so that a single-valued branch 
of  l o g ( f )  can be defined on F'-OF'. Let q~ be a holomorphic n+l-differential 
defined in U. Then, for Re (s)>>l define 

I r (s, ~o) = f r '  f s  q~. 

Evidently, if  this conjecture was true then each root of  bx(s) would also have 
to have the form given by Theorem 5. In this way, one sees that this theorem lends 
a small amount of credence to this conjecture, whose philosophy is that each root 
of b,(s), for any xE{f=0},  should have an analytical significance. II 
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Notations and constructions needed in the proof of Theorem 5 are these. 
In the following a point xC{ f = 0 }  will be fixed. X will denote a sufficiently 

small open neighborhood of x. It will therefore be assumed to be equipped with 
a fixed set of holomorphic coordinates (zl . . . . .  z,). Denote by n: X" ~ X  the proper 
bimeromorphic map placing the ideal sheaf ( fozO0 x, in locally normal crossing 
form over . ~ = n - l ( f  -1(0)). Let ~ = ~ x [ s ] f  s be the standard ~x[S] module of  
interest in the study of  the local b-function [7]. Set F = f o n  and Jg '=~x , [ s ]F  ~. 
Each module admits an action by C[t], where [t, s]=t and so that t f f = f f  +1, 
tFS=F s+l. I f p  is a point of  ~ in a neighborhood of which there are holomorphic 
coordinates (xl . . . . .  x,) so that 

F(xl ,  ..., x,) ~ x~ l... x~ , .  (local unit at p) 

then it is easy to see that the local b-function for F at p equals [4, pg. 245] 

The following properties about Jg, ~ "  will be needed. 
(4.5) 

A) Let f ,  J / '  be the integration (direct image) of J//' along the fibers of n. 
L p This is the complex Rzc.(~x,_ x, |  Jg  ) [4, pg. 234]. Let ~ = f ~  de". Then 

~/t~=f~ .g'/t~g" is a holonomic ~ x  module, admitting s-action, with support 
on f - 1  (0). 

B) There is a global section u of  ~ on X such that 
i) N/Nx u is either zero or a holonomic Nx module with support on f-~(0).  

ii) There is a ~x[S] sheaf surjection [4, pg. 245] 

Nx[S] u -*-~ Nx[S]f f  

C) Let N={Pi} be a finite set of points in ~ for which coordinate charts 
~ . . . . .  x,) can be found such that U ~//i(x) covers rc-a(x) and for which bp,(s) 
is given by an expression like (4.4). Set BF(s)=/ /pc e bp(s). Then BF(s)F ~ is a 
section of  Nx,[S] F ~+1 over ~e. Now let b~,(s) be the minimal polynomial of  s action 
on Nx,[s]F~/tNx,[s]F ~ in a neighborhood of  r~-l(x). Clearly, bF(s)lB~(s). More- 
over, one has 

(4.6) bf(s)lbF(s) bF(s + 1) ... bF(s + D) 

for some non-negative integer D. 
For the convenience of  the reader, this crucial point is now explained. For  a 

detailed discussion one should obviously consult [7] or [4, pg. 244 if]. The t action 
on .g" is a ~x,  linear action. Thus, the property 

br(s)F ~ is a section of ~ x , F  ~+1 over ~e 
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implies 
be(s)F ~ is a section of  tNx, P over ~r 

Since t action has no torsion on de', as operators on d / '  one has 

bl,(s) = toO 

where 0 is a Nx, homomorphism on ./g. 
One obtains corresponding operators on ~ via the functor f~  rq. Thus, 

b1,(s)~=tO(~) is a subsheaf of  t~ .  
(4.5) (Bi) implies that for some k, ? ~  is a subsheaf of  NxU. By the relation 

[t, s] = t on ~ ,  one finds 

bF(s) bF(s+ l) ... b F ( s + k -  1)~ ~ t*~ ~ Nx u. 

This implies 

b~(s)b~(s+l) . . ,  b r ( s+k -1 )b l~ ( s+k )~=-~  tk+at~ c_~ tNxu .  

(4.5) (Bii) now implies 

be(s)be(s+ 1) ... b e ( s + k -  1) b e ( s + k ) f f  =-* Nx [sJf  ~+1. 

This proves (4.6). 
In the following, for a complex manifold W of dimension m, s w is the sheaf 

of germs of  maximal degree holomorphic differentials on W. 
Because the mi in the (4.1) appear  as multiplicities via the jacobian of  ~, it 

is reasonable to belive that the sheaf Ox,, should be explicitly incorporated into 
a N x, module along with J/r before the direct image functor is used to define ~ .  
The fact that in Kashiwara's proof  this is not done is the reason for the estimates 
(4.2). It also appears to be the case that (4.2) can not be obtained purely within the 
category of  left modules used in [7]. Now J//' is a left Nx, module and (2 x, is a right 
N x, module. Thus, to deal with global objects it is necessary to transfer considera- 
tions into the category of right Nx, modules. So, it is useful to recall a few preliminary 
remarks on the left-right N-module pairings. 

On the complex manifold W, let d/L(Nw) resp. J/IR(Nw) be the category of  
left resp. right 9rr  modules. There is an equivalence between the two categories as 
follows. 

(4.7) e: KEob(dlL(~w)) ~ K (0 = aw | KEob(dr R (2w))  

2: MEob(,//IR(Nw)) --,. M (`) = ~g'~r (f2w, M)Eob (./s 

In the derived category o f  .///R(2w), Db(dcR(Nw)), there is a functorial notion 
of  direct image for a map g: W - . V  [5, pg. 240]. It is denoted also by fo" The 
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functors 2, 0 extend to the derived category and one has the following diagram 

ddR(~w) ~ + ~L(~W) __do+ ~R(~w)  

(4.8) f , ,  f.+ [ f.  
D ~(~ . (~ ,~) )  ~ "  D ~(~L(~,~)) _~.  D ~(d~,.(~.O) 

In particular, if  one only considers the functor .(~ [] = - Jd ~  L ~w-*v)), 
~w 

then (4.8) has the lower row replaced by 

jgR (~w) ~ -  ~ L  (~w) ~ +  d l  R (~w). 

The other property needed concerns this observation. Assume that on the 
manifold W there is a global d) w isomorphism Ow--,Ow. Then to each section 
u of  a right @w module ~ there corresponds a unique section u* of  the left module 
~(o such that for any operator P i n  F(W, ~w), there is an operator P* in F(W, ~w) 
satisfying 

(4.9) (u.  P)* = P*-  u*. 

Without the global isomorphism, one could only assert (4.9) locally near a given 
point of  W. 

Concretely, one sees this by first considering in coordinates (.'ca . . . . .  x,), the 
vector field 4 = ~  4iOx, for P and the adjoint P * = - ~  Oxo~i. For the section 
u one has the section u* of  N(o determined by u*(dxj\...Adx,)=u. The left ~w 
action on ~(o is seen to be, setting dx=dx~A...Adx,, 

(4*. u*)(dx) = u*[(d:O. U]-(u*(dx)) .  ~* = u*[dx. U l - u .  ~* 

rr c~{, ] dx] C 04~ 
= 

u*Ltz j + z  u 

= Z, 4~" (u. a~,) 

= (u" 4)* (dx). 

One iterates the formula to extend to ~w- 
(4.10) With these remarks the proof  of  Theorem 5 can begin. The left ~x[s] 

module d// generated b y f  ~ has associated to it a right ~x[S] module d{ ('), defined 
above. The s-action and right ~ x  actions commute. Since coordinates (z~ . . . . .  z,) 
have been fixed on X, it follows that (2x~-0 x over X. Thus, there is a global section 

( f 0 *  of  dg (~) corresponding to f*.  
By converting the local functional equation 

~fs+l = bx(s)fS 
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into the right module category, using (4.9), one notes that at each x there is a local 
functional equation in the stalk at any xEX 

(4.11) f(f=)*. ~ = b* (s) (p)*. 

It follows that b~(s)=b*(s). So, Theorem 5 can then be interpreted as a property 
of  the local b-function for the section (f=)* of  Jr 

Using the left-right equivalences (4.7), (4.8), one proves the theorem by adapting 
Kashiwara's proof of (4.2) to the right module d/(~). In the notation above, set 

"4/" = s | r ~x '  F=" 

Then W" is a subholonomic right ~x,  module. There is an evident submodule to 
consider. Set u=n*(dx)| =. This is a global section of  X .  Set 

J - =  U .  ~ x ,  . 

It is clear that ~- resp. d [  (') admit a C[t] action which is multiplication by F resp. 

f i  Set 

f :  9 - =  ' 

Then 5 p is a right ~ x  module and a submodule of  f0 JV. The singular support of  
SP agrees with that of the left module N of  (4.5) (A). So, it is subholonomic. Thus, 
it suffices to prove the analogues of (4.5) (B--C). 

(4.12) 
(1) There is a global section v of 5~ such that there is a right ~ x  surjection 

v. ~x[S] -->+ ( f  g*" ~x  [s] (= (~x[xJfg(O). 

�9 (2) ~/v .~x[s]  is zero or holonomic with support on f - l (0 ) .  
(3) Let b~(s) be the minimal polynomial of  x-action on J / t J ' .  Let ~={Pi}  

be a finite set of points as in (4.5)(C). Then b}(x)l//pEv b~.v(a), where, i f p  is a 
point of n- l (x) ,  in a neighborhood of which coordinates (xl . . . . .  x.) exist so that 

u 
F(xl, x,) = / f  x~Ji and det drt(x,, x.) = I I ,  xD (local unit at p), 

~  1 " ' ' '  

then . { m.+=./] 
b}.,(s) = / / ~  i t s  +--M-7-~ J ' "  s + M, " 

(4.13) 
The proofs of  (1--3) are, to be sure, simple modifications of  those for (4.5). 

As such, sketches of  the arguments will suffice. 
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(1) For any right ~x' module .~, one determines f ,  .~ by embedding g into a 
triangle 

X ' r '  , Z 

\ !"  
X 

where Z is a projective variety, z is a closed embedding, and tt is a submersion. 
Denote 9 f ' ~ z  (Qz, 0z) by (2z x below. 

Then f~ .~= Rr~, [~, (.~ | Nx,~z) | Nz~x], where, because of the sheaf 
identification Qx with Ox, one identifies 

~z-.x = ~x~-z Q~= ~ 1 .  

Since Y2z 1 is a flat (9 z module, a resolution of ~z-.x by left ~z modules is given 
by the complex 

~'~Z]X @IVZ ~Z @Oz OZ 1 ~ ~Z~X ~ 0 

where Qzlx is the relative de Rham complex for t/[4, p. 235]. 
Since O~/x_-__f2z as an 0 z module, one sees that 

U(~x'-~z) | | ~z | ~ )  ---- ~.(~x,~z), 
and for 9-=U~x,, 

~,(9-| ~x'~z) |  |  ~z | ~ )  

= ~.(u) | |  -~ ~z). 

There is a global section, determined by **(u), of the group of n-cocycles 
L ~z-*x). It is obtained by taking the of the complex F(Z, z.(9- | ~x'-~z) | 

global section 1 x, of 0 x, and 1 z of ~z. Let [u] denote the cohomology class in 

H"(F(Z, z,(9- | ~x,~z) | ~z-x)). 

Let v denote the image of [u] under the edge homomorphism [4, p. 283]. This 
defines a global section of 9 ~ which agrees with (if)* off f-x(0). 

Properties (1), (2) of (4.12) now follow by arguments easily translated (i.e. 
"left" becomes "right") from those proving (4.5)B (i, ii). 

So, (3) is the only new calculation that needs verification. 
Given u and point p as in the statement of (3), denote by q//'(x) the local unit 

factor of det dzc. One looks for an operator ~(s ,  x, D~) such that 

(4.14) [(//~.xr') "g/'(x) dx| "+1] 
M i s = b},,(s) [ I I [  (x.~,)Cf'(x) d x |  ~ ( x , )  ] 

for all points x in the neighborhood ql,(xl . . . . .  x.) ofp.  



Z W x 2 s  Poles of l f(  , ) and roots of the B-function 303 

Let 

O~ r 

Set 
= [ ~ r ( x ) .  ] o ~ l o [ ~ r  (x )  - 1  �9 ],  

where the zero degree operators in brackets mean multiply the indicated function. 
Because ~ is a constant coefficient operator and the tensor product  in (4.14) 

is over 0x,, it is clear that  (4.14) holds. Indeed, one evidently has using the defini- 
tion of  the right action on t2 x, in terms o f  the lie derivative -,ocP~/ax ~, 

[ ( /7  X~ "1) dx @r (1-[ X/Mi) s+l] ~1 : b~,p(s) [1-[ XmO dx (~r ( H  x/Mt)s] �9 I 

Remarks .  1) Note that no assumption has been made about  the nature o f  
the singular point x (Theorem 5 is evident if  x is nonsingular). This is because Kashi- 
wara's p roof  is both local and for any singular point o f f .  

2) It  would be interesting to know if  the following is true. In the notation of  
(4.1), let r  Di is an irreducible component  of  the exceptional locus for the 
resolution ~}. So, the strict t ransform does not  appear in 8. Let  

QI = max { -  (mi + 1)/Mi}. 
D ~  

Then, is ~f a root  of  bf ( s )?  (If  ~ / > - 1 ,  it is well known that the answer is yes.) 
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