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Introduction 

We will prove that there exists a proper holomorphic map from B N (N_~2), 
the unit ball of C N, to B T M  that cannot be extended in a C = way to an open non- 
empty subset of the boundary. This map can be extended to a continuous map from 
B N to ~N+I 

E. Low [16] and F. Forstneri6 [10] found such a map from B N (N_~2) to 
B ~ when M>>2N. Josip Globevnik [12] proved that for any N ~ l  there exists 
M0>>2N so that if E c b B  N is an interpolation set for A(BN), M>=Mo, and 
f :  E--,-bB M is continuous, then there exists a continuous extension F: B N ~ B  M 

which is a proper holomorphic map from B N to B ~. He showed that f can be chosen 
so that F(bBN)=bB ~t. 

In the second and third section we will prove this result (for N->2) with M0= 
N + I .  This will give a positive answer to an open question by Globevnik [12]. 

A proper holomorphic map can not lower the dimension (Rudin [18], 15.1.3) 
and when f :  BN--,-B N is a proper holomorphic map, then Alexander [1] proved 
that f is  an inner automorphism o f B  N and therefore (see [18], 2.2.5) f c a n  be extended 
holomorphically to RB N for some R > l .  So if f :  BN--,-B ~t is a "bad" proper 
holomorphic map (which means a map that cannot be extended holomorphically 
past an open non empty part of the boundary) then M > N .  In the above men- 
tioned examples M is always very big relative to N. So the question remained if 
there exists a bad proper holomorphic from B N to BN+L 

When f ,  g: BN-,-B M are proper holomorphie maps they are said to be equiv- 
alent if there exist q~CAut (BN), ~pCAut (B M) such that ~kofoq~=g. 

If  f :  B N ~ B  ~r+l is a proper holomorphic map and fEC3(B  N) then Webster [21] 
proved that when N_~3 f i s  equivalent to z--,-(z, 0) (for zEB N) and when N=2 
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Faran [7] proved that f is equivalent to one of  the following maps: 

(i) z -~ (z, 0) 

(ii) z -.- (z~, Zl z2, (z2) 2) 

(iii) z --.- ((zl) 2, 21/z zl z2, (z2) 2) 

(iv) z ~ ((za) z, 311~zxz2, (Zz)3). 

Cima and Suffridge [3] showed that the Webster and Faran results hold under 
the weaker assumption that fEC2(BNu G) where G is a nonempty, relatively open 
subset of  bB u. 

In a recent paper [4] Cima and Suffridge proved the Faran result using com- 
pletely elementary means. Our paper shows that there exists a proper holomorphic 
map from B 2 to B 3 which is not equivalent to one of  the above mentioned four 
maps and a proper holomorphic map from B "~ to B u+l (N=>3) which is not equiv- 
alent to a linear map. 

A classification of  all polynomial proper holomorphic maps between balls was 
done in J. D'Angelo [6]. He also gave examples of  polynomial proper holomorphic 
maps between B ~ and B 4 which are not equivalent to monomial maps [5]. 

A proper holomorphic map from a ball to a polydisc (in finite dimensional 
complex spaces) was first discovered by E. Low who proved [16] that if  D e c  C N 
(N=>2) is a strongly pseudoconvex domain with a smooth boundary then there 
exists M>>2N so that there exists a proper holomorphic map from D to A M (the 
unit polydisc in CM). 

Earlier it was proved that there is no proper holomorphic map from A N to B M 
or from B N to A N for any M, N->2 (see [18]). 

So the question remained if there exists a proper holomorphic map from B u 
to A N+I. A positive answer to this question in the case N = 2  was given by Berit 
Stensones [19]. This paper uses methods and ideas from her construction. I would 
like to thank her for describing in detail the ideas o f  her construction of  proper 
holomorphic maps from a strongly pseudoconvex domain in C 2 to A z. I also thank 
J. Chaumat and A.-M. Chollet for helpful discussions during their visit to the Institut 
Mittag-Leflter. 

It should be noted that all the above mentioned constructions (including this 
work) of  irregular proper holomorphic maps are based on ideas that were originated 
by Hakim--Sibony [13] and E. Low [17] in the construction of  an inner function 
in the unit ball of  C N (N~2) .  

In Sections 1 and 2 of  our paper the fundamental construction lemmas (Lemma 1 
and Lemma 2) are proved for dimension N = 2  which is the relatively simple case. 
In Section 3 an additional tool is developed (Lemma 3) to allow generalization 
of  the results obtained in Sections 1, 2 to dimension N~>2. 
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Section I 

Theorem 1. Let  D = B  N, e>0 ,  K c D  compact and f :  b D ~ B  N+I a continuous 

map, [f[  >0 .  Then there exists a map g: b ~ C  N+I continuous in D and holomorphic 

in D so that for  all z6bD t f ( z ) + g ( z ) l = l  andJor all zEK, Ig(z)l<e.  

The p roof  of  Theorem 1 shows that when a domain D admits a solution of  
in the L ~ norm then a construction of  a map described in Theorem 1 depends 

only on the local behaviour of  local peak functions on D (see Sublemma 1 and p roof  
of  Lemma 1). Our p roof  is almost elementary, the only non elementary result that 
is used is the L = solution o f  0 in B ~. The p roof  of  Theorem 1 clearly holds when 
the target ball is B M, for any M > N .  

Using Theorem 1 we prove: 

Theorem 2. There exists a continuous map F: BN~BN+I which is holomorphic 
in B N such that F(bBN)~bB N+I and there is no nonempty open subset G o f  bB N such 

that F extends to a C z map on BNuG. So F is a proper holomorphic map f rom B N 
to B N+I that does not have a C 2 extension to any open subset o f  bB N. 

Proof o f  Theorem 2. I t  follows from [3] that i f  F: BN--~B N+I is a proper  
holomorphic map and there exists a nonempty open subset G c b B  N such that  F 

extends to a C ~ map  on BU~G then F is rational, and so by Theorem 2 in the 
same paper, F takes affine hyperplanes of  C N into affine hyperplanes o f  C u+a. So we 
look for a proper  holomorphic map,  F: B N ~ B  N+I, which does not  take affme 
hyperplanes into affme hyperplanes. 

Define for z = ( z l  . . . . .  ZN)ECN: 

f ( z )  : (2N)- I ( I '~-Z1,  l'q-(Z1) 2, l+ (Z l )  3 . . . . .  1 +(z0~+l) .  

Let wx, wz . . . . .  wN+x6C, where 0 < l w i l < l / 2  and wi~wy for i:~j ( l<=i , j<-N+l) .  
I t  is clear that:  

Det  ( f (wl ,  O)-f(O),  f (wz ,  0 ) - f ( 0 )  . . . .  , f(wN+a, 0 ) - f ( 0 ) )  # 0 

(1) Let e > 0  be so that  for any vl . . . . .  vN+IE2eB u+l 

Det  (f(wx, 0 ) - f ( 0 ) + v x ,  f ( w , ,  0 ) - f ( 0 ) + v 2  . . . .  , f(WN+~, 0)--f(0)+VN+x) ~ 0. 
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Theorem 1 implies that there exists g: BN...~C N+I continuous and holomorphic 
in B n so that for all zEbB N, ]f(z)+g(z)l=l and for all zE(1/2)B N, Ig(z)]<e. I f  
F = f + g  then (1) implies that 

Det (F(wl, 0)-F(O), F(w2, 0)-F(O),. . . ,  F(WN+x, O)--F(O)) r 0. 

So F(A • is not  contained in any affane hyperplane of  C N+I and since 
A • {0} is a subset of  a hyperplane of  C N, F fulfils the requirements o f  Theorem 2. 

Since BN+IC=B M when M>=N+I, it is clear that Theorem 2 holds when we 
replace B N+I with B M for any M>=N+ 1. 

Before we procede with the proof  o f  Theorem 1 we will introduce the peak 
functions that will be used in the approximation process. 

0.1. Let D=B N, ZoEbD, O<d~<I/N, and Iet {el, e., . . . . .  eN}C=C N be an ortho- 
normal set of  vectors in C N such that Zo=(1--(N-1)(dl)~)l/2eN+dl~a~_j~_N_x ej. 

0.2. Let 0 < d < d l .  10 -l~ and define: 

U" = [da- 2d, dl + 2dlN-X •  2d, 2d]NX[0, 2d], 

V' -= [d~ - 2d, dl + 2d] N-a • [- 2d, 2d] N • {0}, 

U = [d~-d, d~+d]N-a• d]nX[0, d], 

Z = lax-d,  d~+d]U-ax[-d, din• {0}. 

We define for X=(xl ,  ..., xN-1, Yl . . . . .  YN-1, Z, w)E U" : 

0.3. Z = Z(X)  = Zl_~j~_n-a xy(l - w )  exp (i(yj+z))ej 

+(1  - - w )  exp (iz)e,,. 

(Throughout this paper Z=(Z~ . . . . .  ZN) (in capital letters) will be used to describe 
complex variables whenever there is a possibility of  confusion with the real co- 
ordinate z.) 

We will view X as a coordinate system on a neighborhood of  Z0 in /) which 
is prescribed by 0.2, 0.3. This coordinate system is a slight variation of  the standard 
polar coordinate system. 

The Choice Of U" above (i.e. the choice of  d, dl in the definition of  U') is not  
necessary for obtaining the properties of  the function that we will introduce in 0.5, 
but it will be important in our later construction. 

I f  ZED and there is XEU" so that Z = Z ( X )  (as defined in 0.3) then we will 
define X(Z) = Y and we define: 

0.4. W'=Z(U ' )  and W=Z(U) .  
This definition is correct since the correspondence X ~ Z ( X )  is one to one in 

U'. Note that W is a neighborhood of  Z0 in the topology o f  D and Z(U')nbD= 
Z(V'),  Z (U)nbD=Z(V) .  

Fix X ' = ( ~  . . . .  , x~-~, Ya . . . . .  YN-1, ~, O)EV" and let ZEC ~ we define: 
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0.5~ 

ux(Z ) = 1/2(1 --(~I_~j_~N--1 (Zj exp (-- i(yj+7))--(Zj exp ( -  i(yj +7))_~j) ,)2 

+ ( Z  N exp ( -  i~)--(ZN exp (--i7)--(1 -- ZI_-<j~_N-1 (~j)2)v2)4)~)). 

Throughout this paper when ZEW'  and X = X ( Z )  then ux(x)  derux(Z). 
The holomorphic polynomial ux is zero on Z( .~)  and has a positive real part 

elsewhere in W'  (see Sublemma 1 below). In the construction of  proper holomorphic 
maps from a strongly pseudoconvex domain in C 2 to the unit polydisc of  C 3 by B. 
Stensgnes [19] a different type of  peak functions is used which have similar prop- 
erties in the process of  approximation (in the proof  of  Lemma 1). The properties 
of  the peak function developed by B. Stensones in [19] has motivated the search 
and use (in Lemma 1 and Lemma 2) of  the local peak function defined by 0.5. 

Sublemma 1. Let ZEW" and let X=X(Z) ,  where 

X = (Xl . . . . .  XN-1, Yl . . . . .  YN-1, Z, W), 
then: 

ux(Z) = w+,~l~j~N_ 1 (xj)~(yj-yj+ z--~)~ + xj(xj--  s 4 

+ (1 - Z 1  ~_ j<= N-~ (~J)~) (~ -- ~')~ + (1 -- Z ~  _~j~_ , , -1 C~J) ~) -~/~ ( Z ,  _~j~ ~, _~ ~j (~j - x j))'  

-- i ,~I~_j~_N-1 (XJ)2(1 -- W)2(YJ --Y J) -- i (1 -- W)2(Z --~) + RX (Z), 

where the remainder term Rx(Z)  is bounded in the following way: 

IRx (Z)l <- 105(w+ Iz--TI2+Zl~j~_N_l lyj--Yu+z--~l~+ Ix u -~ j l  4) 

•  lyj-Yj+ z-711/3 +w+ Z~_j~_, I~j-xjl) 
and: 

lira (Rx(Z)) [ ~ 10'(w-k Iz-~']2 + ZI~_j~_N-1 lYj --Yj + z--TI ~ + lx~ -- ~jl') 

x ( t z - 7 l  I/' + ZI~_S~_N tYs -Ys  + ~ - ~ 1 ~ )  �9 

We will conclude that the remainder is small enough in W" so that: 

Re (ux(Z)) _-> 99/lO0(w+ ~_S~_N_ 1 ((XJ)~O'j--Yj+Z--Tf +X.I(Xj--'~j) 4) 

+ ((1 - ZI_~j~_N-1 (Xj)2)(z--z) ' +  (1 -- ZI~_j~_N-I (xJ)')-aI')(ZI~_j~_N-1 (xj)(2~--Xj))a). 

Note that Re (ux)>0 on W'~{Z(X')},  ux(Z(X))=O and for Z~W' ,  Rx(Z)= 
o(Re (ux(Z))). This will imply that Rx is essentially negligible in the construction 
process of the proofs of  Lemma 1, Lemma 2. The remainder term, Rx, will be ob- 
tained as a sum of  five "smaller" remainders Rx.~ . . . . .  Rx,5. 
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Proof .  Let Z C W "  and let X = X ( Z )  where 

X = (Xl, ..., XN-X,  Yl  . . . . .  YN--1, Z, W) 
then 

Z = ~I~_j~_N-1 Xj (1  --  W) exp ( i ( y j + z ) ) e j + ( 1  --  ZI~_y~_N-1 (xJ)2) 1/2(1 - w )  exp ( i z ) eN .  

0.6. To simplify our  next calculations we define for 1 <=j<=N-- 1 t j = x j ( 1  - w ) ,  
O j = y i + z  and 

t N = ( 1 - - ~ I ~ j ~ _ N - - 1  (Xj)2) 1[2(1 --W),  O N = _7. 

So we have: Z = ~ I ~ i < - N  tj exp ( iOj)e j ,  here ( q ,  Or, . . . ,  tN,ON) are the stand- 
ard polar coordinates of  Z with respect to the basis el,  e2 . . . . .  eN. 

Similarly we define for 1 ~]<= N -  1 : 

~j = ,2j, Oj = y j + ~  
and 

~,, : (l-21<=j~_,,_1 (XJ)2) ':', 0,, : ~. 

(So for Z* = Z ( X )  we have Z* =Z~_~j_~N ?j exp ( iOj)e i . )  
0.7. Using these notations we have: 

2u  x ( Z )  = 1 - ~I~_j~_N (t j  exp (i (Oj -- O j))  -- ( t j  exp (i (0j -- 0i) ) -- ii)4)~ 

= 1 --~I~_j<=N ((tJ)2 exp (2 i (O j - -  Oj)) 

-- 2 t j  exp (i (Oj -- O j ) ) .  ( t j  exp (i (Oj -- O j ) )  --  ij)4 + ( t j  exp (i (Oj --  Oj)) -- iy)8) 

= 2w -- w 2 + (1 -- w) 2 + ,~I_~j_<-N (-- (tJ)2 (COS 2 (0j-- Oj) + sin 2 (0 i -  O j) i) 

+ 2tj(cos (0j -- 0~) + sin (0:-- 0j) i)- ((t i -- ?j) + t i (cos (O j - -  O j ) - -  1) + tj sin (0j -- O j) i) 4 

- -  ((t j  -- i j)  + t s (cos (0~ -- O j)  -- 1) + tj sin (Oj -- 0~) i)s). 

0.8. Since (by 0.6) ZI~j-~N ( t j ) 2 = ( l - w )  2 then 0.7 implies: 

2ux(Z) = 2 W - - W 2 + 2 1 ~ j ~ N ( - - ( t y ( C O S 2 ( O : - - O j ) - - l + s i n 2 ( O j - - O ~ ) i )  

+ 2tj (cos (Oj - O j)  + sin (Oj - O j ) i ) .  (( t:  - i j)  + tj (cos (O j -  O j) - 1) + tj  sin (0j - 0j) i) 4 

- ((t:  - gj) + tj (cos (0j - O j)  - 1) + ty sin (Oj - O j) i)s). 

0.9. Using the tr igonometric identity: 1 - c o s  2A=2(s in  A) 2 0.8 yields: 

2u  x ( g )  = 2w - w 2 -4- Z a  ~_j ~_N ((tJ) 2 (1 -- COS 2 (Oj -- O j)  -- sin 2 (Oj -- O j)  i) 

+ 2t j  (1 -- 2 (sin (Oj - 0j)/2) 2 + sin (Oj - O j )  i) 

• (( t j  - ~j) - 2t j  (sin (Oj - Oj)/2) 2 + tj sin (Oj - O j)  i) 4 

- (( t j  - ?j) - 2 tj (sin (0j - Oj)/2) ~ + tj  sin (Oj - O j) i)s) 
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(af ter  a few trivial  manipu la t ions )  

= 2w -- w z + 21_~i_~N ( ( t y  (2 (0j --0y) z - -2(0  i -- 0i) i)+2t~(t~ -- tJ)' 

+ ( t1)2 (1 -- CO S 2 (0j -- 0i) -- 2 (01 -- 0i)8 + 2 (0j -- 0i) i -- sin 2 (0 i -- 01) i) 

+ 2tj  (1 -- 2 (sin (0j -- 0i)/2)2 + sin (0 i -- 0y) i) 

• (((t j - -  gj)-- 2t  i (sin (0 i -  0j)/2) z + tj sin (0 i -  0i) i) 4 -- (tj -- i j)4) 

+ (2tj (-- 2(sin (0 i -  0j)/2) 2 + sin (0j- -  0 j ) i ) .  (t i -  t j) ' )  

-- ((tj -- iy)-- 2t  i (sin (0f -- 0i)/2) 8 + tj sin (0y -- 0i)/)8). 

0.10. Le t  us define the  fo l lowing r ema inde r  t e rms :  

Rx, I (Z)  = 1/2 ~1~i_-<N (ti)2 (1 --COS 2(0j  -- 01)--2(0 i -- 01) 8 + 2(0 i -- 01) i -- sin 2(0 i - 0 1 )  i) 

a n d  
Rx,,. (Z)  = 1/2 2'1_~i~_N (2tj (1 - 2 (sin (0 i - 0i)/2)8 + sin (0 i -  0i) i) 

X (((tj - ~j) - 2tj  (sin (0 i - 0j)/2) 2 + tj sin (0 i - 0s. ) i)4 - (tj - ij) 4) 

+ 2t I ( -  2 (sin (Oj - -  01)/2) 2 -{- sin (Oj -- 01) i) (t i --/j)4 

-- ((t j - -  t i ) - -  2tj  (sin (0 i -- 0i)/2)8 + tj sin (0j- -  O j) i)s). 

Then  by 0.9: 

0.11. 2ux(Z ) = 2w-wS + Za<=ja~(tj)~(2(Oj-Oj)z-2(Oi-Oi)i)+ 2ti( t j - t l )"  

+ 2Rx,~(Z)+ 2Rx,2(Z). 

Firs t  let us evaluate  Rx,~(Z ). W h e n  we look  a t  the  Tay lo r  expans ion  o f  sine 
a n d  cosine it is appa ren t  tha t :  

]2(0 i - 0 i ) -  sin 2(0 i - 0 j ) l  <- 210 i - 0 j l  ~ 
and  

I I - - c o s 2 ( 0 j - 0 j . ) - - 2 ( 0 ~ - 0 i ) " l  ~ 2 1 0 j - 0 i t  4 (for 1 _<--j <= N) .  

0.12. W e  conclude  tha t :  IRr,~(Z)I<=2~_j<=N i0j-0113. 
Before evaluat ing  Rx,~(Z) we need  the fo l lowing s imple inequal i ty  (which is 

des igned for  this  evaluat ion) .  
Le t  l>=a,b>=O a n d  take  n=>l,  k ->0  so t ha t  n + k = 4  then :  

O. 13. (a S + b ~) a 1/~ >= a n b k. 

Proof. P u t  r  1/2, 0.13 is then  equivalent  to :  

cSq-cb 4 >= c2nb k. 

I f  b ~ c  then  cb4->=cS"b k and  i f  c->=b then  c5>=c2"b k, and  0.13 is proved .  
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0.14. It follows that if  l ~ a , b ~ 0  and n ~ l ,  k=~0, n+k>-4  then: 

(a2+ b4)al/2(a + b) "+k-* ~= a, b k. 

After opening brackets and collecting terms we can look at Rx, 2(Z) as a poly- 
nomial in the variables ( t j - i j ) ,  sin (Oj-Oj)/2, sin (Oj-Oj) (1 <=j~N), where each 
monomial is of  total degree =~4 and the coefficients are polynomials in tj, ij. So 
Rx,2(Z)  can be expressed in the following way: 

O. 15. Rx,~ (Z) = ~_y~=N ~O~_k, 1, ~_~6 a~lm (tj - i j) k (sin (Oj - Oj)/2) 1 (sin (Oj - O j)) r". 

J One can easily calculate that [aiklzl< 10 s and, as we mentioned above, if  aklm~-O 
then k + l + m - ~ 4 .  Since the term: 

((tj - ~j) - 2tj (sin (0~ - Oj)/2) 2 + tj sin (Oj - O j) 0 4 -  (tj - i j) ~ 

does not contain a monomial which is free from sin (O j - O  j)~2 and sin (O j - O  j), 
then the only monomial of  Rx,2(Z)  which is free from sin(Oj-Oj) /2 and 

< "< and sin (Oj-Oj) is - ( 1 /2 ) ( t j -~ j )  a. In other words, (for all I = j = N )  i f  J akl m 7 ~ 0 
l = m = 0  then k = 8 .  

Since [sin A]~]A[ (for all AER) we have: 

0.16. IRr,~(Z)l ~ 21~j~N ~O~k,l,m~16 la~,,,I Itj--tj]k[Oj--Ojl l+ra. 

-< "< J then : 0.17. Claim. For every I = j = N  and O<=k, l,m<=16 if  akimbO 

It j _ zj]k ]Oj -- 0jI t+m =< (]Oj -- 0j] 2 + ltj -- tjl 4) ([Oj -- Ojl + [tj -- ijl) k+z+ m-'  10j - O j[ 112 

or l = m = 0 ,  k=8 .  

Proof. I f  l + m = 0  then (as we mentioned before) k = 8 .  If  re+l>=1 then 
since ( l+m)+k>=4 the claim follows from 0.14. 

Using the fact that for every 1 = j =  N. 

~O~k,l,m~lS, k+l+m=4 la[t~l < 20 

and if  0-<k, l, m-<16, k + l + m > 4  then la[tml<10 s. 
0.18. We obtain that: 

[Rx, 2(Z)[ <= ~O~_k,t,m~_Xn ~I~_j~_N la[lml [tj -- ij] k [Oj --  Oil l+rn 

21~j~N 20 (10J --OJl 2q- ItJ __ ~j[4)]Oj - - 0 j ]  1/2 

+ ~'0~k. 1,,.~_ae .Zx_~j~=N 10s (10j-0yl m+ Itj-~jl4)(lOj - O j l  + Itj  - ~jl)IOj - Oil v2  

25 (.~a_~j~N IOj --0jl2 + Itj --tjl4)(~l~j<=N ]Oj --Oj] 1/2) 

(0.2, 0.6 (i.e. the smallness of ( t j -  i j) and (O j -  O j)) were used in the last inequality). 
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Combin ing  0.12 and  0.18 we obta in :  

0.19. IRx, dZ)+ Rx,2(Z)l ~ 30(ZI_~j~ N IOj-Ojl2 q - l t j - i j l 4 ) ( .~ l~_ j~  N IOj--Ojlal2). 

N o w  by  0.11 : 

0.20. u x ( Z  ) = W--(1/2)WZ + ~I~_jaN(t j )2(Oj--Oj)2  + t j ( t j - - l j )  a 

--  i Z I ~ j ~  N (tJ)2 (Oj -- Oj) q- RX,1 (Z)-t- Rx ,  ~ (Z) .  

Since ~I~-j~-N ( t j )2=(1 - -W)  z then 

o.21. ZI _i N (tj) (Oj- O j) 

= ( Z 1  (tj)  (oj - o j)) + ((1 - - ZI _j N-1 ( @ 9  (ON -- ON) 

= (21_~j~_ N-1 (t J) 2 ((0j -- O j) -- (ON -- ON))) + (1 -- w) 2 (0N-- ON). 

This  fo rm o f  the imaginary  pa r t  reduces the dimension o f  the target  ball ,  in the 
construct ion process,  by  one. 

We  obta in  f rom 0.20, 0.21 (see also the definitions at  0.6): 
0.22. 

u x ( Z )  = w - - ( I / 2 ) w 2 + Z l ~ j = ~ N _ l ( t j ) 2 ( y j - - y ~ + z - - ~ ) ~ + t j ( t j - - i j ) "  

+ (tN) ~ (z--~)2 + tN (t N _ iN)4 _ i Z 1  <=j~_N--1 (tJ)2 (YJ - -Y  J) -- i (1 -- Wf' (Z--~) 

+ R r , I ( Z ) + R x , 2 ( Z )  

-=- w - (1/2) w 2 + 2 1  ~./=< s -1  (x J) z (1 - w) ~ ( y j - Y1 + z -- ~)2 + x j  (1 -- w) (xj  -- ,2j -- wxj )  4 

+ (tu) 2 ( z - -  ~)2 + tN (t~ -- iN) 4 

- -  i Z I ~ j ~ N - - 1  (XJ)2 ( 1 --  W) 2 (y j  --fij) -- i (1 -- wf" (z -- ~) -4- Rx,1 (Z) A- Rx,2 (Z). 

Our  ma in  task is done  n o w  as we obta ined  a useful expression for  the imaginary  
pa r t  o f  u x ( Z ) ,  and we are very close to the desired expression o f  the real par t .  W e  
also evaluated the size o f  the first two remainder  terms which are complex  functions.  

Next  we wan t  to find a simple expression for  Re  ( u x ( Z ) )  in te rms o f  the X-co- 
ordinates.  W e  will need again to select a principle pa r t  and  to separa te  f rom it re- 
mainders  tha t  will p rove  to be marginal .  All our  next  remainders  Rr ,  a (Z) ,  . . . .  Rx,  5 ( Z )  
will be pure ly  real. The  mos t  labor ious  pa r t  o f  our  calculat ions will be the work  to 
simplify the t e rm tN(tN--iN) 4. 

0.23. t N -  i N = ((tN) 2 -  (IN)2)/(tN + iN) 
and 

(tN) 2 - -  (iN) 2 = (1 -- Z 1  ~j~_N-1 (X J) 2) (I -- W) * -- (1 -- Z I ~ j  ~ N--1 (XJ)~) 

= ZI~_j~_N--1 (XJJvxJ)(XJ--']C'J) -~(W2 - 2 w ) ( 1  --ZI~_j~_N-1 (xJ) z) 

= 2 Z I~_ jaN-1  Xj(Xj --,~j)"~ (W 2 - 2 w ) ( 1  --ZI~_j_~N-1 (x J) 2) + Z I~_ jaN -1  (XJ --XJ )2" 
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0.24. Let  

Rx ,  3 ( Z )  : t u (t N - ~N) 4 -- t N (t N + tN) --4 (2 2 a  ~ j ~ N --1 Xj (Xj - -  X j ) )  4. 

0.25. Then:  

Rx ,  ~(Z)  = tN(t u + iN)-4( ( ( t s )2- -  (/u)2) 4 -  (2 ,~a l~ j~N_  1 X j ( X j  - -  X j ) ) 4 ) .  

The  choice o f  U" in 0.2 and the definition 0.6 imply that  

I / 2 < [ t u [ , f t N ] <  1, [t~--~NI < l0 -Su and (for 1 =--<j ~ N - I )  12 j [ , [x / [<  1/N,  

therefore we can see from 0.23 that :  

0.26. IRx,3(Z)I < 100(wq-Zl_<_j_~N_ 1 [Xj-xjl4)(w}-Za~j~N_l I~j-xjl). 

Let  us now define: 

0.27. R•,4(Z ) = tN(tu + tN)-4(2 ,~I~_j~_N--1 X j ( ~ j  --  X j ) )  4 

- tN(ZtN)-4 ( 2 ~I_~j_~N--1 Xj(Xi  - -X  J)) 4" 

We need the following calculation to evaluate R x , 4 ( Z )  

(t N + /N) - I  = (2tN)-1 + (tN + tN) -1 - -  (2tu)--1 = (2tN)-1 + ((tN)Z _ (~N)2)(Ztu(tN + ~N)2) --1. 

So 
Rx,4  ( Z )  = t N (2 ~1~_i~_ N-1 Xj (~j  -- X j)) 4 ((t~- + tu)-4 _ (2tN)-4) 

= tN(2 .~ I~ j~N--1Xj (XJ- -XJ) )4( ( (Z tN)- -X+(  (?N)2-(tN)2)( 2 tN( tN+ tN)2)--l)4--(ZtN)--4)" 

When we combine this with 0.23 and the facts that  1/2 < I tNI, I~NI< 1, It s -  iUI< 10--SN, 
we obtain the following (nonsharp)  est imate:  

0.2S. ]Rx,4(Z)I <: 100(~ l~ j~? r  1 lY.j--Xjl4)(w-q-2"a<=j~_N_a ]:~j--xjl).  

We conclude the following f rom 0.20--0.27:  
0.29. 

u x ( Z  ) = w - ( 1 / 2 ) w  2 

+ ~ 1  ~_ j ~ s - 1 ((xJ)~ ( 1 -- w) 2 (y j  -- ; j  + z -- Y.)" + x j  ( 1 -- w) (x j  -- ~j  -- w x j )  4) 

+(1 - Z I~ j_~-~  (xJ)~) 0 - w),(z-~)~ + (1 - 2I~_j~_N-1 (xJ)")-"/' 0 - w)- .  

• ( Z 1 ~ - 1  xj(~j-xj))4-i,:S~<=j~_N_l (xj)' (1 -w)~ (y~-y  j) - i ( 1  - w ) ' ( z -  ~) 

+ R x , , ( Z ) +  R x , ~ ( Z ) +  R x , 3 ( Z ) +  R x , 4 ( Z ) .  
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0.30. Let us define: 
Rr,~(Z) = - ( l / 2 )w~  

+ (~'I_~j~_N-1 (X J) 2 (1 -- W) 5 (yj --yj + z --~)~ -- (X j) 5 (yj --yj + Z -- 5) 5 

+ ~ ( 1 - w ) ( x j - ~ - w x ~ )  ~ -  x j ( x j -  ~j)') 

+ (( l -  ~Yl~_j~_~-I (xJ)~)( 1 -w)~(2-~)~-(l - ~y~_~_~_~ (x j)9 (~-  ~) ~) 

+ (((1 - ~l~_j~_N-x (x~) 5) -3/5 (1 - w)-a) (.~-,~=j~_~-I xj('2j - x~))' 

--(l - -2 I~ j~N_I  (Xj)2)--3/2(2I<=j~N_ 1 Xj(Xj -  X j)) 4) 
then 

0.31. 
u ~ ( Z )  = W df- ~ ]~ j~N- -1  (XJ)2(YJ--YJ "Jl- Z __~)2 "q'-Xj(Xj __~j)4 

+(1 -Zl~_j~_,,-1 (xJ)~)(z-~)5 + ( 1 -Z~_ j~_ , , _ ,  (x j )~)-3/ ' (ZI~j~N_,  xj(gj  - ~j))' 

- i Z,~_j~_~,_, (x J) ~(1 - w ) 5 ( y j - y j ) - i ( 1  - w) 5 ( z -~ )  + Rx, l f z )  + Rx.5(z)  

+ Rx ,3 (Z)+ .Rx ,4 (Z)+  Rx.~(Z). 

This is true simply because the definition of Rx,5(Z) (and 0.29) imply that we 
add and subtract the same terms. 

Looking again at 0.30 we see when we look at the terms within each set of  
bold brackets separately, that: 

0.32. IRx,5(Z)l <-- 103w(Iz--~12+Zl_~_N_l l ' 2 j - x j l3+ly j - y j+z -~12+w)  �9 

When we combine 0.19 with 0.6, 0.24--0.26 we obtain: 

0.33. IRx,~ (Z) +.Rx,2(Z)l 

104(w + lz-~12 + Zx~_j~N_a ]y j -y j  q- z-~.lS-F l x j -  Y~j[ 4) 

x( Iz -  ~l ~/~ + Z~j~_~ lyj - Y j  + z - ~l~/~). 

0.34. Define: Rx (Z) = Rx, 1 (Z) + Rr, 2 (Z) + Rx, 3 (Z) + Rx, 4 (Z) + Rr, 5 (Z). 
0.35. Combining 0.26, 0.28, 0.32, 0.33 we have: 

IRx(Z)l-<- 105(w+lz--~lZ + ~a~_j~N_l l y j - Y j +  z-~lS +lxj- '2j l  4) 

•  1/~ + ZI_~j_~ tyj - Y  j + z -~11/~ + w + ZI~_j~_~-~ I~j - xjl). 

0.36. Since Im (Re(Z))-- Im (Rx,~(Z)+Rr, z(Z)) 0.33 yields that: 

lira (Rx(Z))I <_- 10'(w + ]Z--7. IS"~-~al~_j~N_I [yj -yjq-z-zl2.-F Ixj -~j l  4) 

• l y j - y j +  z-~l~/2). 
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Now if we look at 0.34, 0.31, 0.2 we can see that the neighborhood we have chosen 
is small enough so that the effect of the remainder term is so limited that: 

Re (ux(Z)) >- 99/lO0(w + Z1~j~_ _ _l (xj)2(,yj-Yj+ z-Y~)2 + x j ( x i_~ j  )4 

2 --312 - 4 + ( l  --~I~_j<=N_I (xj)Z) (z--,~)2 + (I --2a~_j~_N-I (x)) ) (~'a~_j~_u-1 xj(xj--xj)) ). 

We have completed the proof of Sublemma l. 
The following Lemma is the first step toward constructing the map in Theorem 1 

(/~=/~(N) is a positive constant that will be defined for N > 2  in the third section, 
/~(2)= 1). 

Lemma 1. Let D = B  u, Ro>0, %=10 -(I~176 and ZoEbD. There exists an 
open neighborhood (in the topology of  D) WC=D of  Zo, so that when f :  b D ~ B  u+l 
is continuous, If[ >Ro, K c D  is compact and ~o>e>0, ~'>0 then there is a smooth 
map g: O ~ C  u+l, holomorphie on D such that the following hold: 

(a) when ZEbD: If(Z)+g(Z)l < 1+~ 45 

(b) when ZEbDc~W: [f(Z)+g(Z)12-1f(Z)12>ez(1-1f(Z)l=)-~ '5 

(c) when ZEbD: If(Z)+g(Z)l=-lf(Z)l = > - 3 ~  ~~176 

(d) when ZEK: ]g(Z)l < ~' 

(e) when ZEbD: Ig(Z)l 2 < nl/3(1-lf(Z)12)+e 35. 

Proof of  Lemma 1 (for N= 2) : 
We will present here a proof of Lemma 1 when N=2.  The proof for co >N->2 

(which is based on Lemma 3) will be presented in Section 3. The ideas of the proof 
in the case N = 2  originate from B. Stensones [19]. 

1.1. Let X=(x,  y, z, w) be the coordinate system in a neighborhood of  Z0 
described by 0.1--0.3 and U', V', U; V, W, W' described by 0.2, 0.4 where dl= 10 -1, 
d=  10 -4~ For X=(ff, ~, ~, 0)E U" we will define the polynomial u x as in 0.5. Sub- 
lemma 1 implies then that ux has the following properties (we suppress the distinction 
between X and Z(X)):  

1.2. (i) Re (Ux)>0 on W'~{Z(X')} and ux(Z(X'))=0 
(ii) Let X=(x,  y, z, w)EX(W')  then: 

u~ ( x )  = w + x~ ( y  - y + z - ~)~ + x (x  - ~ ) '  + ( 1 - x~) (~  - ~)~ + (1 - x 2) -~/~ ( x  ( ~  - x ) ) '  

-ix=(1 - w ) 2 ( y - y ) - i ( 1  - w ) 2 ( z - ~ ) +  Rx(Z) 
where: 

IRx(X)I ~- 105(w + Iz-~]~+ lY-Y+ z-~12+ Ix-~l ' )  

• l/~+w+l~-xl) 
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and: 

lIm (Rx (X))I <= 104(w + l z - ~ P  + ly -Y  + z - ~ p  + Ix - 214) �9 ( Iz-~l  1/2 + ly - Y  + z -~ll/2). 

It was also proved in Sub]emma 1 that for X = ( x ,  y, z, w )~X(W' ) :  

1.3. Re (ux(X))  >- 99/lO0(w + x ~ ( y - y  + z -~)~  + x ( x - 2 ) 4  +(1 - x 3 ) ( z - ~ )  ~ 

+ (1 -  x) ),). 

1.4. For  XCX(W' ) ,  the following notation for the coordinates of  X will be 
used: X =  (X1, X2, Xs, X , )=  (x, y, z, w). 

1.5. S incef i s  continuous there exists an r, el/*>r>O, so that when X, X'~ V', 
] X - X "  I<(Iog ( l / r ))  -1 we have: 

I f ( X ) - f ( X ' ) l  < e a~176 

1,6. Define c l=r  ~/4, c~=lOr a/~ and c3=r V~. 
We can assume that r is chosen so that (log e)/(r 1/2. 4re) is an integer (this 

assumption is possible since e x / ' > r > 0  and there is no positive lower bound on 
the choice of  r). This assumption combined with the form of  Im (ux) in 1.2 above, 
"saves" one dimension of  the target ball. An equivalent assumption (for the same 
purpose) can be found in [19]. 

1.7. For  a=(al ,  as, aa)~Z s we define X,=(a lc l ,  a~c~,asc3, 0) and define: 

L = {aCZ3: d(X, ,  V) < rl/5}, L '  = {aEZZ: X,  EV'}, 

{X,: aEL'} forms a lattice-like set that "covers" V" (=Z(W'c~bD)) .  {X,: aCL} is 
a smaller lattice that "covers" V(=Z(Wc~bD))  with a very small margins around it. 

1.8. Define for aEL: 

Ua = UX. and Ra = Rx~ (the remainder term). 

By 1.2 when aCL, X = ( X a , . . . , X 4 ) = ( x , y , z , w ) E U "  and t i=XJc  i 1<=i<-3 then: 

1.9. Ua(X ) - ~ -  w + x2(c2(t2-a~)+c3(ta-a3))~ +(1--x2)(cs(tz-aa))2 + X(Cl (q -a l ) )  ' 

+ (1 -- x 2) -s/~ (XCl (tl -- a~))' -- ix z (1 -- w) z (cz (t 2 - a 2)) -- ica (1 - w) 2 (t a - a ~) + Ra (X)  

= w + x 3 r ( 10  (t~ - -  a 2) + (ta - -  a 3)) 2 + ( 1 - -  x 2 ) r ( t  z - aa) ~ + r ( x  + ( 1 - x 2 ) -z /~ x 4) ( q  _ a04 

-- lOiH/3 X z (1 -- w) 3 (t2 -- a2) -- iH/3 (1 - w) ~ (t3 -- a3) + R~ (X). 

We define for ZE/~ and aCL: 

1.10. p , (Z )  = exp (u~(Z). (log e)/2r) 

and for a ~ L ' ~ L  we define p~---0. 
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Capital Z (for an element in C n) is used in this work whenever there is a pos- 
sibility of  confusion with the real coordinate z. Property (i) in 1.2 implies that 
{Pa: aEL} is a set of local peak functions that peak on the lattice {Xa: a~L}. 

Throughout the proof of  Lemma I and Lemma 2 we will suppress the distinction 
between Z and X ( Z )  when ZE W'. Let aEL and X = ( X  I . . . .  , X4)=(x, y, z, w)E U' 
(ti=Xffc ~ 1 _<-i_<-3) then 1.9 and 1.10 imply: 

1.11. (We will use the notation ~ d,f .) 

pa ( X ) = ~(1/~)(w/r + x~(1~(t2-a2) +(~a-a~))~ + ( 1 -  x2Xts-~)2 + (x + (~-  x2)-a/2x~)(~x-a1)4 + R~(R`~(~)/ r)) 

)< exp (--/((log e)/2) (10r-1/2 x2(1 _ w)2(t2 _ a2) + r -1/3(1 -- w)Z(t3 -- a 3) -- r-1 Im (R.(X)))). 

Thus if we add the assumption that X6V"  (i.e. w=0)  then: 

p a ( X  ) = ~(1/R)(x2(lO(tll-a2)+(tz--a:~))2 +(1-  x2)(ta-aa)2+(x +(1-- xZ)-3/Zx4)(tl-al)4+ Re(Ra(X)/r)) 

)<exp ( - / ( ( log  e)/Z)( lOr-1/2x~(t2 - a2) + r -1/2 t3))" 0, (X) 

where Oa(X)=ex p ((i]2)(log ~). r -1. Im (Ra(X))). Note that 10,[- 1. 
The second equality holds since we assumed (1.6) that (log e)/(r 1/'. 4n) is an 

integer. 
1.12. We need an estimate for Oa(X) when XCV" is close to X a (in a sense that 

will be soon explained). 
Let aEL, XEV" (t~=Xf/c~ 1 <=i~3). We have from 1.2, 1.6 and a calculation 

like the one in 1.9: 
I((log e)/r) Im (R,,(X)) I 

=< 104 (log e) ( ( 1 0  (t2 - -  a z) + ( t3  - -  a z ) )  z + ( t  3 - -  a s )  z + ( t l  - -  a 1) 4) 

X r 1~ ' ( I t  3-a3[ 1/~ + 110(t2- a2) + ( t 3 -  a3)11/2). 

If  we assume (for example) that for all 1 <=i~3, [t~-a~l < 106 then since 10-1~ 
co>e>0  and ~ l / ' > r > 0  (see 1.5) we have that: 

[(log e) r -~ Im(Ra(X))[ < 10 -~~ 

1 0 . ( x ) -  II < ! o  - l ~  

and, as mentioned after 1.11, 10o(X)l = I. 

1.13. p.(X)'Pb(X) 

= exp ((log e) r-a (Re u, (X) + Re ub (X) + i(Im u~ (X) - Im Ub (X)))) 

. :  ~o x~((lO(rl--a~)+(tz--aa))e+(lO(t~--b~)+(ta--bs))~t)/2 . ~2(1-- x"-)((ts--aa)2 +(ta--ba)2)/2 

~r (1/2)((x +(1-x ' ) -  3/~x4)((tl-al)r169 Rb(X))/r)) 

•  ( - / ( l og  ~)(5r-1/2x~(bo_- a2)))- Oa(X). Oh(X). 



Proper holomorphic maps between balls in one co-dimension 63 

It follows that if a~= b~ then" 

p. (X) .  ~b(X) = Ipo(X)" Pb(X)[ " O,(X). Oh(X). 

The fact that O,(X), Ob(X ) are very close to 1 when X,, X b are close enough 
to X (see precise computation in 1.12) will prove to be crucial later (following 1.19). 

Let vl, vz: V ' ~ C  3 be continuous maps such that for every X6V" 

{ f (X) ,  vI(X), v~(X)} 

are mutually orthogonal and lvl(X)l~=lv2(X)12=l. Such maps exist since f is 
continuous and l f l  >R0>0.  By shrinking r further (in 1.6) we can assume that for 
X, X'~ V" such that IX-X'l <(log (I/r)) -1 we have (for i =  1, 2): Ivy(X)- v~(X')l <~6o. 
For  a6L" we define i (a)= 1 whenever a~. is odd and i (a )=2  whenever a~ is even 
and we denote t,=(2~(1-1f(Xa)12)) v"-. We define for a6L': v,=t,V~r (so 
when a2 progresses our choice between t~vx(X~) and to v.,(X~) alternates). 

The set {v,: aEL'} has the following properties: 
1.14. 

(i) (Va, f(X~))=0. 

(ii) Iv~12=2~(l-If(X,)l~). 

(iii) I f  a, bEL', l a -b l<1000 ,  and bz-az  is odd, then: 

(iv) If  a, b6_L', [a-b[<1000,  and bz-a2 is even, then: 

[(vo, vb)-Iv.12[ < ~0  

Properties (i) and (ii) are obvious from the definition of  {%}. To prove property (iii) 
and (iv) notice that when [a -b l<1000  (or even when ] a - b [ < - l o g r )  then by 
1.6 and 1.7 [X , -Xb[<( - logr )  -1 and thus I v ~ ( Y . ) - v ~ ( X b ) l < e  ~~ ( i=1 ,2)  and 
(by 1.5) If(X~)--f(Xb)l<~ ~~176 Using (vl, v2)-~O, Iv/l--1 we have for a, b6L', 
l a - b l <  I000: 

(1) I(tov,(xo), t~v,(x~))-It.vi(X.)l~l = I(t.t.v,(Xa)--tat.v,(X~), v,(Xa))] 
_-< 2 I(t,) 2 -  (tb)2l + 2lv~(Xb) -- v~(X,)l (t, + tb) < e n~ 

and 
(2) =< 

--- [(~(xo)- o~(xb), v,(X,))l ~ lo,(xo)-~(x,)l, i~,(x~)l < ~o. 

Now if b2-a2 is even then i(a)=i(b) and (iv) follows from (I). If b2-a.z is odd 
then i(a)r we can assume that i(a)=1 and i(b)=2 and then (iii) follows 

from (2). 
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Properties (iii) and (iv) will play a very important role in our construction. 
1.15. We define for Zc~/3 

/ , ( z )  = = 

The map h is the first and most important stage in the construction of  g of  
Lemma 1. The map g will correct h only slightly on W'nbD (so that it will not 
have a significant effect on its properties in W'c~ bD) and will make it very small 
out of  W'. The motivation behind this definition of  h is to add to f a holomorphic 
function h which is almost perpendicular t o f ( X )  at each point X of  W'n  bD. This 
will add to If(X)l 2 almost [h(X)l 2 so we need to show that Ih(X)l 2 is sufficiently 
large (i.e. uniformly bounded from below) on WrabD but not too large on W'.  
It is important to realize that in this correcting method we can not have a full control 
on the direction of  h. It is impossible (for example) to provide a correction function 
h that will be almost in the same direction as f a t  each XE W'  and will be of  suffi- 
cient size everywhere in W. Such a construction seems to be impossible regardless 
of  the co-dimension. When the co-dimension is 1, then the best control we can have 
on the direction of  h is that it will be almost perpendicular to f .  Our construction is 
based on the fact that in the evaluation of  Ih(X)l 2, ](f(X), h(X))] the dominant 

part  of  h(X) is ~ ( x ,  is close to x)Pa(X)Va and the rest sum up to a small proportion 
of  it plus a small error term. 

The evaluation of  Ih(X)l 2, l (f(X),  h(X))[ will require a division o f  L, L'  into 
appropriate subsets. Fix X=(X1 ..... X~)EU', and 6=Xi/c~ 1<-i<_-3. We choose 
a3(X) to be an integer so that laa(X)-tal<=l/2. Next we choose a2(X) to be an 
integer so that [10(ts-a (X)) + ts-  5 (note that aa(X) is chosen first and 
then as(X)) and we choose al(X) to be an integer so that [a~(X)-q]<=l/2. We 
define a(X)=(al(X), as(X), a3(X)). 

1.16. Define: 

L'(x, 0) = {a = (al,  a2, aa)EL': ]ai-ai(X)] <-- 1 for all 1 <_- i <= 3} 

and for n ~ 1 : 

L'(x, n) = {aE L ' \L ' (x ,  0): n s < (1/2)(xZ(lO(t2-a2)+(tz--az))~ +(1--x2)(t~-as) 2 

+(X+(1--X2)-~/2x')(ta--al) ') -<- (n+ 1) 2} 

and we define L(x, n)=L'(x, n)c~L, for n=>0. The positive numbers 

{(1/2r) (Re (u. (X) -- R. (X)): aE L'(X, 0))} 
are the smallest in the set {(1/2r)(Re (u.(X)-Ra(X)): aCL')}, 

{(l /2r)(Re (u#(X)-R.(X)): aEL'(X, 1))} 



Proper holomorphic maps between balls in one co-dimension 65 

are the next smallest, etc. There is a computational convenience in this division of 
L', L into subsets as we will see later. 

Let XE V', then: 

If(X) + h(X)l z = If(X)l 2 + Ih(X)l 2 + 2 Re (f(X), h(X)) 

_-> ]f(X)[2+ [h(X)12- 2 [(f(X), h(X))l. 

We will prove the following for XE V'. 

1.17. (A) [(f(X), h(X)) I < e 1~ 

(B) Ih(X)l 2 < el/2(1-lf(X)12)+e 5~ 

(C) when XEV then [h(X)l~ > e2(1-1f(X)12)-e 5~ 

The proof of 1.17 is the main step in the proof of  Lemma 1. Careful considera- 
tions will be needed to prove (C). 

1.18. We will freely use the following facts. When aEL(X,n), n>=O then: 

(1) card(L(X, n)) <_- (10n+10) 3 

(2) Ip.(X)l  -< ~"'/2. 

Proof. Since [x -10-1 [<10  -4~ (see 1.1) then (1) is a simple consequence of  
Definition 1.16. 

It follows from 1.3 that 
Re (u.(X)) 

_-> (99/100) r(x2(lO(tz - a2) + (t3- az)) 2 + (1-  x2) (tz - az)2+ (x + (1-  x2)-3/2x4) (tl - al) 4) 

and then Definitions 1.10, 1.16 immediately imply that (2) is true. 
These are by no means sharp estimates, but they are sufficient. To simplify our 

calculations we will not try to obtain the sharpest estimates with the smallest error 
terms but rather estimates that are sufficient for our needs and are easy to work 
with. When XEU" is fixed and aEU(X, n) we define [a]=n (there is only one 
such  n). 

Proof of(A) (using 1.14 (i), (ii) and 1.5, 1.6): 

l(f(x), h(x))l-- I.Z.~L (f(X), Va)P.(X) l 
= IZ0~_.~_too Z.~L(X,.)(f(X) --f(X.), v.)fi.(X)[ + IZ1oo<. Z.~L(X,.)(f(X), v.)p.(x)l 

<= ~o~_.~_~oo Z.eL(X,.) IU(X)--f(X.)] . Ival +ZlO0<. ~aCL(X, .)Ip.(X)] 

< 2 ~o_~,~_1oo ex~176 el/2(10n+ 10)3+~1oo<n 8"'1~" (10n+ 10) z < /~1oo. 

Now (A) is proved. 
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Proof of (B). Fix XEV': We will use 1.18 and the fact that when 
a, bE U {L(n, X): 0~n-<100} then (by 1.6, 1.7, 1.16) IXa-Xf,  IXb--Xl<r 1/5, and 
1.5 with 1.14 (ii) imply: 

I(va, Vb)l <= (Iv.I 2 + [vbtZ)/2 = e(2 --IU(X~)I z -If(Xb)l 2) 

= 2~(1 - I  f(X)l z) + ~ (I f(X)t 2 - I  f(XD I z) + e (I f(X)l 2 -lf(Xb)l ~) 

< 2~(1 -If(X)lZ) + ~ x~176 

lh(x) l  ~ = [Z, ,b ,L(v~ v~)~,o(x)~(x)l 
<-- Zo~_:~oo Z o , ~ ,  t.J+tbj=,. I(v=, vb)pa(X)pb(X)l 

+ 2100<m ~,~a, bEL, [a]+[bl=m Ipa(X)ffo(X)l 

< Zo__<,.~aoo (2a(1 - I f ( X ) l  ~) + el~176 (lOre + 10)"- a"~/' 

+ ~1oO.<m (lOre+ l @ .  e "~/a < 10%(1 -- If(x)lZ) + ~ ~~ 
(B) is proved. 

Proof of (C). Fix X~V, 

1.19. [h(X)l 2 : Za,  bs L (va' Uo)Pa (X)pb(X) 

= Z,,b~L(X.O) (V~, vb)p,(X)po(X) + Zm~_~ Zt.l+tbl=,- (V~, vb)po(X)Pn(X) 

=> Re (Z,,b<L(X.O) (Va, Vb)p,(X)pb(X))--[Zm~ Zt~]+tbl=m (V,, vb)pa(X)Pb(X)[. 

We will prove that the second term is a small proportion of the first term (plus 
a marginal error term), and the lower bound of  the first term is close to 
[V~x)l~lp.~x)(X)l 2. We will first estimate the first term, and divide the summands 
to four cases. 

When a, b(:L(x, 0) and a=b, then 

(1) (va, Vb)P,(X)~b(X) = iv~l~lp~(X)l ~ > O. 

When a, bEL(X,O), a~b, and a2=b2 then by 1.13: 

p~(X) .~b(X) = Ip,(X)" Pb(X)I " Oa(X)" Oh(X), 

and by 1.12: [O,~(X)--I[, [Ob(X)--l[<lO -a~ therefore it follows from 1.14(iv) 
that: 

(2) Re ((vo, ~)p,(X)Pb(X)) > __~0. 

If  a, b6L(X, 0) and a.,~:bz, then if  az=b2•  1.14(iii) implies that: 

(3) I(vo, ~'b)l < ~o. 

The remaining case is of  a, b6L(X, 0) and az=b2• After possibly inter- 
changing a and b, we have a~, =a,_(X)- 1 and b2=a._(X)+ 1 (a, b will be fixed until 
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1.20). Since - 1 <=a3-az(J()<= 1 the following unsharp  estimate follows from the 
definition o f  a(X) before 1.16: 

- -  2 ( ( 1 0  (t2 - -  a2 ( X ) )  + ( ' z  - -  a z ( X ) ) )  2) > S0. 

This and the definition o f  a(X) (and the fact that  1 - 1 0 - 2 ~  1 + l0  -2~ (see 
1.1)) imply that :  

(1/2) (x 2 ((10 (t 2 - a 2) + (t3 - a 3)) 2 + (10 (t2 - b2) + (t3 - ba)) 2) 

§ (1 - x ~) ((tz - a 3) 2 + (13 - b3) 2) + (x + (1 - x 2) -3/~ x 4) ( ( t l  _ a 1) 4 -~ (tx - -  b l ) 4 ) )  

--(X2 (10 ( t 2 - a 2 ( X ) ) + ( t 3 - a z ( X ) ) ) 2 + ( 1  -x2)(t3 -a3(X))  ~ 

+ ( x + ( 1 - - x 2 ) - a / ~ x 4 ) ( t l - a l ( X ) )  4) > 0.3. 

We obtain f rom this and the estimate o f  the remainder  term in 1.12 and f rom 
1.13 that  

[pa(X) ffb (S)] < ~l/41p,(x~ (X)l 2. 

It  follows f rom 1.14 and f rom 1.5 that  I(va, Vb)--Iva(x l l<=l(vo, vb)--I  l l + 
Ilvbl2--/Oar 5 ~176 SO w e  conclude that :  

(4) I(v:, Vb)Pa(X)Pb(X)I < eX/4 ivo<x>l ~ [pa(x)(X)12+~eo. 

Since a(X)EL(X, 0) (and car (L(X, 0))=27) ,  then combining (1)--(4)  yields: 

1.20. Re (~:,b~L(X,O) (V:, Vb)p:(X)Pb(X)) > (3/4)IVa<X)l'~lp.(x)(X)I ~ - ~ .  

Looking  again at 1.13, 1.16 we can calculate (using an argument  as in (4)) that  when 
a, bEL and [a]+[b]=m>=l, then:  

1.21. IPa(X)~b(X)l =< ~+~IP,<x)(X)I 2, 

Ip,(S) ff~(S)[ < e "~/4 

and when [a]+[b]=rn>=2, then 

Ip,(X) ffb(X)l < ~m~/4-1/2) . IP,(x)(S)l 2. 

An impor tan t  par t  o f  the p r o o f  o f  Lemma  1 is contained in (1.20), (1.21). We 
are now ready to estimate the second te rm in 1.19. We will be using (1.20), (1.21), 
the fact that  {(a,b)EL• [ a ]+ [b ]=m}  has less than (10m+10)  s elements and 
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the fact that (see 1.5, 1.14 (ii)) for 
2~. [I f (Z . ) l  2 -  ] f(Xo(x))12[ < El~176 

a6L such that [a]=<.100, [JVal2-1v~(x)(X)12]= 

1.22. 1~1  ~_ ra ~ a,b E L, [a] + [b] = m ( Ua' vb) Pa ( X )  fib (X)]  

-<- Zl~_m=<100 (1/2) Z,,b~L, t.]+tbl=,. (IVal2 + IvblZ) lPa(X)ffb(X)[ 

+ ~'10o <m ~'a, b ~ L, [a]+[b]=m ]Pa (g) fib (J()] 
_ _ V 2 At_ ~100 ~1/4 X 2 

< Z l ~ m ~ 1 0  0 Z~~ a(X)l ) IPa(X)( )1 

+ ~ t 0 0 < m  ~ a ,  b C L, tal+tb~=m d"~/4 

<= (Iv~(x)l'~+ea~176 2 ~l~m~100 (10rn-~ 10)6)/~ 1/4 

+ ~lO0<m (10m + 10) 6. emil4 < Iv~(x)121Pa(x)(X)l 2" ~a/5+e8o. 

Combining 1.19, 1.20, 1.22 we obtain: 

1.23. Ih(X)l 2 > (3/4)[Va(X)12lp,(x)(X)[ 2-eSs-(Iva<x)l 2 lP,(x)(X)[2. ~x/5+~80) 

> iv,(x)12lpocx)(X)12(3/4 __/~1/5) __~,4 > (1 - - I f ( x ) 1 2 ) e  2-~5~ 

[V,(x)i2=2e(1 -If(X,(x))l ~) (see 1.14 (ii)) and 1.5 which implies: 

[Iva,x)12__2~( l __lf(x)12)l < ~aoo 

We also used the fact that IP~(x)(X)12>e (follows from 1.13 and the definition 
o fa (X)) .  

(C) is now proved. 
We will now obtain an estimate for Ih(X)l z away from V. We will prove the 

following: 
(D) For every 6 > 0 , / 2 > 0  there exists ro>O, ro=ro(3,/2) so that if 0 < r < r o  

in the definition of  h (at 1.5, 1.6) then for every X=(x, y, z, w)E U" (U" is defined 
in 0.2) such that d(X, V)>3 (distance in the coordinates) we have Ih(X)l<It. 

Proof. Define: 
1.24. q(X) = d4(x, [dl " d -  r ~ d~ + d + r~ 

+d2(y, [ - d - r  ~ d §247 [ - d - r  oa, d + r~ 

(see 0.2 for the definition of  V. Here the first term is the distance, to the power 4, 
of  x from the interval [di -d-r~  dl+d+r ~ etc.). When l<_-n and aEL(X, n) 
we have by 1.16 that (we put ti=Xi/cl, 1<_-i-<3): 

1.25.  x" ( 10 (G - a 2) + (t3 - a3)) 2 + (1 - x 2) (t 3 - a 3) 2 

+ ( x + ( 1  -x2)-3/2xO(fi -a~) 4 <= 2(n+  1) 2 

We used 
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by 1.6 this is the same  as :  

1.26. x 2 (Y -- e2 a2 + z - e3 a a) 3 + ((1 -- x 2) (z  -- ca a 3)) 3 

+ ( ( x  + (1 - x 2) -3/2 x4)  ( x  - c l  a 1)) 4 _<- 2r (n  + 1) 3 . 

We need the following trivial (and non sharp)  inequali ty:  

1.27. Fo r  5V, ~r (1/200)(SY+q/)2+(1/Z)Yr 2 _-> ( 1 / 4 0 0 ) ~ 2 + ( 1 / 4 0 0 ) ~  2 

this is equivalent  to 

(1/400) X 2 + (1/2 + 1/400)~/2 + (1/lO0)Xqr _--> 0 

(1/400) (Sf+ 2~r 2 + (1/2 - 3/400) Yr 2 ~ 0. 

We  obtain  f rom 1.26 a n d  f rom x E [ 1 0 - 1 - 2 . 1 0  -4~ 1 0 - 1 - 2  �9 10 -4~ (see 1.1): 

2r (n + 1) 3 _-> (1/200) (y - c2 a2 + z -  Ca a3) 2 + ((1/2) (z - c3 a3)) 2 + (1/10) (x - cl al)  4 

(using 1.27) _-> (1/400) ((y - e2 a2) 2 -{- ( z  - -  c 3 a3) 2 -~ ( x  - -  e I a l )  4) ~ ( 1 / 4 0 0 ) q  (X) 

(the last inequali ty is a s imple consequence o f  the definition o f  L in 1.7 and  the defini- 
t ion o f  q(X)). 

1.28. We  obta in  tha t  when XEU" and L(X,n)r then 2 r ( n + l ) 2 =  > 
(I/400)q(X) so n~(I/30)(q(Y)/r)l/~-l. We define now 

1.29. M(X) = (1/30) (q (X)/r) 1/2 - 1. 

Fix X=(x,y ,z ,  w)EU" such tha t  d(X, V)>5 then:  

1.30. Ih(X)l 2 = Z.,bCL (v, ,  Vb)p.(X)pb(g) 

= ZM(X)~m Za,  bCL, [al+tbl=m (Va' vb)Pa(X)ffb(X) <- ~aM(X)~_m (lOrn + lO)68mUa82wIt. 

I t  is evident that  by shr inking r > 0  we can m a k e  this sum as small  as we want ,  
uni formly  on {XE U' :  d(X, V ) > 5 } .  

Let  A ~ / ) ,  t > 0  we define: At={zEOld(z, A ) < t }  where the metr ic  is the 
one o f  C 2 (not  o f  the coordinates  system). 

1.31. Fix (until the end o f  the p roo f )  5 > 0  so tha t  i f  zE(WnbD) 2~ then 

(i) ~]x"(z)~ [d I - -  1.5d, d~+ 1.5d] •  1.5d, 1.5d]2[0, 0.5d] 
and  
(ii) z~ K. 

1.32. Let  0 < ~ ' < ~  ~~176176 By (D) i f  r > 0  is small  enough in the definition o f  h, 
then for  all zEW'\(Wc~bD) ~ we have Ih(z) [<(e ' )  2. W e  will a ssume it is so f rom 
n o w  on. 

Summariz ing  our  results and  assumpt ions  so far  yields tha t  h has the following 
propert ies  (compare  with the desired propert ies  o f  g in the s ta tement  o f  L e m m a  1): 
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1.33. 

(A) and (B) imply:  

(a)'  when zEW'nbD:  
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I f(z)+ h(z)l ~- <= If(z)l~ +lh(z)lZ + 2I(f(z), h(z))l 

-< [f(z)l~-+e~/~(1 -lf(z)l~)+es~ ~~176 < l + e  49 

(C) and (A) imply:  

(b)'  when zEbDnl4": 

If(z) + h (z) l '~ - If(z)  l" => I h (z) l" - 2 I(f(z), h (z))l 

> e2(1 - I f ( z ) [  e) - e  ~~ _2~a00 > e2(1 - I f ( z ) [  2) - e  49 

(A) implies : 

(c)' when zEW'nbD:  

I f (z)+ h(z)12-l f(z)l  2 >= Ih(z) l"-2l( f (z) ,  h(z))l > - 2 e  lt~ 

1.31, 1.32 imply:  

(d)'  when z E K nW ' :  

f rom (B): 

(e)' when zEW'nbD:  

Ih(z)[ -< (e') ~ 

Ih(z) l  < 

So the function h satisfies the requirements o f  Lemma I (with smaller error  
terms) in the domain  W' ,  but  we do not  have control  over h out  o f  W' .  The  follow- 
ing claim is necessary to construct  a map  g that  will fulfil the requirements o f  Lemma 1 
globally in /9. To  do so we have g that  differs very little f rom h in W '  and is very 
small in D \ W ' .  The  globalization process that  will follow is essentially the one in 
Stensones [19]. 

1.34. Claim. There  exists g:  / ) ~ C  3 a C = function, holomorphic  in D, 
such that :  

(i) for  all zEW': 

(ii) for  all z E D \ W ' :  
I g ( z ) -  h(z)l < (e,)1.5 

I g(z)l < (e')l'~. 
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Pro& Let Z be a C = function o n / 3  with the following properties : 

1.35. (1) X-- 1 on (Wc~bD) ~ 

(2) Z - 0 on / 3 \ ( W n b D )  ~ 

(3) t0g(z)[-<C/6 for zED 

where C > 0  is a universal constant. 
Since 0 (;(h) ~ ~ (g) h on 13, and (by 1.35) 0 (Z) -  0 on (/3\(Wc~ bD) 2~) w(Wc~bD) ~; 

also (by 1.32) Ihl<(e') ~ on (WnbD)2~x,(Wc~bD) ~ (note that by 1.31 (WnbD)~c W') 
therefore: 

1.36. IO(xh)l<(e')2C/6 on D. 

There exists a C = function hi on /3 so that (see [14]) 

1.37. ~ h l = - ~ h )  on /3, and [[ha][~ 

where C~>0 is a constant. 
1.38. Define now g=zh-ha.  Then g is C = on /3 and holomorphic in D. 
(1) For  all zEW" we have (using 1.32, 1.35 (1)): 

Ig(z)-h(z)l ~ Iha(z)l + lT~(z)- II lh(z)l < 1[h~][~ +(e ')  z --< (GC/O)(e')2+(~') ~. 

(2) For  all zE/3\W" (since by 1.31, 1.35 X-~0 on D \ W ' ) :  

Ig(z)l = lh~(z)l -<- (CxC/~)(~') ~. 

We can assume that 5" was chosen small enough relative to the constants C, 
Ca, 6 so that claim 1.34 would follow from (1) and (2). Note that we needed here 
the fact that h decreases very rapidly as we move (in W')  away from IT. 

When we look again at 1.33, 1.34 we can see that g (defined in 1.38) fulfils the 
requirements of  Lemma 1. To do this we have to check that (a)--(e) in the state- 
ment of  Lemma 1 hold for g. We first check for ZE W'. In 1.33 we proved (in W')  
(a)--(e) for h with smaller error terms. Since I g - h l < ( e ' )  ~'5 in W" it is clear (from 
looking at the error terms in 1.33 and in (a)--(e)) that (a)--(e) in the statement of  
Lemma 1 hold for g in W'.  We do the same check i n / 3 \ W '  and there since Ig l< 
(~,)a.~, (a)--(e) trivially hold. 

So Lemma 1 is now proved, for N--2.  

Proof of Theorem 1. 
2.1. Let W~ . . . . .  W M be open subsets of  D so that u {W~: I<-i<-M}D=bD, 

and W~ ( I ~ i ~ M )  has the properties of  W in Lemma 1. Such a cover is possible 
since bD is compact. As in the statement of  Theorem 1 f :  bD~B N+~ is a con- 
tinuous map ~';uch that Ifl  >0,  K is a compact subset of  D and e>0.  We choose 



72 Avner Dor 

Ro>O so that [ f [ > R o .  Define: 

2.2. K, = {zED: d(z, bD) >= d(K, bD)/2"}, 1 <= n < 0% 

then K, is compact  and K c K ,  c K , + I c D  (1-<_n<~). 
2.3. We will use the following notation, when n is an integer there are unique 

integers a, b so that a M + b = n  and 1 <-b<=M. We define: 

~ b .  

2.4. Define for n=>l e,,=(IOOM/(n+A)) 1/2 where the constant A > 0  is to 
be chosen later. There is no upper bound in the choice of  A but there is a lower 
bound. We require that A is large enough so that (i)--(iii) below are satisfied. 

(i) el<eo where e0 is defined in the statement o f L e m m a  1 with respect to Ro/2. 

(ii) ZI~=, (e,) '5 < e/2 

(iii) ,,I/M2> 100. 

The constant A might have to be magnified later to provide for additional 
properties. 

2.5. Let S=max{ l f ( z ) l :  zEbD} so 0 < R 0 < S < I .  
2.6. We define b0= l ,  bk=l - - (ek)  45 for l<_-k<o o and B 0 = l ,  

B, ,=boblbz . . .b ,_ l ,  1 ~ n < ~  and B = l i m B , , .  

We will assume that the constant A is large enough so that S<B-< 1. 
2.7. Define g0--0 and f , = B - l J ;  then [ I fd l~< l .  
2.8. The induction hypothesis; let n_->l and assume that f l  . . . . . .  f ,  and 

go . . . .  , g ,_ ,  are defined so that the following hold: 
(i) f / :  bD-+B N+I is continuous, l<=i<=n 

(ii) gi: D+Cn+~ is continuous and holomorpbic in D 
Off) for zEbD: 

L (z) = (B,/B)f(z) + (B,,/Bo)go (z) + (B,/B1)gl (z) +. . .  + (B,/B,,_ ,)g,_l  (z). 

By Lemma 1 there exists a C ~ map g, :  /9-~C N+* which is holomorphic in D 
such that:  

2.9. (a) when zE bD: 

If .(z)+g.(z)l  -< 1 +(e.)~5 

(b) when zEbDnWn: 

I f .  (z)  + g.  (z)l = - 1 L ( z ) l  = > (6,,)=(1 - I f .  (z)l 2) _ (e,,)45 

(c) when zE bD: 

I f .  (z)  + g.  (z)  l ~ -  I f . ( z )  l = > - (e.) '~ 
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(d) when zEK,: 
lg . (z) l  < (e.),5 

(e) when zEbD: 

Ig.(z)l  2 < (en)l/2(1 - - I f .  (z)l~) + re,,) 45. 

2.10. We define for zEbD: f,+l(z)=b,(f,(z)+g,(z)). We can see from prop- 
erty (a) that the induction hypothesis 2.8 (i)--(iii) now holds for n +  ]. Property (b) 
implies: when zEbDc~VVn: 

i f .  + l ( Z ) l  ~ _ i f .  (z)l 2 • ( n . ) 2  (1  _ i f .  (z)l z) _ ( ~ . ) , 0  

=~ (1 - I f .  (z)l 2) - (1  - I f ,  +l(Z)l 2) > (~,)2(1 - i f .  (z)l ~) _ (e.p0. 

2.11. We conclude the following: 

(A) for all zE bD c~ Wn: 

( 1 -  Ifn+~ (z)] 2) < ( 1 -  (~.)2)(1- If. (z)[~) + (~.) '~ 

(B) for all zEbD: 

i f .+1  (z)l 2 _ i f .  (z)l 2 > _ (e . ) ,0 .  

For the inductive process to work we need to have If, l>Ro/2 for oo>n=>l so 
that we can choose e0 with respect to Ro/2 and then Lemma 1 can be applied to 
f , ,  e, for every n ~ l  (as e,<e0). By choosing A large enough in 2.4, we can assume 
that Z k ~  (ek) '~ (Ro)2/2. 

2.11. (B) implies that for n > l ,  zEbD: 

so  t f . ( z ) l  :-  Ro/2. 
2.12. Define for zED,  n > l :  Gn(g)~-~o~i<=,,_ 1 (Bn/gi)gi(2). Then 2.9 (d) im- 

plies that G, converges uniformly on compact subsets of  D. 
2.13. We define for z6D g(z)=lim,_,oo G,(z), g is then holomorphic on D. 
2.14. Define for n ~ l ,  zEbD: ~ , ( z ) = l - l f , ( z ) [  2. The next claim is the main 

step in proving Theorem 1 from Lemma 1. 

Claim 1. There exists a constant C > 0  so that for all zEbD and a positive 
integer s: 

0 < Os(Z) < C / s  10 

(C does not depend on s and z). 

Proof. We define for zEbD. 

2.15. re(z) = rain {1 ~ j  ~ M: zE J,l~}. 
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Let  zEbD 

2.16. 
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and k > l  and n = k M + m ( z ) ,  then zEWn=W,,(~ ~, so: 

Ifn+M (Z)I $ - - I fn  (Z)I 2 -~- (21=<j~M_X If. +j +1 (Z)[ 2 -- lfn +j (Z)I 2) 

+ lfn+l (z)12-1L(z)l ~ > ~o~_j~M_l--(13.+.i)4~ l - -[ f , ( z ) l  2) 

> - M(e.)a~ + (~.)2(1 - I f .  (z)l'9- 

(A) and (B) (of  2.11) were used here. 2.16 implies: 

2.17. M(e. )4~ > 1 - 1 f . + m ( Z ) l  ~ 
or  

M(~. )  'o + ( l  - (~ .y)  e .  (z)  > e .  +~, (z).  

Fix zEbD and define for k > l  

2.18. a k = ~OkM+,,(z)(z)- 

Definition 2.4 and 2.17 imply now that  for  k > 1 (we denote  A I =  2 A / M ) :  

2.19. ak +1 ~ ak( 1 -- IOOM/(kM+ m (z) +A) )  

+ M ( I O O M / ( k M +  m (z) + A)) 20 < ak (1 -- l O0/(k + A1)) + M 104~ 20. 

Define C1 =2M104~ =4.104~ 

Claim 2. For  k=>l ak<=(C1)l~ 1~ 

Proof  o f  Claim 2. It will be proved by induction.  For  k ~ C 1  it is trivial since 
ak-<l (for all k_>l). We will assume that  it is true for k, k>=C1 and prove that  
it is true for k +  I. 

By 2.19 and our  induction assumption (of  Claim 2), we have:  

ak +~ :5 ak ( I -- 100/(k + A1) ) + M 104~ e~ 

((C,)l~176 - 100/(k + A~)) + M 104~ ''~ 

= ((C1)1~ 10) ( 1 - 50/( k 2v A 1)) ~- (M l O*~ "~ - 50 (CO~~ + A 0 kl~ 

< ((C1)~~176 -- 50/(k + A0)  < ((C~)l~176 - 25/k) 

= (1 - 25/k) ((k + 1)/k) ~~ ((C1)l~ + l) ~~ < (1 - 25/k) (1 + 25/k) ((C0~~ + 1) ~~ 

< (C1)l~ + 1) 10. 
So Claim 2 is now proved.  

We have proved in Claim 2 that  for  all k > l  and zEbD 

2.20. ekm +,,,(z)(Z) ~ ( C1)l~176 
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Let usf ix  zEbD and k > l  and let n=kM+m(z)  andf ix  O~j<=M-1 then: 

2.21. Q,+j(z) = Q,(z)+ Zo~_~=j_l ~,+i+a(z)-Q,+i(z)  

= O n ( Z ) ' J V Z O ~ i ~ j _ _ I  If.+~(z)l ~ -  If .+i+~(z)l  ~ 

(C1)l~176 dr Z0_~ i~ j -1  (~n + i)40 < (Cl)lO/klO Jv M(~n) 40 < 2 (C1)l~ 10. 

Let us assume (as we may) that M > 1 0 0  so we have k>(n+j) /M z 2.21 then 
implies: q,+j(z)<2(C1MZ)l~ I~ It follows that for every integer s ~  1 ~ ( z ) <  
C/s 1~ where C=2(CxM~') 1~ 

Claim 1 is now proved, and with 2.9 (e) it implies that G, converges uniformly 
on bD and therefore o n / ) .  We will call its limit g which is a continuous extension 
of  the g that we defned at 2.13. 

Claim 1 implies that l im,~= ]J~(z)]=l,  for zEbD, and by 2.8 (iii) and the 
uniform convergence of  G, on D lim . . . .  f , (z)=f(z)+g(z)  uniformly on bD, so 
for zEbD, ]f(z)+g(z)]=l. 

To complete the proof  of  Theorem 1 we have to show that [g(z)]<a for zEK. 
2.4 (ii) and 2.9(d) imply that for zEK: 

Ig(z)t = ,~o(B/B,)g,(z "< ~ . . i n ~  1 , n 

Theorem 1 is now proved. 
It is apparent that the proof  above is independent of  the dimension of  the target 

bali, as long as the co-dimension allows Lemma 1 to hold. Thus Theorem 1 is proved 
with target ball B M, for any M>N.  

Section 2 

Throughout  Sections 2, 3 A(B N) will denote the algebra of  all the functions 
that are continuous on B N and holomorphic in B u. Let E c b B  N be compact, E is 
called a peak set if there exists q~EA(B ~) so that: 

for every zEE: ~o(z)=l 
for every zEBU\E: Itp(z)]<l. 
We will call the function ~p, a peak function on E. A compact set E c b B  u is 

called an interpolation set if  every complex continuous function on E extends to a 
member of  A(B). These two definitions are equivalent, see [18], Chap. 10 for dis- 
cussion of  these and other equivalent definitions. 

Theorem3.  Let E c b B  N (N~2)  be an interpolatiolT, set for A(B N) and 
f:  E~bB T M  continuous, Kc- B v compact and ~>0. Then thereexists F: BN-~B N+I, 
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a continuous extension of  f which is holomorphic in B t~, so that F(bBN)C=bB N+I 
and [F(z)[<e .for all zEK. 

Like the proofs of  Theorems 1, 2 the p roof  of  this theorem clearly holds if  the 
target ball is any B M, where N < M .  In order to prove this theorem we will use 
the following Lemma 2, that will play the same role that Lemma 1 has in the p roof  
of  Theorem 1. But additional control is now needed on g , ,  the correction function 
o f f . .  We must have [ f .+g . [<=l ,  so that  we can maintain f . = f  on E for all 
co >n=>l .  Thus we should have g . - 0  on E and we need to control the growth of  
g,, as we move away from E. We are able to do so if  we maintain in the induction 
process that 1-[f.[2<=C.[1-q~[ 2, for all n ~ l ,  where (7 .>0 is a constant and 

q~ is a fixed function in A(B2), q~ is zero on E and has a positive real part  elsewhere 
in BL 

The difference between the proof  of  Lemma 2 and Lemma 1 is a consequence 
of  this additional control. To provide for such a control Globevnik [12] used a dif- 
ferent method which is based on a topological observation. 

Throughout  this section, E will be a fixed interpolation set and q~EA(B N) will 
be a fixed peak function on E s u c h  that Re (~o)=>0; thus q3(z)=l for all zEE and 
[~o(z)[<l for all zEBN\E. The constant f l=fl(N)>O will be defined for N > 2  
in the third section, f l (2)= 1. 

Lemma2 .  Let R o > 0  , ~o-----10 -(x~ and zoEbB N. There exists W, an 
open neighborhood Of Zo in the topology o f  B N, such that the following holds. 

(0) Take f :  B N--,-B N+I, I f l  > Ro, a continuous map, holomorphic in B N such that: 

(1) IT(z)I=I~zEE 

(2) there exists C > 0  so that for all zEbBN: 1-1 f ( z )12~f l l -q~(z ) l  z. 
Take also e o > e > 0 ,  ~ ' > 0  so that: 

(3) ~~ 1)>~' 

(4) {zEBN: I I - q ~ ( z ) l < e ' } =  C {zEBa': 1-lf(z)12<el~176 

and let K c B  N be compact. 
Then there exists a continuous map g: BN ~ C  N+~ which is holomorphic in B N 

that has the following properties: 
(a) There exist C ' > 0  so that Jbr all zEbBN: 1-[f(z)+g(z)12>=C'[1-q~(z)12=>0 

(it is true for C" = C/4) 
(b) for all zEWc~bnN: If(z)+g(z)12-lf(z)[2>(1-lJ(z)12)s2-~ 5~ 
(c) for all zEbBN: [f(z)+g(z)lZ-l . f(z)]2>-~" 
(d) for all zEK: [g(z) l<e '  
(e) for all zEbBN: [g(z)[* <el/2(1-l f(z)[Z)+g 
(f) for all zE E: g(z )=0 .  
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The neighborhood W is the one chosen in the proof  of  Lemma 1. A significant 
difference from Lemma 1 is in (a) and (f). Property (2) enables us to prove (a) which 
preserves property (2) in the induction process and implies I f+gl-<-1. This is vital 
in our construction. 

Proof o f  Lemma 2. 

In this section we will present a p roof  for the case N = 2 .  The case N->2 will 
be proved on Section 3 when the necessary tools for it have been developed. Our 
construction is similar to the one in the proof  of  Lemma 1 but a few changes will 
take place to provide for the additional control mentioned above. 

The set up in the proof  of  Lemma 1 until 1.4 will be adopted here unchanged 
where D = B ~, U', U, V', V, W, W', ux and the coordinate system will be the same 
as there, and thus, they have the same properties. 

3.1. Let (e')t/~'>r>O be so that when X, YEW and 

IX -Y I  < (log (I/r)) -a 
then: 

(i) I f ( X ) - f ( Y ) l  < (5') 1~176 

(ii) I1/(I 1 - go (X) I' + (5')1~ _ 1/(I 1 - go (Y) I' + (531o) 1 < (53100, 

(iii) Z,,_~-.t(,) (1/2) "'/4 < (5') 1~176 

where l(r) aer - l o g  r, 

(iv) (log 5)/(r I/2. 47r) is an integer. 

We might have to shrink r > 0  later to have additional properties. 
3.2. Next cl, c2, ca, L, L', X~, u~ (aEL') are defined by 1.6, 1.7, 1.8. Hence 

u, is described by 1.8, 1.9 (where the remainder term is described in Sublemma 1). 
Also p,  (aEL') are defined by 1.10 and have the properties that are mentioned in 
1.11, 1.12, 1.13. 

We will now define for every aEL', v, EC 3 in a way that is based on exactly 
the same principal but is somewhat different in its details then in 1.14, a difference 
that will be understood later. The set {va: aEL'} will have the following prop- 
erties : 

3.3. For  a, bE L" 

(i) (v~, f ( X , ) ) = 0  

(ii) Iva12=28(1 -If(Xo)12)/(I 1 - go (Xa)[4 q- (5') lo) 

(iii) when a, bEL', la- -bl<1000 and b2-a2 is odd then: 

I(v., ~)1 < (~,)5o 
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(iv) when a,b~L', l a - b l < 1 0 0 0  and b2-a2 is even then:  

[(va, Vb)--IVal2[ < (8') 5~ 

The proof  that  a set {v,: a6 L'} with the properties (i)--(iv) exists, is essentially 
the same proof  as in 1.14. 

Define as in Lemma 1 : 

h(z) = Za~L  P," vo = Z ~ L ,  P," v~ 

The sets L(x, n), L'(x, n) are defined as in 1.16. 
We will now prove the following (compare with 1.17 (A), (B), (C) in the p roof  

o f  Lemma 1). For  XCV" (V',  V are defined in 0.2): 

3.4. (A) ](f(X), h(X))[ < (8') 4, 

(B) [h(S) l  ~ < ~1/2(1 - I f ( X ) l Z ) / ( l l - ~ o ( g ) 1 4 + ( g ) l ~  4, 

(C) when XCV, then 

[h (X) I 2 > e 2 (1 - I f (X)  l 2)/(I l - ~o (S)  l 4 + ( 8 ' )  10) - -  (~ *)4. 

We will freely use the facts that  1v,[2<(8') -~~ for all aEL, and when XCV', 
aEL(X,n) for n<-l(r) der-logr then since IX-a'al, [Xo-Xa(x)l<, "1/~ it follows 
f rom 3.1 : 

[[val~-Iv~<x)l~[ < (8') 8~ and I f ( S ) - f ( X , ) l  < @,)1oo. 

We will also use (without mention) the facts stated in 1.18 and assumption 
3.1 (iii). 

Proof of (A) : 
[(f(X), h(X)) I = lY~,aCL (f(X), Va)P,,(x)l 

= IZ0~n~_,(,) Sa~Z(X,n)(f(X)--f(X~), v,)fia(X)l + [Zt(,)<n ZaE•X,n)(f(X), v,)ff,(X)! 

<- Zoo_.<=,(.) Z,,< L(x,.) If(X) -f(X',,)l �9 IVal Ipa(X)l + Z,(.)<n Zo~L(x..) Ip,,(X)l Iv,,I 

< Zo<=n~_t(,)(10n+ 10)3(e') 1~176 (8') -~.  8n' + Z/(r)<n (10n + 10)a8 " ' .  (8') -a < (8') 4. 

Proof of(B): Fix XCV': 

Ih(Y)l 2 = [Za, b~L (V~, vb)p~(Y)~b(X)[ 

< Z0_~m~_/(r) Za,  b~.L, [a]q-[b]=m l(/3a' vn)Pa(X)ffb(X)l 

+ Zlo')<m Za,  b6L, [a]+[b]=m IPa(X)pb(X)[" (~,)-~o 

< ZO<=m~t(,)(IVa(x)l"+(e')50)( lOre § 10) ~" 8m'/4-~-Zl(r) .... (/3*)-l~ -~ 10)6" 13m1]4 

< lO v Ivo(x) l ~ + (8')~ < ~:1/2 (1 - -  I f (X)  l~)/(ll - ~ (X)  l' + (p,)~0) + (~,p. 

3.1 was used in the last two inequalities, (B) is now proved. 
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Proof of (c) :  
Fix XE V then: 

3.5. I h ( g )  12 = ~'a,  bEL (Va' Vb)Pa(X)SPb(X) 

= Z,.b~LO:.O)(V~, Vb)p, (X)~b(X)+Z=~_I Z , .bc  L. t,l+tbl=~ (v~ v~)pAX)~(X) 

Re ( ~ o , ~ . x , o )  <v., v~)p.(X)~(X))  

-- Zm>=l Z a ,  bE L, [a]+[b]:m (Ival2"~-IVbI2)Ip'(X)pb(X)I" 

Let us look at the first term on the righ side of  3.5. This estimate is essentially 
the one that follows 1.19, we will use the calculations done there, and 1.13, 3.3 

Re (~.,~L<x,o) (v., vb)P.(X)~b(Y)) >= ~.<L<x,o)[Vo 12 Ip.(X)l 2 

+ Re (Z. ,b ~ L(x,o), .~b, .,:b, I v~Izp"(X)fib(X)) 

+ Re (Za, br .r ,,,=b, ((V., Vb) --Ival2)p:(X)FFn(X)) 

-- Z a ,  bEL(X,O), a~b, u,=b,+l I(va~' Vb)p"(X)pb(X)]  

- Z,,,~,c z<x,o). ,,:~b, ,,,=b,• I(V,,, vDp,, ( X ) P b  ( X ) I  > (3/4)Iv,,<x)l  ~- Ip , ,<x ) (X ) l '  - (~,po. 

Let us estimate the second term of  3.5. As mentioned in 1.21, when a, bEL, 
[a]+[b]=m>:l then: 

Ip,(X)ffb(X)l < g,,,/a, [pa(X) f fb(X)]  ~ ea/,[p,,<x)(X)l 2 

and when [a]+[b]=m>=2, then 

Ip.(x)pb(X)l < ~<"'/~-'/'~. IPa<x>(X)l z. 

3.6. Zm~l  .~ ' . .b e L, [.]+[bl=m ([V"[~ + IvbI2) l p a ( X ) p b ( X ) [  

< ~',~,.~=~o-) ~',,,b~,,., t,,l+~bl=m ( Iv"l=+ IvblgIp~ 

+ Z,.>. : .> Z,,.b~ L. C.l+tbl=,. 2(~')--1" " ~" ' ; '  

<~ Z l~m~l ( r )  .a~ a, bE L, 2([Vat X "  . )l~ + (~')'~ " ,~max{(m'14--1/2),1/4} 

+ ~.>t( , )2(10m + 10)6(~') -1~ em'/4 .< i v . < x ) l ~ l p . ( x ) ( X ) l  2 . e~/~+(e,)20. 

Now 3.5 and 3.6 imply: 

Ih(Y)P > IV.<x)l u I p . < x ) ( Y ) 1 2 ( 3 / 4 -  ~a/~) _ (e,)a0 

> ~2 ( 1 - t f ( X )  l ~)/(11 - + (X)14 + (~:.,)10) _ (8t)4. 

(C) is now proved. 
(A), (B), and (C) in this section are similar to (A), (B), (C) in the proof of  
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Lemma 1. The following (D) will be the same as (D) in the proof of Lemma 1 and 
will be proved in the same way. 

(D) For all 6>0 ,  # > 0  there exist 
in the definition of  h then for every X~ U' 
coordinates) we have [h (X)[-</~. 

Proof of (D): Fix X=(x, y, z, w)E U" 
in 1.29. Then: 

ro>0, ro=ro(J,/ t)  so that if 0 < r < r o  
such that d(X, V)>6 (distance in the 

so that d(X, U)>6.  

lh(X)l ~ = [Z,,,bCZ (v~, vt,)po(.g)ffb(X) I 

= ZM(x)~,~ Z~.bcL, t,J+tb]=m (e,)-lo ip~(X) pb(X)l 

Zrtcx)~_m ( e')-l~ (m + 2)ne"'/4e 2~/'. 

Define M(X) as 

Like the sum in 1.30 this sum can be made arbitrarily small uniformly on XC U', 
d(X, V)>6,  as we shrink r>0 .  

Let us now choose 6 > 0  as in 1.31 and #=(e ' )  1~ and r > 0  in the definition 
of  h will be chosen so that ]hi <(e') x~ outside of  V ~. The proof of  the claim in 1.34 
makes it clear that i f  e ' > 0  is smaller than some constant (and we assume it is so), 
then there exists a C = map ~: B2~C 3, holomorphic in B 2 such that: 

3.7. for all z~W', 

Is < (e') 8 and for zEB2\W ', [~(z)] < (e') s. 

This implies (among other things) that: 

3.8. for all zEK, 
I~(z ) l  < rE')  ~ 

3.9. Let us define for z{B~: 

g(z) = (1 - ~0 (z))2~(z). 

Then (A) and 3.7 and 3.9 imply that for all zEbB2: 

3.10. I(f(z), g (z))[ ~- (e')a ] 1-~o (z)] ~. 

Now (B) and 3.7 and 3.9 imply that for all zCbB2: 

3.11. [g(z)l 2 <= (el/2(1-[f(z)la)/(ll-~o(z)14+(e')l~ +(e')3)[ 1-~o(z)[ 4 

81/8 ( 1 - If(z) 12) + ( g ) 3 1 1  - q~ (z) IL 

Thus 3.10 and 3.11 imply that for zCbB2: 

3.12. 1--lf(z)+g(z)l ~ ~ t-[f(z)12-lg(z)12-21(f(z), g(z))l 

=>(1--lf(z)la)(1 . . . .  eva) (e')3(ll q~(z)l'+2ll r 2) 

=> (1 - I f ( z ) ? ) / 2 - 1 0 ( g P I  1 - q,(z)l a 



Proper holomorphic maps between bails in one co-dimension 81 

(using assumptions (2) and (3) in the statement of Lemma 2, for the first time) 

--> (C/2)11-~0(z)lZ-10(e')811- ~0 (z)l 2 _-> (C/4)I 1 -  ~o (z)l 2. 

So (a) (in the statement of  Lemma 2) is now proved. We could, of  course, ob- 
tain a better (larger) constant then C/4, but it has no importance at all (as long 
as we obtain a positive constant). 

We have (by 3.10) that for all zCbB2: 

3.13. If(z)+g(z)12-lf(z)l = > - 2 [ ( f ( z ) ,  g(z))[ > - e '  

thus (c) is proved. 
From 3.8 (and 3.9) (d) follows, and 3.11 implies (e). Now (f) follows from the 

Definition 3.9, so it remains to prove (b). 
Let zEWc~bB 2, (C) and 3.7 imply that: 

3.14. 

Ig(z)l * _-> 82(1 -If(z)l~) (I 1 - -  r (Z)14-]- (8 ' ) z~  -- ~p (z)[ 4 --(e') a [1 -- cp (z)[ 4. 

So by 3.10 we have: 

3.15. If(z)+g(z)l~-lf(z)[ = >= Ig(z)l=-2[(f(z), g(z))[ 

-> ~ z ( 1  - I f ( z ) l  ~) ( l l  - ~0 ( z ) [  4 + (/],)1o) - 1 .  I1 - ~o ( z ) l  4 - 10 (8')a I 1 - ~o ( z ) l  2 . 

If 1 - 1 f ( z ) l = ~  x~176 then assumption (4) implies that [1-~o(z)l>e' and by 3.15: 
3.16. 

If(z) + g(z)l 2 -  If(z)l 2 => 82(1 -If(z)l=) (1 + l1 - ~o (z)l--4 ( ~ ' ) 1 0 ) - - 1  __  10(d)3 

> 83(1 -If(z)l=) (1 - e ' ) - 8 ' .  

It is clear that (b) holds in this case. I f  1 - [ f ( z ) [ 2 ~  1~176 then by 3.13 we have 
[f(z)+g(z)12-lf(z)12>-d>81~176176 5~ and (b) holds also in this 
case. Lemma 2 is proved. 

Proof of Theorem 3. 

By Lemma 1 of Globevnik [12] there exists a continuous extension of  f ,  
f:  BN~B u+l, which is holomorphic in B u such that for all zEbBN: 

4.1. 1 _-> If(z)l > 1/2. 

Choose an integer n0>l  so that for all z~K: 

4.2. (11 +~o(z)[/2) "~ < e/2. 

Recall that we fixed the the function q~ before the statement of  Lemma 2, ~o is a 
peak function on E and Re (~o)=>0. 
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Define for  z~ B x 

4.3. f t  (z) = ((1 + (o (z))/2)"of(z). 

Thus  when zEbBU: 

4.4. Ift(z)] = ([1 + ~o(z)l/2) "~ If(z)l > 2 -("~ 

Define R 0 = 2  -("o+1). No te  tha t  for  all z~K: 

4.5. IA(z)l < e/2. 

Before we proceed  we need the following s imple fact:  

I f  2~C,  I;LI<-I, then 

4.6. 1 - I ( 1  +2)/21" => (1/4) 11 -21  ~. 

Proof. This is equivalent  to:  

4 - ( l  +2) (1  +~D _-> ( 1 - 2 ) ( 1 - 2 )  ~:~ 3 -  I;.1"-()- +;.) ~ 1 + I).I2-0.+X) ,~. 2 _-> 21).1 ~. 

So 4.6 is true. 
Using 4.6 we have for  all zqB2: 

4.7. l - l A ( z ) l ~  = 

=> 1 - 1(1 + ~p (z))/21 a => (1/4)1(1 - ~p(z))] 2. 

So f~ fulfils condi t ion (2) in L e m m a  2 with C =  1/4. 
We shall follow now a similar  process,  and  in mos t  par ts  identical,  to the one 

in the p r o o f  o f  T h e o r e m  1 o f  construct ing {J~: 1 :<n-<~o}. We  will not  repeat  
identical  details. 

4.8. Let  W~ . . . . .  W M be relatively open subsets o f  B N which have the proper t ies  
- -  < : :7  " < : 7  o f  W in L e m m a  2, and  so that  bB N c  _ U {W~: l = t = M } .  Let  K,, be defined by 

2.2 (where D = B  N) and ~ for  n > l  be defined by 2.3 and  A, e, (for n_->l) by  2.4. 

4.9. Let  n :> l ,  and  assume inductively that  the maps  gl .....  g , -1,  J l , . . . , f ,  
< "< �9 is cont inuous  and  ho lomorph ic  in are defined, and  tha t  for  1 = t = n , f / .  B u l b  u+l  

B N, f = - f  on E,  and  that  there exists, Ci>O, so that  1-]J~(z)12>=Cill-cp(z)l 2 
< .<  BN _~ CN+t for  all zE B N. Assume  also tha t  for  1 = t = n -  1 g~: are cont inuous  and  

ho lomorph ic  in B N, and  ' -  ' ' ... fn  = J l  + g l  ~ + g n -  1 �9 
4.10. Let  e ' > 0  be so tha t  

((e,,) t~176176 C,)/(C, + 1) > e~, 

and  {z~BU: [1-q~(z)l<e'.}C={zEBN: 1-lf~(z) l"<(~,)x~176 
By L e m m a  2 there exists gn: Bu~Bu+~, cont inuous  and ho lomorph ic  in B u 

so that  the following ( a ) - - ( f ) h o l d s  (with C,+~=C,,/4): 

4.11. (a) for  all z~bB u, 

1-1L(z)m,~ , , ( z ) l  ~ ~ c.+111-r ~ ~ o, 
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(b) for all z~Wnc~bB N, 

If .  (z) + g. (z)l ~ -  If .  (z)l 2 > (1 - I L  (z ) lg(e . ) '  _ (e.)50, 

(c) for all zEbB ~r 

I f .  (z) + g.(z)l 2 - I f .  (z)l 2 > - < , ,  

(d) for all zEK., 
Ig,(z)l < <,, 

(e) for all zE bB N, 

Ig.(z)l 2 < (~.)1/~(1 - I L ( z ) l ~ ) + ~ ' ,  

(f) for all zEE, 
g . ( z )  = o. 

4.12. We will define f ,+ l=f ,+g, .  It is easy to see that our induction hypoth- 
esis holds for n +  1. Property (d) implies that f ,  converges on compacta. We will 
call its limit F. Exactly the same proof  (in fact, we do not need to change even one 
word) as in 2.11--2.21 can be applied here to show that there exists C > 0  so that 
for n > l  and zEbBU: 

4.13. 1-1f , (z) l  2 <: C/n ~~ 

It follows then from (e) that f ,  converges uniformly on B N, so F can be extended 
continuously to the boundary. By 4.13 [F(z)]=l  when zEbB N, by (f) F(z)=f(z) 
for zEE, and by 4.5, 2.4(ii), 4.11 (d), ]J(z)[<e when z~K. We choose e0>0 
with respect to Ro/2 and by having 0<e~ small enough, we can assume that 
~ _ , ~ < ( R 0 ) 2 / 2 .  So (c) and 4.4 now imply that for n > l ,  zEbB u, [f,(z)[>Ro/2. 
The proof  of  Theorem 3 is now completed. 

Theorem 4. Let e>O. There exists a continuous map F: Btc-*B N+I which is 
holomorphic in B u such that F(bBtC)=bB N+x and F((1-e)BU)C=eB N+a. The map 
F can be the extension of  any continuous map f :  RNnbBN~bBN+a. 

This gives a positive answer to an open question by Globevnik [12]. 

Proof. We will follow the Globevnik [12] proof. Let _4cbA (A = {z~ C:[z[ < 1}) 
be a Cantor subset. Assume 1, - 1 ~ .  The set A = ~ •  0 . . . . .  0)} is an inter- 
polation set of  A(B u) (see Rudin [18], 10.1.5). Let B=RNc~bB N, so B is also an 
interpolation set of  A(B N) and so is A u B  (see [18, 10]). There exists g: A ~ b B  tr 
a continuous map so that g(A)=bB N+I (see [15] p. 166). I f  f :  B~bB tr is con- 
tinuous, then since AnB=O,  we can define for zEAwB: 

f ( z ) = g ( z )  for z6A and f ( z ) = f ( z )  for zEB. 

So f :  A u B ~ b B  N+I is continuous and by Theorem 3 there exists F: Bte~B N+~, 
continuous and holomorphic in B u such that F = f  on AuB, F(bBtC)C=bBN+~ and 
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F((1-e)BN)C=eB ~+~. Since f ( A ) = b B  N+I then F(bBN)=bB u+l. Theorem 4 is 
thus proved. 

It is interesting t h a t f c a n  be any real analytic function, for example f ( z ) =  (z, 0) 
for zEB. So while F can not be C = in an open subset of  bB N (it would imply 
(by [3]) that F is rational) it can be real analytic in a smaller set like RNc~bB N. 

Section 3 

In this section the results obtained in Section 1, 2 are generalized to dimension 
N=>2. The following Lemma 3 will provide us with the basic tool that is needed 
to generalize Lemma 1 and Lemma 2 to dimension N->2. We fix N=>2 until 
the end of  the section. For  an integer n we define here ~ to be the unique integer 
in {1, 2 . . . . .  N} so that n - ~  is an integer product of  N. For  l<=i<-N we define: 

5.1. Si : {a : (al . . . . .  a N _ I ) E z N - - I :  a l  + . . . - t - a N _  1 : i}  

where Z is the set of  all integers. The following standard notation will be used: 
when xER N-l, r > 0  then B ( x , r ) = { y E R N - I :  l y - x l < r } .  

Lemma 3. Let 0<c~<1/4 then there exist vl . . . . .  vNER N-l, Ivil<~ (1-<-i=<N), 

and 13>0 so that i f  we define 

5.2. Si = {a + vi[a E Si} 

then for every xER u-1 there exists l<=i<-N so that i f  d=d(x ,  ~i) (the distance 
of  x from Si) then there exists only one element in B(x, d+~)c~S i. The constant 
/3>0 depends only on the dimension N and on ~ and it does not depend on x. 

In other words, after shifting each of  the sets S~, we obtain sets {~} such that 
for every point x in R u-~ there is ~ ,  and a point YE~i which is closer to x, by a 
difference of  a constant /3>0, than any other point in ~ .  

Proof. When N = 2  then Lemma3  is trivial with /3=1 and v~-0 ( i = 1 , 2 )  
we will therefore assume throughout the proof  of  Lemma 3 that N > 2 .  Choose 
O<ylj<~/N, for all l<=i<-N, I<=j<=N-I, so that the set (of N ( N - 1 ) + I  real 
numbers): {Yijll <=i<=N, 1 <-j<-_N-1}u{1} is linearly independent over Q. Where 
R is viewed as a vector space over Q. 

Define: 

5.3. vi -~ ( Y i l  . . . .  , Y i ,N- -1)  1 <= i ~ N. 

We will prove that Lemma 3 holds with these {vl}, for some f l>0,  where (as in 5.2) 
Si=Si+vi  for all l<-i<=N. We define for aES i and l<-i<-N: 

5.4. ~ = a+vi.  
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The following notation will be used, when v, wER N-1 then: 

5.5. [v, w] = (v+w)/2+(v--w) • 

(we use here the standard notation, for vER N-1 v• (u, v)=O}). Note 
the simple fact that for x, v, w~R N-1 : 

I x - w l  ~ = Ix -v l~  ~ Ix l2+lwl~-2(x ,  w) = Ix l~+lv l2-2(x ,  v) 

~=> 2(x, v--w) = (v+ w, v--w) r (x - - (v+ w)/2, v--w) = 0 ~, xE[v, w]. 

So [v, w] is the set of  points in R N-1 which have the same distance from v and w. 
The following claim is o f  central importance in the p roof  of  Lemma 3. 

5.6. Claim. I f  a~,biCS ~, l<-i<-N and a~r then 

f') { [ ~ , / ~ ] :  1 <= i -<_ N }  = 0. 

Proof. Let us assume (to get a contradiction) that  there exists 

P = ( P l  . . . . .  PN-1)C RN-1 

SO that PC[61,/~i] for all l ~ i ~ N .  Then we have for all l<-i<-N: 

(p - ((ai + bi)/2 + v,), a , -  b,) = 0; 
which is equivalent to: 

5.7. (p, a~-bi) = (la~12-1b~12)/2+(vi,a~-bO for all 1 -< i -_<- N. 

Let us look again at R as a vector space over Q and define: 

W ---- spo (Px . . . .  , PN-1) 
and 

Yi = (]ail2-1b~12)/2 +(vi, a~-b~) (1 -<_i <- N).  

Then 5.7 implies that ~:iEW for all l<=i<-N. Since the dimension of  W over Q 
is no more than N - 1  we must conclude that ~:~ . . . . .  YN are linearly dependent. 
But this contradicts our assumption that {y~j[l<=i<=N, l_<-j_<-N-1}u{1} are 
linearly independent over Q. So claim 5.6 is proved. 

In general a claim like 5.6 can not be proved if the number  of  families {Si} is 
K <  N. In this case we would have in claim 5.6 K <  N hyperplanes in R N - l ,  w e  can 
write them as Vi=ui+(wi) • where ui, viCR N-1 1 <=i<_K. Then N {Vi: 1 <-i<=K}=0 
is equivalent to saying that there is no pER N-I so that 

( p - u  i, wi) = 0 ( ~  (p, wi) = (u i, wi) ) 

for all 1 <-i<-K. But when {w~: 1 <=i<-K} are linearly independent then of  course 
there is such pER N-a. 

The following is derived from claim 5.6. 
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5.8. Claim. There exists f l ' >0  such that if ai, biES i, a ~ b l  ( l = t = N )  and 
< ' <  biEB(a, 2N) then there is aESs such that for aH 1 ~_t=N, ai, 

O{[Zti, Di]+B(O, fl'): 1 <= i ~ N}=O.  

(5i, D~ are defined by 5.4). 

Proof. Let us define a" " a < "< ~" ~=a, -a ,  bi=b i -  ( I = 1 = N )  then [hi,[~i]=a+[ai, D~] 
so it is apparent that it is enough to prove 5.8 with the assumption that a--0,  and 
then with the same f l '>0  it will be true for any a ~ S  N. 

Define T, = {[5i, D i] : ai, biE St ~ B (0, 2N), a~ ~ bi} for 1 ~ t = N an d T=  T~ X.. X TN 
and let V=(V~ . . . . .  Vu)CT. Claim 5.6 implies that fl{V~: I ~ i ~ N } = 0 ,  and since 
V1 . . . . .  VN are affine hyperplanes of  R u-1 there exists f l ' (V)>0 so that 
O{V~+B(O, fl'(V))" l~ i -<_U}=0 (see Claim 5.11 after the end of  this proof).  

Take f l '=min  {fl'(V): VET} ( f i '>0  is well defined as the minimum is taken 
over a finite set). Then for every V=(F~, Vu)ET, (q {Vi+B(0, fl'): 1 <-'-<N~=O 
and 5.8 is now proved. 

Define fl=fi'/N. Now take x~R N-t, and choose for every l<=i~N agES~ so 

that d(x, o ) =d (x ,  5~,) and biES,\{a~} so that d(x, /~)=d(x,  ~;\{5,}) (d, is the 

closest element to x in ~, and /~  is the next closest). It is clear that there exists an 
< ' <  Therefore 5.8 implies that aESn so that ai, biEB(a, 2N ) for all l = t  N. 

{[5,,/~] +B(0,  fl') : 1 ~ i ~  N} = 0. Thus there exist 1 ~i0 =< N so that xr + 
B(0, fl'). We calculate that: 

5.9. 0 ~ Ix-Dio l - l x -5 io l  = (Ix-3,ol~-Ix-a~ol~)/(Ix-['iol +lx-a~ol) 

>= (Ix-D~ol z -Ix-diol~)/2N = (2(x, 5~o-/~io) + [/~iJ ~ -I~o[~)/2N 

= (x -(dio + [~i,,)/2, aio-[~i,)/N. 

Let us define t = ( x -  (5i0 +/~o)/2, ai0 -/~io) then : 

5.10. ((x-- t. (5,o-fO,o)/Id, o-{,,ol~)-(d,.o+{,,o)/2, 5,o- g,o) -- 0. 

Since aio-b,o=Sio-l)~o then by 5.10 

x - t (aio - bio)/laio- biol~E [5~o,/~o]- 

As l aio- biol > 1 we obtain that xE [51 o,/~io] + B (0, t). But by our assumption (before 

5.9) xr fl') therefore t>fl'. Thus by 5.9 Ix-Diol-lx-f~ol>=t/N> 
fl'/N=fl. Lemma 3 is now proved. 

Note that the proof  of  Lemma 3 implies that we would obtain the same result 
(using the same proof  with trivial modifications) with some different definitions of  the 
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initial sets Si. We could define for example (for 1 <=i<-N): 

S i -- {a = (a 1 . . . . .  aN-1)E ZN-I: al = i}, 

or (for I<=i<-N): S i = { a = ( a l  . . . . .  aN_0EZN-I:  P ( a ) = i }  where P is a poly- 
nomial of  N -  1 variables with integer coefficients, and P (Z  N-l) = {1 . . . . .  N}. The 
main point in the proof  of  Lemma 3 is the way the sets S; are being shifted to ~ .  

We are using the following elementary fact in the proof  of  Lemma 3. 

5.11. Claim. Let l ~ n  and let V~ . . . . .  V~ ( l ~ m )  be aft-me hyperplanes of  R" 
such that A {V~: l<=i=<m}=0, then there exists 5 > 0  such that 

O{VI+B(0,~): 1 <= i ~ m} = 0 

(where B(0, e )={x6R ' :  txl<~}). 
Proo f  Let n~2 ,  we will assume inductively that the claim is true for R "-1 

(it is trivially true for R1). Let V~ . . . . .  V m be affine hyperplanes of  R" and 
ut, w~ . . . . .  u m, wmCR" be such that Vi=ui+(wi)  • (for all l<=i~m) .  Assume that 
(q {V~: 1-<= i <- m} =0.  This assumption is equivalent to the following: 

(1) there is no p~R" such that ( p - u i ,  w~)=0  for all 1-<_i-<-m. 

Let us assume (to get a contradiction) that there is no e > 0  so that 

O{V/+B(0, e): 1 ~ i<- m} = 0 .  

It follows that for every l < = k < ~ ,  1 <=i<-m there exist Pk, VR,~ER", [Vk,~l<l/k SO 
that for all l ~ k < o o ,  l<-i<=m: 

(2) (Pk+Vk,i--Ui, Wi) = O. 

If  {pk}~<=k<= has a bounded subsequence then it has a converging subsequence, 
we call its limit p' .  It is obvious from (2) that ( p ' - u ~ ,  w~)=0 for all l<-i<=m and 
this contradicts (1), therefore 

(3) lim [Pkl "----o~. 
k ~ r  

We can assume that the sequence {Pk/lPki}l~k<~ converges, let q=Iimk-~.pk/[pk[.  
It follows from (2) that for all 1 <=k<~,  1 <=i<=m (pdlpkl + ( v k , ~ - u  )/IPkl, w~)--0. I f  
we let k~oo we obtain 

(4) (q, w i ) = O  for all 1 ~ i ~ m .  

After an orthonormal change of  coordinates we can assume that q--(0 . . . . .  0, 1). De- 
fine, for y = ( y ~  . . . . .  y,)~R", )3=(y~ . . . . .  y,,_~, 0). Since (from (4)) w~ . . . . .  WmERn- Ix  

{0} then (I) implies that: 

(5) there is no ps so that (p-fi~,w~) = 0 for all 1 <- i <_- m. 
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It follows from (2) that for all l<_-k<~, l<=i<=m (/~k+~3k.~--~, W~)=0, but this 
(with (5)) contradicts our induction assumption that the claim holds for R "-1. 

Until the end of  this section we will fix e =  10 -5 and f l>0  will be the con- 
stant associated to c~= 10 -5 by Lemma 3 (N is fixed). 

Proof  o f  Lemma I for  dimension N (N=>2) 

6.1. Let X = ( x ,  y, z, w) be the coordinates system in the neighborhood of Z0 
described in 0.1--0.3 and U, U', V, V', W, W" are defined by 0.2--0.4 where d~= 
/~. 10 -(l~ and d=(d02/2  (the meaning of this choice is explained by 6.11 and 
later by 6.21--6.27). The functions u x (for ~'E V') will be defined by 0.5. Sublemma 1 
implies that u x (where X ' = ( ~  . . . . .  ~N-~, Y~ . . . . .  YN-1, ~, 0)EV') has the following 
properties : 

6.2. (i) R e ( u r ) > 0  on U ' \ {X}  and ux(X)=0 

(ii) If  X = ( x l ,  ..., XN-1, Yl . . . . .  YN--1, Z, w)CU" then: 

U.~ ( X )  : w + ,~al~_ j ~ N-1  (X j)2 ( y j  __ y j  + Z --  ~)2 + Xj  (Xj  --  ~j)4 

+ (1 - -  ~':I~_j~_N--1 ( X J ) 2 )  (Z __~)2 _}_ (1 -- 21~ j~_N-1  (X J) 2) -3/2 (21~_j<=N--1 Xj (~ j  -- X j ) )  4 

- i .~,~_j_~N-1 (x J) 2 (1 - w) 2 (yj - y  j) - i (1 - w) 2 (z - z) q- RX (Z).  

Where the remainder term R x  is bounded in the following way: 

IRx(X)l <-- 105(w d-Iz--~l 2 + Z,~j~,~_I  lyj - Y j  + z-~1" + Ixj -xj l  ') 

and: 
x (I z-~1~/2 + Z,~j~_N-1 lyj - Y j  + z-~l'/2 + w + ZI~_j~_N-1 I.~j - xjl) 

IIm (Rx (X) )  I -<-_- 10'(w + Iz-~l ~ + Z I ~ j ~ N - a  lYj - Y j  + z - ~ l  2 + I x j -  Yjl') 

x ( I z -  ~11/~ + ~'x_<- j_~ lyj - 2 j  + z -  ~1~/2). 

The significant point is that R r ( X ) = o ( R e  (ux(X))) .  It was also proved by Sub- 
lemma 1 that: 

6.3. Re (Ux (X))  >= 99/100 (w + ~I-~_j-~_N-1 ((XJ)2 (YJ --fiJ 31- ,7, --  ~)2 _~_ Xj  (Xj  --  ~j)4) 

+(l  -E,~j_~N-1 (xj)~) ( z -  ~)2 + ((1 -~Yl~_j_~-I (xJ)~)-3/9 (~Yl~j~_ N-1 (xJ)(XJ- ~J))'). 

We will state an assumption parallel to the one in 1.5: 
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6.4. Let /~l/('0~r)>r>0 be so that when X , X ' ~ V "  and [ Y - X ' l < ( l o g  ( l / r ) )  -x 

then: 
I f ( X ) - f ( X ' ) l  < el00 

and so that (log e)/(r 1/2. N 5. 2n) is an integer. 
We will present now a long (and tiresome) list o f  definitions and notations that 

describes the locations of  the peak points of  our peak functions. This is a crucial 
part  of  the proof  of  Lemma 1. The motivation for these definitions will be clear from 
their use in 6.21--6.27. 

The following convention will always be used: when we have 

) (  = ( X  1 . . . . .  X ~ N_I ) ~R  2N-~, 

we call (X~ . . . . .  XN-1) the x-coordinates and (XN, . . . ,  XZN-O the y-coordinates and 
we call X~n-1 the z-coordinate, x, y and z each having a different role in the proof  
of  Lemma 1. 

6.5. Define c1=c2= ... : C N _ l  : ( d l ) - l / l  r 1/4 and C N = C N  + 1 . . . . .  c ~ _  z=(da)-l  r a/~ 
and C 2 N - I : r  112. 

6.6. Define 

and 

r = {a = ( a ,  . . . . .  a 2 N _ I ) E Z 2 ~ ' - I :  d ( ( a l c , ,  . . . ,  a2N_lC2N_I, 0), V )  -< r ~ 

L' = { a ~ Z ~ N - l :  ( a l c  1 . . . . .  a2N_IC2N_I, O)EV'} 

(here d ( ,  ) is the usual distance in caN; V, V" are defined in 0.2). 
6.7. When Z = ( Z 1  . . . . .  Zzn_I)EC 2N-1, we define Z ' = ( Z N  . . . . .  Z~-2 ) .  
Take aEL'.  There is (one) l<=i<=N so that a'~S~ (Si is defined by 5.1). Let 

viCR N-1 be defined as in 5.3, and define: 

= (41 . . . . .  a2N--1) -~- a -~1-(0 . . . .  ( N - I  times) . . . .  0, Pi, 0)  

(we move the y-coordinates by vi). Define also: 

X .  = (c~al  . . . .  , c~N-~a2s -~ ,  O) 

= (c~al, ..., C2N-la2n-z, 0)+(0  . . . .  (N--1 times) . . . .  O, CNVl ,  0, 0), 

Note that the "shrinking" constants cl, c2 . . . . .  czu-1 act uniformly on each of  the 
coordinates x, y, z. 

6.8. Next we define for aEL, Ua=Uxa and R,=Rx,  ' (see 6.2). 
6.9. Now let L~={aEL':  a'ESi} and Li={aEL:  a'~S~} for l<=i<=N. 
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Take a ~ L  and X- - (Xx  . . . . .  X~v)=(Xl . . . . .  xN-1, Yl . . . . .  Yu-1, z, w)CU' and 
define t j=X j / c j  (l = j = 2 N - I ) ,  using 6.2 we have: 

6.10 .  u A x )  = - x o ( x )  = w +  ZI~_j~N_i ((xj)2(cN+s-dt~,+j-1 - a N + j _ O  

+C2N--l(t2N--l--a~N--1)) " + x j % % - a j ) ) ' ) + ( 1 - Z 1 ~ _ j ~ _ l  (x j )O(c 'N- l ( t 2N- l -a 'N-O)  2 

+ (I - ZI<=j~N-, (~J)") -3/~ (ZI_~j~_N-I xj q % - a j))' 

2 2 t d --i ~I~_j~N--1 (Xj) (1 -- W) CN+j_I( N+j--X-- N+j--1) 

- -  iC2N--1 (1 -- W) 2 (t2N_X -- aZN--1) + R.  (X)  

= w + Z , ~ j  ~_N -~ "((xJ/'~O ~ ((t,, + j_ l  - ~,, + j - 0  + dl (t~,, -1 - a~N -O)  ~" + (XMI)  % -- aS)') 

+ r( l  --Zl~j~_N--,  (Xj)OGN--I--'~'.,--1) ~ 

2 --3/2 +~(l--~l~j~N-l(Xj) ) ( ~ l ~ j ~ _ l X j ( d , ) - ' / ~ % - - ~ j ) )  ~ 

- - i (d l ) - l r l /2(1  -- W)'~ ~l~j__o,~_l (Xj)2(tN + j--l--gtU+ j--1) 

- i,.1/'(1 - w y  (t~N-1-- a ~ _ O  + R.  (X).  

Define now for a~L ,  X E U ' :  

6.11. pa(X)  = exp (uo(X) .  (log e)/(rNS)), 

and for a E L ' \ L  we (formally) define po=0.  
By 6.2 when aCL 1 > I P , [ > 0  on U ' \ { X ~ } ,  pa (X , )=  1, and Ip.(X) I decreases 

rapidly as XC U" moves away from )Ca. We need a good estimate of  Ip.(X)I = 
.R~(..(X)/(~u~)). It follows from 6.10 that: 

Re ((Ua (X)  - Ra (X)) / (rNS))  = N -5 (wl r + ,~a ~_ j <-_ N--1 ((xj/dx)~ ((tN + j -1  -- gin + j - l )  

+ d~ G N - i  - a~N-1)Y + ( x / g O  % -- ~)~) + (l -- Z i r c o N - 1  (xj)O (t~.~._l - ~ - 0  2 

-~ - (1  -- ZI~_ j~N--1 r x j (dl)- l /4(gJ-aJ ) ) 4 ) "  

"[his term will will play a central role in the main step of  the proof  which is 
in 6.21--6.27. Note that by 6.1 1 - d l < = x j / d l ~ l + d l  (for I : . I = N - 1 )  and d l :  
3" IO--<~~ 

We have from 6.10 and 6.11 that for 

X = ( x , y , z , O ) : ( X 1 , . . . , X 2 N _ I , O ) E V "  ( t j : X j l c j  (1 ~j_--<2N--I)) ,  (grief e): 

- -1 /2  --5 --1 2 __ ~ p , ( X )  = 8Re(",(x)/('N~))exp(--i(loge)r N (dl) ~I~. i~N_I(Xj)  (tN+j_ 1 aN+j_l) ) 
X exp ( -  i (log e) r-1/2U-5(t2N_l -- a2N-1))" O, (X)  

= 8R~ 0,oCX)/(,N~)) exp (--/(log e) r -1 /2N-  5 (dt)- i  ~ ~_j~N-1 (X J) 2 (tN +i-  1 -- 6N +j-1)) 

•  (-- i (log e) r-1/'~N-St~.N_a) �9 O,(X) 
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where 
Oa(X) = exp (/(log 5). r -1- N -5 Im (Ra(X))). 

The last equality holds since a2N_ 1 is an integer and by 6.4 (log 5)/(r 1/2. N 5. 2;0 
is an integer. 

We obtain that for all a, bCL: 
6.12. 

pa(X) " Pb (X) = ~Re(ua(X)/(rNS))+Re(ub(X)/(rNS)) 

)<exp ( - i ( l ogs ) r -1 /2N-5 (d l ) - I  ~I~ j~N_I  (Xj)2(bNq_j_l--~lN+ j_l)) " Oa(X ) �9 Ob(X ). 

It follows that if  a'=b" then: 

p:(X)  . fib(X) = Ip,(X)" ffbfX)l " O,,(X). Oh(X). 

Note that a ' = b '  iff y-coordinates of  Xa is equal to the y-coordinates of  Xb. 
6.13. The fact that Oa(X), Ob(X ) are very close to 1 when X~, X b are close 

enough to X is critical and will be used as in Section 1. We can evaluate 
O~(X) in the way that it was done in Section 1 (1.12) and obtain that if  
Re (u~(X)/(rNS))< 105 then: 

1 0 ~ ( X ) - l l  < 10 -1~ 
Note also that ]0~1 =1.  

The following definition is equivalent to the one in 1.14. 
6.14. Let vl, v~ . . . .  , vN: V ' ~ C  N+~ be continuous functions such that for every 

XEV' ,  {f(X),  vl(X) . . . . .  vN(X)} are mutually orthogonal and ]vi(X)[=l (for all 
1 <-i<~N). By shrinking r further (in 6.4, 6.5) we can assume that when X, X ' 6 V '  
are such that I X - X ' l < ( - l o g  r) -1 then we have for i=1 ,  2 . . . . .  N: 

Iv i (X)-v i (X ' ) l  < 56~ 

Let aEL'. There exists unique iE{1 . . . . .  N} such that a'CSi. Define: 

Va ~- (25(1 -If(X.)lZ))l/~v~(X.). 

The set {va: aEL'} has the following properties (compare with 1.14): 

(i) (v.,  f (X . ) )  = O, 

(ii) Ivy[ 2 = 25(1 -If(X,)[2).  

Let a, bEL', ] a - b l < - l o g r ,  where a'ESf, b '6Sj .  Then: 

(iii) i f  i ~ j ,  
I(v., v0)l < 5% 

(iv) if i = j ,  

The proof  that (i)--(iv) holds is essentially the same as the proof  in 1.14 and we 
will not repeat it, 
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The map h is defined as in Sections 1, 2. 

6.15. For ZCD: 
h(Z) = Zo~L po(Z)vo. 

As before the distinction between Z and X(Z)  is suppressed. Define for 
X=(xx . . . . .  xu-1, Yl . . . . .  Yu-1, z, w)CU" and n=>0 (see 6.11): 

6.16. L'(X, n) = {aCL': n 2 < Re ((u,(X)-(w+R,(X)))/(rNS)) <= (n+ 1)2}. 

It is essentially the same definition as 1.16 with a slight technical difference. 
The process that will follows is parallel to the one in Section 1. Propositions (A), 
(B), (C), (D) are as there and the proofs of (A), (B), (D) are essentially the same as 
there. The proof of  (C) is different and Lemma 3 is the basis of it. 

Let XE V' then: 

6.17. (A) ](f(X), h(X))[ </3100, 

(B) Ih(X)l 2 </31/2(1 -If(X)12)+/350, 

(C) when XCV then [h(X)[ 2 >/32(1-1f(X)12)-/35~ 

Note that obtaining a holomorphic map that satisfies only (A) and (B) is trivial 
(take h~-0) and the same is true for a holomorphic map that satisfies only (C) 
(take h - 1 ) .  Obviously the difficulty is to construct a holomorphic map for which 
(A), (B) and (C) holds. For the map h that we constructed above, the proofs of  (A) 
and (B) are rather simple and do not use arguments that depend on the co-dimen- 
sion. On the other hand the proof of (C) requires careful consideration of the co- 
dimension and the distribution of  X a, with use of Lemma 3. 

6.18. We will use the facts that car (L(X, n))<(Ul~ 2N (not a sharp esti- 
mate) and when a~ L(X, n) then [p,,(X)[ </3,,5/2. Simple implications of these facts 
will also be used without mention. 

6.19. As in Sections 1, 2, when XCU" is fixed we define for aCL [a]=n where 
n is the only integer so that aEL(X, n). Since the proofs of  (A) and (B) here are 
basically the same as proofs of  (A) and (B) in Section 1, we will just go briefly 
through them. 

Proof of  (A) : 
[(f(X), h(X))[ = [ZaEL (f(X), t,a)p.(X)] 

= I Z o = ~ n ~ l O 0  ZaE L(X,n> ( f (X ) - f (X . ) ,  v.)~:(x) l+ IZxoo<. Z:~L(X,.)(f(x), vo)po(X) I 
- Zo<-,~x00_ _ Z-,,~L(X..) ~' [f(X)-f(Xa)l" Ival + Zxoo<, Z.~L(X,,)IP,(X)I 

< 4 Z0an~_10o 6"100 �9 (N10(n + 2)):n < /31oo. 
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Proof of(B): Fix XEV" : 

Ih(X)l 2 = [Z.,b~L(V:, vb)pa(X)ffb(X)] 
~'O--<m~lO0 ~a, bE L, [a]+[b]=m I(Va' Ob)Pa(X) Pb(X)t 

+ Z100<~ Z~ Eo~+tbJ=~ Ip~ 
-<z ~0~_m~_100 (2~(1 --lf(X)l z) + el~176 + 2)) 4N- ~m,/a + Z10o<m ( N10 (/'F/"~- 2)) 'N" a' ' la 

< (4N)'~ ~. (1 --If(X)12) + ~ e~ 
P r o o f  of (C) : 
6.20. Define for ZEB N and l<=i<=N: 

hi(Z) = ~a~L, Pa(Z)" Va" 
We have h =h 1 +h z+... +h N. 

The following definitions and propositions (6 .214 .27)  which are based on 
Lemma 3 are the basis of  the proof of  (C) and therefore of Lemma 1. While (A) and 
(B) use mainly 6.14 (i), (ii) and the fact that Pa are located in some "regulated" 
(lattice type) way. In the proof of  (C) we need to look closely at the properties of  
the peak functions and their locations. 

6.21. Let XEV, X=(x,  y, z,  0 ) : ( X  1 . . . . .  X2N_I, 0) (X, yER N-l, zER) and let 
tj=Xj/Cy ( j = l  . . . . .  2 N - l )  and t = ( q  . . . . .  t2N_l), X (and t) will be fixed until 
the end of 6.27. We will make use now of the definitions in 6.7--6.9. 

( . )  By Lemma3 there exists iE{1 . . . . .  N} and aELi so that [ t ' - r~ ' l+ f l<  
I t ' - b ' [  for every bCL i such that a'#b" (note that only the y-coordinates are 
involved here). Let us choose one such i and call it i(X). 

6.22. Choose a(X)ELi(x) so that the following holds: 

Re ((U,(x)(X) -R,(x)(X))/(rUS)) : rain {Re ((u,(X) -Ra(X))/(rUS)): aE Li~x)} 

(note that the choice for the minimum may not be unique). Looking at the explicit 
term for Re((u,(X)--R,(X))/(rN5)) in 6.11 and the definition of L, (and 6.1)we 
can see that: 

6.23. (1) Re((u~(x)(X)-R.(x)(X))/(rNS))<I/3 
and 

(2) if aEL and [a-tl>=N 2~ (l[ is the standard Euclidean norm) then 
Re (ua(X)-R,(X))/(rNS)>2 (not the best estimates but they suffice). 

When aELi<x), it follows directly from 6.11 and the definition of  a(X) that: 

6.24. Re ((u,(X)-Ra(X))/(rUS))-Re ((U,~x)(X)-R,(x)(X))/(rNS)) 

=> N-5((ZI~y~_N_I (xj/dO2((tN+j-l--dN+j-O+dl(t2N-x--a2N-~)) ~ 

- 2 ~ _ j ~ _ ~  (~ /dO2( ( t , ,+J -~  - a N + j _ l ( x ) ) +  dl(t~,,_~ - a~,, _ l ( x ) ) )  ~) 

+ (1 -- 21~_j~_N-1 (X J) 2) ((t2N-1 -- a~s -,)" -- (t2N - - 1  - -  a2N - -1  ( X ) ) 2 ) )  �9 
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An equality occurs in 6.24 when aj=aj(X) for all I<=j<=N-1 (i.e. a is equal to 
a(X) in the x-coordinates). 

When we consider the facts that d l = f l . 1 0  -(~~ and 1-dl<=x/d1<-l+dl 
and the definition of  a(X) we obtain (from 6.24 and the remark below it) the fol- 
lowing. 

6.25. (1 )When aELi(x), l a - t l < N  2~ and aj=aj(X) for all jE{1 . . . . .  N--1}w 
{2N-- 1} (thus a is equal to a(X) in the x and z coordinates) then: 

0 <= Re ((ua (X) - R, (X))/(rNS)) - Re ((U,(x)(X)- R,(x)(X))/(rNS)) 

< N-5(It ' - a ' l  2 -  [t'-~'(X)lZ+do_) 

where dz d~f ft. 10_(10N)t/z. 
Thus 

([])  I t ' -~ ' l  2 > It'-tt'(X)12-d2. 

Note that (G) holds for all aCL~(x). First we can always assume that a is equal to 
a(X) in the x and z coordinates, without effecting (U), then if [a-tl>~N 2~ we 
have I t ' - f i '12>N 2~ and ([3) is trivial. 

(2) When a~L~(x), la-- t l<N z~ and aj=aj(X) for all ./6{1 . . . . .  2 N - 2 }  (a is 
equal to a(X) in the x, y-coordinates), then: 

0 ~ Re ((u, (X)-- R~ (X))/(rNS)) - Re ((Ua(x)(X) - Ra(x) (X))/(rNS)) 

< N - 5  ( ( t2N-1  - -  aEN--1)  2 - -  ( t 2 N - - i  - -  a 2 N - - i  (J~kl)) 2 -[- d2)- 

Thus: (t2N_ x - - a z N _ i ) 2 > ( t 2 N _ l - - a 2 N _ I ( X ) )  2 - - d  2 . 

(3) When aELi(x) and [ a - t l < N  z~ then: 

R e  ( ( u  a ( X )  - -  R a (X))/(rNn)) - Re flU.(x> (X) - R.(x> (X))/(rNn)) 

> N-5(l t ' -6"l  2 -  I t' -fi'(~v)]2+(t2N_ 1 --a2N_1)2--(t2N_l--a2N_l(X))2--d2). 
From ([3) (in 6.25 (1)) and the choice of i(X) in 6.21 (recall that Lemma 3 was 
used there) it follows that for all aEL~(x) 

-d2 < [t'-fl'[2-[t'-ft'(X)[ 2 = ( [ t ' - 5 ' [ -  [t'-dt" (X)l)([t'-ft'[ + lt'-Ct'(X)[), 

thus since [ t ' -5 ' [  + [t'-~i'(X)[ _->[~i'-~'(X)[ = [a ' -a ' (X)l  then: - d ~ < l t ' - d ' [ -  
It '-~i'(X)[. Therefore in view of  6.21 ( . ) :  

6.26. I t ' - 5 ' ( X ) [ = m i n  {[ t ' -~ ' [ :  a6Li~x) }, which is equivalent to (using 
6.21 ( . ) ) :  when a6Li(x) and a'~a'(X): 

It' - a ' [  e - I t ' -  6"(X)] ~ -- (It'-c~'] - I t ' -  d'(X)[)(lt' -~ ' I  + It' - a'(X)}) >/~. 

We conclude from 6.26, 6.25 (2), (3) (and the marginality of R,(X), R,(x)(X ) 
which is described by 6.1 (see also 1.12)) that if  a6Li(x ), a'r and 
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]a-t] < N ~~ then 

Re (u, (X)/(rUS)) - Re (U,(x) (X)/(rNn)) > fiN-'~ 

6.23 (and the marginality of  the remainder term) implies that this is true also when 
[a--tl>=N 2~ 

Thus we conclude the following (see 6.11): 
6.27. I f  aELi(x) and a'r  then: 

I p, (X)/p,(x) (X) I <eaN- 1o. 

Let us fix XE V until the end of  proof  of  (C). The following is the first step 
in the proof  of  (C). 

..::7 o %<~ 6.28. When l= t , . l=N and i~j ,  then (see Def. 6.20): 

hj (x ) ) l  < 
Proof (using 6.14 (iii)) : 

I( hi(X), hi(X))[ = I ~ O ~ m ~ l O  o ~aE Li, bE Lj, [a]+[b]=m (1)a" Vb) Pa(X) fib(X) 

< ~ '  e 60. em'/a(N~~ 5 '  e,,,/4. (Na0(m+2))4u < ~ss. 
.,c-,,a O ~ m ~  1 0 0  ~. "-- / 1  - -  z . a  I 0 0  < m  

6.29. Claim. Ih,(x)(X)l s >~S(l - lY(X) l~ ) -e~ .  

The proof  of  (C) is concluded once we prove this claim since 

Ih(S)l 2 = Ih~(X)+ ... + hN(X)I a 

= Ihx(X)12+ ... + IhN(X)I2+2 Re(~'x~_~<j~ (h,(X), hi(X))) 

and (C) follows from 6.28 and 6.29. 
6.30. Let 

A(X)  = {aELi(x): [a] _<-- 100, a '  = a'(X)} 
and 

B(X) = {aELi(x): a" ~ a'(X) or [a] > 100}. 
Since 

h.x)(X) = Z~ po(X)v. = Z . c  ~r P.(X)v. + Z.~B~x) p~176 
then: 

6.31. Ih.x)(X)l 2 >= ]~'aE A(X) p,(X)~ 212o~ .cx>, ~ .(x> (v., v~)v.(x) po(x)l. 
Let us look at the first term: 

lZ.e,4(x) P,(X)v,l '  ~ Re (Z. ,b(  A(X) (V., vb)p~(X) pb(X)). 

It follows from 6.12, 6.13 that that when a, bEA(X),  then since a'=b" and 
[a] ,  [b] _-<_ 1 O0 

Re (p~ p~(X)) > o 
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and since a, bELi(x) then 6.14 (iv), 6.4 imply that 

[(va, v b ) -  tv.(x)12[ < 8 5~. 

Therefore Re ((v a, Vb)Pa(X)fib(X))>--858. 

Since a(X)EA(X)  and card (A(X))-<~0~_n~_10o (Nl~ 2N we obtain that: 

6.32. [Z,~A(X) P,(X)v,[ z > Iv,(x)12lp.cx) (X)i2-85v" 

Let bEB(X),  then if  b '~a ' (X)  6.27 implies that: 

6.33. Ipb(X) /po(x)(X) l  < 8 a~-1~ 

and if  b'=a'(X)  then [b]>100 and by 6.3, 6.16 the claim of 6.33 clearly holds. 
Using the fact that 

{ ( } ~ ( 10 ))2N def  
car bEB X): [b] <= 100 <_- o~,_~1oo N (n+2  ---~ Mo 

we have: 

6.34. [Z  aE A(X), bE B(X) (va ' Vb) Pa(X) ffb ( X)[ 

[~a E A(X), b E B(X), Ibis100 (va' Vb) Pa (X)  Pb (X)[ 

'~ IZa E A(X), D E B(X), [b] >100 (Va' l)b) Pa (X)  Pb (Y)[ 

< ~ ~ a(x), b ~ B(X), [bl~_ 100 (I V~(X) I 2 + 859) I P~(x) (X)  I 28#N-~o 

+ Z~CA(X), b~B(X), tb]>too Ipa(X)pb(X)l < (Mo)2(lV~(x)12q-859)lPa(x)(X)[ 28#N-1~ 

"[- Zn~100 (~0~j~100 ( Nl~ (J + 2)) ~N) (( N10 (iv/+ 2))25/) 8n'/2 

< Ip~(x)(X)12]V.(x)]28(aN-2O)q-859. 

Combining the estimates 6.31, 6.32, 6.34 and the fact (6.11 and 6.23) that 
IPa(x)(X)12>e we obtain: 

6.35. Ihi(x)(S)l 2 > [Va(x)[2[pa(x)(X)12(1--8fiN-20) -856 

> 8. Ip,(x)(X)l 2. (1 -IT(X)I2)--855 > 82(1 " I f (X) l  2) -855. 

Claim 6.29 is now proved and thus (C) is proved. 
(D) will be exactly the same as in Section 1 and the proof is essentially identical 

and will be omitted. 
The globalization process is identical to the one in Section 1 and we will not 

repeat it. Since 1.33 and 1.34 hold, then the proof of  Lemma 1 is now completed. 
This proof  obviously holds when the target ball is B M, for any M ~ N +  1. 

Proof o f  Lemma 2 for  dimension N ~ 2 :  
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It is quite clear at this stage that the proof  that will follow is a composition 
of  the proof  of  Lemma 1 (for dimension N ~ 2 )  with the proof  of  Lemma 2 (for 
dimension 2). 

The definitions and statements in the proof  of  Lemma 1 until (and including) 
6.13 will be adopted here with one change, the constant r > 0  in the definition 
of  the (first stage) correction function will need to be smaller (as in 3.1). 

7.1. Let r be so that (e')x/~'>r>O and when X, YEW, ] X - Y [ < ( - l o g r )  -1 
then: 

(i) I f (X) - f (Y) l  < (d) x~176 

0i)  [ 1/(11 - ~ ( x ) l '  + (801~ - 1/(11 - ~ (r ) I '  + (8')1~ < (8,)10o, 

(iii) Zm_~t(,)(1/2)m'/4<(d)l~176 where l(r) def_log r, 

(iv) (log 8)/(r 11~. N s. 22r) is an integer. 

The definition of  Va, aEL" is slightly different than in 6.14 (see 3.3). The process 
done in 6.14 (and 1.14) implies (after changing the constants that are involved in 
the process and shrinking r) that for every aEL" we can assign vaEC N+I so that 
the following will hold (the projection into the y-coordinates a~a" is defined in 
6.7, S i is defined in 5.1). 

7.2. For a, bE L" 
(i) (Va, f(X.)) = O, 

(ii) Iv, I s -= 28(1-If(X, , ) [~) / ( l l -  9(Xa)14 +(d)10). 

Let a, bEL', la-b[<2l(r), (where l(r) def--logr) so that a 'ES  i, b'ESj then: 

(iii) if i # j  
I(v., v~)l < (~,p0, 

(iv) if i = j 
I(v., v~)-lVal~[ < (alp 0. 

7.3: We will adopt here 6.15, 6.16 without a change. We will prove now (A), 
(B), (C) as in the case N=2 (Section 3). The proofs consist mostly of  the changes 
done (by the use of  Lemma 3, as in the proof  of  Lemma 1 for dimension N=>2) 
to adapt to the higher dimension. 

7.4. For  ATE V':  

(A)  I ( f ( x ) ,  h(X)) [  < (8'),, 

(B) Ih(X)l ~ < ~ m ( 1 - I f ( X ) l , ) / ( l l - , ( x ) i % ( 8 ' ) x o ) + ( d ) L  

((2) when XEV then Ih(X)l~>82(1-lf(X)l~)/(l l-9(X)la+(d)x~ 4. 

The remark following 3.4 will be used. 
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Proof of(A) (l(r) d~r--log r):  

[(f(X), h(X))] = ] ~  L (f(X), vo) po (X)] 

= ]Zo~_n<=l(r) ZaE L(X,n) ( f (X) - f (X . ) ,  v.)/3.(~1 + Iz,,,)<. z ~  L(X,n) (f(X), Va) p. (X)[ 

Zo<=n~l(r) ZaEL(X,.)If(X)-f(X~)l IVal Ip~(Y)l + Zz(,)<. Z . c  L(x..)[p~(Y)l IrA 
N 1~ n 2 2N t 100 n2/2 t --5 10 2N n212 t --5 <Zo~_._~,(,)( ( + )) (~) ~ (~) + 2 Z / ( , ) < n ( N  (n+2))  ~ (~) <(~ ' ) ' .  

Proof of (B): Fix XE V' : 

Ih(X)l z -- ]Z.,bZL (V., vb)Pa(X)Pn(X)[ 

--<~ Z0_~m~l(,)  Za ,  bE L, [a]+[b]=m I(va'  Vb)Pa(X) Pb(X)I 

Ji- Zl(r).~m Za ,  bEL, [a]+[b]=m IPo(X)pb(X)I (~ , ) -1o 

"< Zo~m~ ,(,) (I Va<X)[ 2 q- (St) 40) ( N I ~  (m + 2))4Nsm'/4 q- Z I ( , ) < / ( 8 ' ) -  lO (NlO ( m  + 2))'Ng "'/' 

< (4 N)  4~ 8 ( 1 - -  If(X) l 2)/(I 1 - ~0 (X) l' + (a')x~ + (8')4. 

Proof of (C): We will adopt  definitions and propositions 6.20---6.27. The fol- 
lowing is equivalent to 6.28: 

7.5. When l<-i,j<-N and i~ j  then: 

I(hi(X), hj <X)) I < (8') 1~ 
Proof 

[(h,(X), hj(X))[ <- IZo<=m~_,<.) Zo~L,. ~Lj, t.~+t~=.~ (oo, ~)p.(X)~b(X) 

+ ~t(,)<m ~.~L,, b~Lj, t~l+tbl=m (V,, Vb)p~(X)ffb(X)[ 
t 50 m214 10 4N , < Zo~_m~_,(,)(8) 8 (N (m+2) )  +Zt(,)<mfS")-l~176 4N < (g)xo. 

7.6. Claim. 

I h~(x, (X) l 2 > 8 ~ (1 - If(X)12)/(I 1 - ~o (X)l' + (~,)xo) _ (8,)~o. 

Proof Let A(X), B(X) be as in 6.30 then 

hi(x)(X ) : ZaE LI(x) pa(X)v  a = Za( A(X ) p.(X)v. + Z .~  B(x ) p.fX)vo 
and: 

7.7. Ih,(x)(X)] 2 >= [Z,~a(x) pa(X) Va[ 2-2[ZaEA(X), bEB(X) (va' Vb)Pa(X)ffb(X)[" 

It follows from 6.13 that when a, bEA(X) then by using the fact that a'=b ~ 
we have 

Re (p, (X) fib (X)) > 0 
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and when a, bCLi(x) and [a], [b]<2l(r) then 7.1, 7.2 imply that 

7.8. [(Va, vb)-Iv.~x)12[ < (e') '~ 

Therefore for a, b~ A(X). 

7.9. Re ((v., vb)pa(X)ffb(X))> _(g)ao. 

7.10. Looking at the first term we have: 

[~,~ ACX) P"(X) v"12 >- Re (2"a,b~ a(X) (Va, vb) Pa(X) ffb(X)). 

Using 7.9 and the fact that card (A(X))<-Zo~_,~_xoo(Nl~ 2N dof Mo we ob- 
tain that: 

IZ.~a<xo p . (X)v . [  z > I~162 '5" 

When we look at the second term in the right side of  7.7 and apply 6.27, 6.18 we 
have: 

7.11. 12". ~ A<x), ~CBO0 (O., vb)p.(X)p~(x)l 
]Za E A(X), b E B(X), [b] ~ 100 (1)a' Vb) Pa ( Y )  Pb ( X ) ]  

+ ]2". ~ ~x~, ~ c .~x), 100 < t~ ~_,~.~ (~., ~)P.  (x )  ~b (x)  l 

+ 12". ~ ~x~, ~ ~ .<x), ,<.~ < t~ (~. '  oh)p. ( x )  ~ (x)]  
2 r 41) 2 /gN -ao 

< 2"a~A(X), bEB(X), [b]_~100 (IVY(X)[ +(~ ) )lPa(x)( x)l  e, 
2 �9 40 2 ([b]2--1)/2 

~- 2"aE A(X), bE B(X), lO0<[b]~_/(r)(Iv.(x)l + ( ~  ) )[p~<x)(X)l 
"~ .~aEA(X). b6 B(X). tO')<[bl (~')-1o [pa(X) ffb (X)I < (Mo)2(lv~<x)12 + (8,)4o)IPa(x)(X)12~t~N-=O 

+ ( Z .  _~100 (M0 ( g  1~ (n + 2)) ~N) ~<"'- 1)/~) (I V.<x) l ~ + (~')'~ + (~')~~ 

< [p.(x)lalv.(x)[2eaN-'~ zn. 

Combining the above estimates we obtain: 

Ih~(X)12 > IV,<x)12[p,~x)l~(1 _eaN-,o)_(g)2o 

> ez(I - If(Z)l~)/([l - ~o (X)l" + (~,)1o)_ (e,),. 

So now (C) is proved. From this point the proof continues exactly like the 
proof of  Lemma 2 in the case N = 2  (see (D) there) as the dimension is not used 
there (from (D) on) at all. Like the proof of  Lemma l, this proof holds (without 
any change) in the case the target ball is B M where M > N .  

Remark. After this work was completed I learned that Monique Hakim has 
obtained similar results. Our work was done entirely independently. 
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