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Introduction 

Global parametrices of fundamental solutions of hyperbolic differential opera- 
tors were first constructed by Ludwig [7] and for pseudo-differential operators by 
Duistermaat and H6rmander [2] using Fourier integral operators and canonical 
relations. 

The aim of this paper is to give an elementary construction of global paramet- 
rices for fundamental solutions of first order pseudo-differential operators. It is 
a simplified and corrected version of the construction given in my lectures 1985 at 
the Nankai university in Tianjin, China (G~trding [3]) and reported on in (G~r- 
ding [4]). 

Consider a first order pseudo-differential or, more precisely, differential-pseudo- 
differential hyperbolic operator, 

(1) a = Dt+P(t, x, Dr) 

defined on the product of the real line and a paracompact manifold I2 of dimen- 
sion n. Here Dt=~Ji, D = ~ / i  with obvious 0t and ~x and P(t, x, Dx) is a classical 
first order pseudo-differential operator with real principal symbol p(t, x, 4) de- 
fined on the product of the real line and the cotangent bundle C=T*(O) \O  of 12. 

Let Y be a point in 12 with coordinates 0 in a system of coordinates y around Y. 
A parametrix of a fundamental solution of Q with pole at (0, Y) is a distribution 
E(t, x) satisfying 

aE(t,  x) = ~(t)~(y) 

modulo smooth functions. It is sufficient to have E(t, x)=0  when t < 0  and let 
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E(t, x) solve Cauchy's problem 

(2) QE(t, x) -~ O, E(O, y) =-- 6(y) 

when t>0 .  Our construction of  the parametrix can be described briefly as follows. 
Let x, 4 denote canonical coordinates in C respecting the canonical form r dx = 

r  + 4,dx, and let the words Hamil ton flow on C and bicharacteristic (path) 
refer to the principal symbol p(t, x, 4) and assume that outflow of  a compact  
subset o f  f2 f rom t = 0  to t stays over a compact  part  o f  12 when t > 0  is bounded. 

Let  y, q be canonical coordinates in a conical neighborhood K(0) of  Y in C 
and let L(0)=(0 ,  R " \ 0 )  be the fiber over Y. Let K and L be the outflows f rom 
K(0) and L(0) and let K(t) and L(t)  be their restrictions to time t. By H6rmander ' s  
propagation of  singularities theorem, the wave front set o f  the distribution x ~E( t ,  x) 
equals L(t)  which is a manifold of  dimension n. It  is conical in an obvious sense and 
Lagrangian in the sense that the form 4" dx vanishes on L(t). 

Let the coordinates x(t),  4 (0  in K(t) be images of  y, t/. The function f ( t ,  x, 4) 
on K defined by 

(3) f ( t ,  x(t), ~(t)) = yq 

will be called the gauge. It  is going to serve as a kind of  universal phase function in 
the constructions which follow. 

When t is bounded, E(t, x) is constructed in the form of  a finite sum of  dis- 
tributions 

z(t, x) = f x, r162 

where x, 4 are canonical coordinates in C covering the outflow N(t)  at time t o f  
some small open conical part  N(O) of  K(O) and the amplitude a(t, x, 4) is a zero 
order classical amplitude supported in N(t). I t  is understood that the space co- 
ordinates x at t ime t are chosen such that  the gradient f , ( t ,  x, ~) does not vanish 
and that  4 parametrizes the Lagrangian manifold L(t)  in N(t) where its equation 
then is fc(t, x, 4)=0.  It  will be show that this situation can be achieved when N(0) 
is small enough. Here and in the sequel indices denote partial derivatives with respect 
to the corresponding variables. 

In order to prolong an oscillatory integral I(s,  x) with phase function f ( s ,  x, 4) 
to a time t slightly larger than s, the function f ( t ,  x, 4) is written as a function 
h(t, x, rl) where y, r/ are connected to x, 4 by the flow from s to t. The function 
h(t, x, rl) then satisfies a weak form of  the Hami l ton- - Jacob i  equation, 

ht+p(t,  x, hx) = z(t, x, q)h,(t, x, rl) 

where z(t, x, rl) is a smooth function of  homogeneity 1 in q for large values of  
this variable. Using the function h as a phase, we can now write down an oscillatory 
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integral 
J(t, X) = f e'h(t'x'")b(t, x, rl)dq 

and determine the amplitude b(t, x, rl) so that QJ(t, x)=-o and J(t, x)=I(s,  y) 
when t=s, x=y.  This is done by recursive integrations of first order linear dif- 
ferential equations for the homogeneous parts of b(t, x, tl) with the initial con- 
dition b(s, y, rl)=a(s, y, ~l). Restoring the variable ~ at t gives J(t, x) the form 
of an I(t, x). When the neighborhood N(0) shrinks to a ray over Y, our construc- 
tion extends the distribution I(t, x) indefinitely. 

When f(0, y, q )=y.  t/ the function h(t, x, ~l) constructed above satisfies the 
ordinary Hamilton--Jacobi equation. In this case it was used by (Lax [6]) to write 
down a local parametrix for the solution of Cauchy's problem for strongly hyperbolic 
differential operators with data at time 0. His parametrix is a sum of oscillatory 
integrals of the type above defined for small times. 

1. Phase functions in the Hamilton flow 

This section introduces some phase functions to be used later. Consider the 
Hamilton flow 

dx/dt = pg(t, x, ~), d~/dt = -px(t ,  x, ~). 

Differentiation along the flow is given by the Lie operator 

X = Ot+p~(t, x, ~)Ox-Px(t, x, ~)0~. 

The flow commutes with changes of variables ~-~const r and changes of space 
coordinates leaving the form ~. dx invariant. A simple computation using that 
p(t, x, 4) is homogeneous of degree 1 in ~ shows that the Lie operator annihilates 
the differential form 

o~ = ~ dx -p ( t ,  x, ~)dt 

which shows that the form is invariant under the flow. From these three properties, 
it follows that the image L(t) at time t of the fiber L(0) over Y is a manifold of 
dimension n, that it is conical and that ~ .dx=O on L(t) since r/.dy=O on L(0). 
It also follows that the gauge f(t,  x, 4) is defined by (2) on the outflow K from 
t = 0 of the neighborhood K(0) of Y and that it is homogeneous of degree 1 in ~. 

In the sequel we let N(0) he a neighborhood of a fixed ray Z(0)=(0, ~/0) in 
L(0) over Y and let Z(t) be the outflow of Z(0) at time t. 

A set of canonical coordinates x, ~ in a neighborhood M of the point Z(r) 
are said to be goodifthe fiber coordinates r can be chosen as parameters on M n L ( t )  
when t is close enough to r. At Z(0) with coordinates y, r/we have dr(y, r/)=~/, dy 
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and hence 
df(t, x, 4) = f x d x + f e d ~  = ~ dx 

when x, ~ is in L(t) .  Since ~ is arbitrary there, it follows that fe(t,  x, 4)=0 so that 
~ = f x ( t , x , r  and f : ,=~ on L ( t ) n M .  It follows that df~ equals dx+f~ed~ at 
L( t )  so that the n differentials df~ are linearly independent there. 

Theorem 1. 1) Let r be any time. There is choice o f  space coordinates at Z ( r )  
resulting in good canonical coordinates x, ~ in C which cover a neighborhood M o f  Z ( r  ). 

2) Let T=T(e) :  It-rl<-_e be a time interval around a f ixed time r and let 
the map x, ~ ~ y, ~ be induced by the Hamilton flow f rom a time tE T to the time 
r - e .  When ~ is small enough, Z ( r ) •  has a neighborhood which is covered by the 
coordinates t, x, ~ and t, x, q. In this neighborhood, the function h defined by h(t, x, t/)= 
f ( t ,  x, 4) satisfies a weak Hamilton--Jacobi equation 

ht + p(t,  x, h~) = z(t,  x, rl)h,l(t, x, ~l), 

where z(t,  x, ~I) is a smooth vector, homogeneous o f  degree 1 in ~. 

Note. When s=0 ,  f(0,  y, r/)--y, q and the function h(t, x, ~) is a generating 
function of  the homogeneous canonical map y, r /~x,  ~ from time 0 to time t (see 
Caratheodory [1], p. 98). It then satisfies the ordinary Hamilton--Jacobi equation. 
The mistake in Ghrding [3] and [4] was to assume this also in the later steps of  the 
construction. It did not influence the final result. 

Proof. 1) Let y, ~/ be canonical coordinates around Z ( r )  such that y = 0 ,  
r/---(1, 0 . . . . .  0) at Z(r) .  This can be achieved by an afline change from arbitrary 
canonical coordinates. We can then find a number k such that the differentials 

dtlt . . . . .  dt lk , d y k + l ,  . . . ,  dy , ,  

are linearly independent when restricted to L(r )  in a neighborhood of  Z(r )  for r 
fixed. Now make a change of  space coordinates, 

X x = y l + z ,  x 2 = y 2  . . . . .  x , ,=y , ,  
where 

z = a(y~+l+. . .  +y,~)/2. 

The rule ~/. dy = 4" dx then gives the new dual coordinates 

~ j = r / j  when j~= k, ~ j=~/y+r / lay j  when j > k .  

Hence, at Z(r)  we'have 

d~j=d~l j  when j ~ k ,  d ~ j = d ~ l ~ + a d y j  when j > k .  

Taking a large enough, i t  follows that det . . . . .  d~n are linearly independent on 
L(r)  at Z(r.)i Hence they, arr close to Z(r)  and L(r) ,  
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2) The Hamilton map x, ~-+y, q from time t to s =  r - ~  is the identity when 
t=s.  Hence the required neighborhood of  Z ( r ) •  exists when e is small enough. 
The differentials of  the two coordinates systems are related by a linear system of  
equations, 

dx = xydy+x~do ,  d~ = ~ r d y + ~ d o .  

I f  fg(t, x, r  and dt=O, then d f - - { .dx=hxdx+h , ldr  1 depends only on dx 
and hence fe(t, x, 4) and h~(t, x, 0) vanish at the same time, so that L( t )  has 
the equation h,(t, x, 0)=0. Since the differentials dfr are linearly independent 
on L( t )  the same is true of  the differentials dh, close to Z ( r ) •  when e is small 
enough. 

When x, { is in L( t )  and the corresponding y, 0 is in L(s)  and we have 

dh = q d y  = ~ d x - p ( t , x ,  ~)dt = h ~ d x + h t d t  

by the invariance of  the differential form o~. Hence ~ =hx and h t :  - p ( t ,  x, ~) which 
means that h(t, x, 0) satisfies the Hamilton--Jacobi equation ht+p(t,  x, h~)=O 
on L(t) .  Since h~(t, x, 0)=0  is the equation of  L(t)  and the differentials dh~(t, x, 0) 
are linearly independent, it follows that h(t, x, tl) satisfies the weak Hamil ton--  
Jacobi equation stated above. This finishes the proof. 

2. Construction of a global parametrix 

To prepare for the main result we need to put Lax's result in a general setting 
(Lemma and Theorem 2 below). 

Let us consider a pseudo-differential operator 

Q = Dt+P( t  , x, Dx) 

defined on f2XR. We assume that P is a classical pseudo-differential operator of  
order 1 which means that the symbol P(t, x, ~) of P is smooth in all variables and 
has an asymptotic expansion for large 4, 

P(t, x, ~)~. .~pk(t ,  x, ~), k = 1, O, - 1 . . . .  

with Pk smooth when ~ ~ 0 and homogeneous of  degree k in 4. The principal symbol 
P=Pl  is supposed to be real. We shall let P operate on oscillatory integrals 

I(t, x) = f eig("x'")c(t, x, ~1) d~ 

where the amplitude e(t, x, 0) and the phase g(t, x, 0) are defined in some open 
set O of  t, x, q-space which is conical in q. The amplitude is supposed to be classical 
of  order 0 with conically compact support. The term classical means that c(t, x, rl) 
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is a smooth with a uniform expansion for large q, 

c(t, x, 7 ) ~ Z [  ~ c,( t ,x,  ~) 

where c i is smooth and of  pure order ] ,  i.e. it is homogeneous of  degree j in q S0 .  
The maximal pure order of  the non-vanishing terms of  c(t, x, 7) is called its order. 
We shall also assume that the phase function g(t, x, ~l) is regular in the sense that 
it has pure order 1 and is smooth for 7 ~ 0  and that it has the property that 

gx (t, x, 7) ~ 0 

everywhere. It is well-known that the integral I then defines a distribution. 

Example. The function h(t, x, 7) of  Theorem 1 has this property close to Z(r) .  
In fact, ~=h~(t, x, q) on L(t) .  

Lemma. Modulo smooth functions, the distribution PI(t, x) equals an oscillatory 
integral 

K(t, x) = f e i~ ~' ~) b (t, x, q) dq 

where the amplitude b has the expansion 

(4) 2 P(')(t, x, gx(t, x, q))(Dr+ry(t, x, y, 7))~c(t, y, q)y=~, 
where 

g(t, x, q)--g(t ,  y, q) --- g~(t, x, q ) ( x - y ) - r ( t ,  x, y, q). 

Note. The leading term of  b(t, y, 7) is p(t ,  x, g~(t, x, 7))Ck(t, X, q). Since rx=O 
when x = y ,  the coefficients of  (Dy+iry) ~ have order at most [l~l/2] in 7 after 
putting y = x .  Hence the order of  a term in (4) with c(t, y, 7) replaced by ci(t, y, 7) 
is at most j - l~[ /2 .  This guarantees an expansion according to homogeneities of  
b(t, x, 7). The lemma is implicit in the classical calculus of  pseudo-differential ope- 
rators and there is a proof  in (Ghrding [3]). For  the convenience of  the reader we 
give a sketch of  it. 

Sketch o f  the proof  Changing the variable x to y in the integral, its Fourier 
transform is 

f e-iYr +igr Y'") c(t, y, 7)dy dq. 

Hence K(t, x) is the oscillatory integral 

f e~r162162 x, ~)c(t, y, tl) dy dq d~ 
so that 

b(t, x, 7) = f eiC~-Y)~ +i~or t, x, ~)c(t, x, 7)dy  d~. 

Hence, by the definition of  r(t, x, y, 7), 

b(t, x, 7) = f e~r162162162162 t, x, ~)c(t, x, 7 )dy  d~. 
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The next step is to expand 4-*P(t, x, 4) in terms o f  ~-gx(t ,  x, q), 

P(t, x, 4) = 2 P(~)(t, x, gx(t, x, q))(4--gx(t, x, q))~. 

This calls for an integration by parts with respect to y with the result that 

b (t, x, ~) = f ~ e'~X-r)r x, gx(t, x, r/))D~ e "t'':' ' y' ")c(t, y, ~1)dy de. 

An integration with respect to ~ completes the result. 
The next theorem is a corollary of  of  the Lemma and Theorem 1. 

Theorem 2. Let h(t, x, q) be the phase function Theorem 1 constructed in a 
neighborhood M of  the product of  Z(r) and a time interval T from s = r - ~  to r+e. 
Let b(s, x, 4) be a classical amplitude o f  order 1 supported in the outflow Z(s) o f  
a neighborhood N(O) o f  Z(O). I f  Z(O) and ~ are small enough, there are ampOtudes 
b(t, x, q) with conically compact supports for fixed t such that the oscillatory integral 

has the property that QJ is smooth. 

Note. Changing the variables x, q to x, r in the integral, we can write it as 

I(t, x) = f ~,:~a (t, x, ~) d4 

w h e r e f i s  the gauge and a is a classical amplitude of  order zero. It may not  be sup- 
ported in N(t). But this property which is desirable under repeated applications of  
Theorem 2 may be achieved. In fact, H6rmander 's  propagation of  singularities 
theorem shows that the wave front set of  the distribution t~I ( t ,  x) is contained 
in the outflow from s to t of  the intersection of  L(s) and the support of  a(s, x, 4) 
and hence is contained in N(t). Hence, if  we multiply a(t, x, 4) by a smooth zero 
order function supported in N(t) and equal to 1 close to the wave front set o f I ( t ,  x), 
this integral changes only by a smooth function. 

Proof. Suppose first that the amplitude b(t, x, q) is of  degree 0 and supported 
in N(t). Then, by the lemma above, QI(t, x) equals an oscillatory integral K(t, x) 
as above with amplitude b (t, x, q) with main term 

(ht + p(t, x, h~))bo(t, x, q) 
of  pure order 1 and a term 

(D,+ p~(t, x, hx)D~ + po(t, x, hx)) bo(t, x, q) 

of  pure order 0. Using Theorem 1, the integral o f  the term of  pure order 1, namely 

f e~nt"x'~)z(t, x, q)h~(t, x, q)dq 
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reduces by an integration by parts to 

-fein("x'")D.(z(t, x, r/))bo(t, x, 7)dr/ 

which is the integral of  a homogeneous amplitude of  pure order 0. Collecting terms 
and putting 

L ---- L(t,  x, el, Dt,Dx, D~) = Dt+pr x, hx)Dx--D,z(t ,  x, tl)+po(t, x, h,), 

we can make QJ(t, x) an oscillatory integral whose amplitude has order < 0  pro- 
vided bo(t, x, q) satisfies the equation 

Lbo(t, x, q) = O, 

and reduces to b(s, x, 7) at time s. 
The other terms are treated similarly. The result is a set of  equations 

Lbk(t, x, rl)+F(k, t, x, 7) = O, b_k = b_k(s, x, rl) when t = s, 

for the vanishing of  the amplitudes of  pure order k = 0 , - l , - 2  . . . .  o f  
QJ(t, x). Here the second term only depends on the previously computed terms 

b0, b_a . . . . .  bk+l. 
When solving the differential equations above, we do not get out of  the do- 

main of  definition of  the coordinates x, q provided that ~ and N(s) are small enough. 
Putting 

b(t, x, = Z (1 x, 

with Z infinitely differentiable with compact support and 1 close to the origing 
and ej tending to zero sufficiently fast (H6rmander [5], III, p. 66) completes the con- 
struction. 

Note. In the case s = 0 ,  b(y, t/)=l/(2z0" and h(O,y, q)=yq, we get I(0, y ) =  
6 (y) and our construction essentially reduces to that of  Lax [6]. Theorem 2 is a 
general version of  Lax's construction. 

The global parametrix 

It is now easy to construct a parametrix of  Cauchy's problem (2) of  the in- 
troduction. Consider instead o f  (2) a Cauchy problem 

QF(t, x) = O, F(O, y) = f eiy," a (11) dq 

where a(q) is a zero order amplitude with very small conical support N(0) around 
a given ray Z(0). By Theorem 1 and Theorem 2 there is a phase function h(t, x, q) 
and an amplitude b(t, x, 7) such that 

F(t, x) = I(t, x) = f e 'n'' x,,) b (t, x, ~l) dq 
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solves the problem for small times. Also, changing coordinates f rom x, r / t o  x, 
gives to I( t ,  x )  the form 

(5) i ( t ,  x) = f e ty(,' x, r a (t, x, ~) d~ 

where a(t, x, ~) is a classical amplitude which, by the note to Theorem 2, may be 
taken to supported in the outflow N ( t )  of  N(0). This works as long as the ~ variables 
parametrize the Lagrangian manifold L ( t )  in N( t ) .  But, close to such a point, say 
t = r ,  we can shrink N(0) and try to continue and, i f  this does not work, Theorem 2 
shows that  it is possible to shrink N(0) and switch space coordinates at Z ( r )  so 
that the first step can be repeated to times > r .  Hence, shrinking N(0) and repeatedly 
switching space coordinates, we can solve the problem (5) up to any time provided 
N(0) is close enough to Z(0). 

To  finish the construction of  a global parametrix,  we only need to cover R " \ 0  
by a finite number  of  neighborhoods o f  chosen rays which permit  solutions of  the 
corresponding Cauchy problems up to t ime T. I f  we make the initial amplitudes 
a0t)  add up to (2re) - "  for large q, the sum 

Z F(t, x) 
of  the corresponding solutions is a global parametrix.  
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