Closed ideals in the bidisc algebra

Håkan Hedenmalm¹

0.

Let **D** be the open unit disc in **C**, $\mathbf{T} = \partial \mathbf{D}$ the unit circle, and let $\mathbf{D}^n = \mathbf{D} \times ... \times \mathbf{D}$ be the *n*-dimensional unit polydisc. Let $H^{\infty}(\mathbf{D}^n)$ be the algebra of bounded analytic functions on \mathbf{D}^n , endowed with the uniform norm on \mathbf{D}^n . The polydisc algebra is the space $A(\mathbf{D}^n) = C(\overline{\mathbf{D}}^n) \cap H^{\infty}(\mathbf{D}^n)$, also given the uniform norm on \mathbf{D}^n . The spaces $A(\mathbf{D})$ and $A(\mathbf{D}^2)$ are known as the disc and bidisc algebras, respectively.

Let us introduce a weak-star topology on $H^{\infty}(\mathbf{D}^n)$. The space $L^{\infty}(\mathbf{T}^n)$ is the dual space of $L^1(\mathbf{T}^n)$, so it has a weak-star topology. One can think of $H^{\infty}(\mathbf{D}^n)$ as a subspace of $L^{\infty}(\mathbf{T}^n)$ via radial limits, and as such it is weak-star closed. We define the weak-star topology on $H^{\infty}(\mathbf{D}^n)$ by saying that a set $U \subset H^{\infty}(\mathbf{D}^n)$ is open if there is a weak-star open set $V \subset L^{\infty}(\mathbf{T}^n)$ with $U = V \cap H^{\infty}(\mathbf{D}^n)$.

For a collection \mathcal{F} of functions in $A(\mathbf{D}^n)$, associate the zero set

 $Z(\mathscr{F}) = \{z \in \overline{\mathbf{D}}^n : f(z) = 0 \text{ for all } f \in \mathscr{F}\},\$

and if $E \subset \overline{\mathbf{D}}^n$, introduce the closed ideal

$$\mathscr{I}(E) = \{ f \in A(\mathbf{D}^n) \colon f = 0 \text{ on } E \}.$$

In this paper, we will try to describe the closed ideals of the bidisc algebra. The result we obtain is the following. Every closed ideal I in the bidisc algebra $A(\mathbf{D}^2)$ has the form

$$I = \mathscr{I}(Z(I) \cap \mathbf{T}^{2})$$

$$\cap \{f \in A(\mathbf{D}^{2}): f(\alpha, \cdot) \in u_{\alpha}H^{\infty}(\mathbf{D}) \text{ and } f(\cdot, \alpha) \in v_{\alpha}H^{\infty}(\mathbf{D}) \text{ for all } a \in \mathbf{T}\}$$

$$\cap [I]_{w^{*}},$$

where u_{α} and v_{α} are inner functions in $H^{\infty}(\mathbf{D})$ for each $\alpha \in \mathbf{T}$, and $[I]_{w^*}$ is the weakstar closure of I in $H^{\infty}(\mathbf{D}^2)$. It is easy to see that $[I]_{w^*}$ is a (weak-star closed) ideal

¹ This research was supported by the National Science Foundation (NSF).

in $H^{\infty}(\mathbf{D}^2)$. Unfortunately, there is no concrete description of the weak-star closed in $H^{\infty}(\mathbf{D}^2)$.

The above description of the closed ideals in $A(\mathbf{D}^2)$ can be generalized to $A(\mathbf{D}^n)$. The result is the following, which we mention without proof. For $\alpha \in \overline{\mathbf{D}}$ and $1 \leq j \leq n$, let $\mathscr{R}_{j,\alpha}$: $A(\mathbf{D}^n) \rightarrow A(\mathbf{D}^{n-1})$ be the restriction operator

$$\mathscr{R}_{j,\alpha}f(z_1,...,z_n) = f(z_1,...,z_{j-1},\alpha,z_{j+1},...,z_n), f \in A(\mathbf{D}^n).$$

Every closed ideal in $A(\mathbf{D}^n)$ has the form

$$I = \{f \in A(\mathbf{D}^n) \colon \mathscr{R}_{j,\alpha} f \in \mathscr{R}_{j,\alpha} I \text{ for all } 1 \leq j \leq n \text{ and } \alpha \in \mathbf{T}\} \cap [I]_{w^*},$$

where $[I]_{w^*}$ is the weak-star closure of I in $H^{\infty}(\mathbf{D}^n)$. Also, $\mathcal{R}_{j,\alpha}I$ is a closed ideal in $A(\mathbf{D}^{n-1})$ for all $1 \leq j \leq n$ and $\alpha \in \mathbf{T}$. For the unit ball in \mathbf{C}^n , the author has obtained a corresponding result, with much less effort [Hed].

1.

Let λ be arc length measure on **T**, normalized so that $\lambda(\mathbf{T})=1$, and set $\lambda_n = \lambda \times ... \times \lambda$ (*n*-times), which is the *n*-dimensional volume measure on **T**ⁿ, normalized so that $\lambda_n(\mathbf{T}^n)=1$. Let $M(\mathbf{T}^n)$ be the space of finite Borel measures on **T**ⁿ. We may regard $M(\mathbf{T}^n)$ as the dual space of $C(\mathbf{T}^n)$ via the dual action

$$\langle f, \mu \rangle = \int_{\mathbf{T}^n} f \, d\mu, \quad f \in C(\mathbf{T}^n), \quad \mu \in M(\mathbf{T}^n).$$

We will write $f\mu$ for the Borel measure with $d(f\mu)=fd\mu$.

A representing measure for 0 is a Borel probability measure on T^n such that

$$f(0) = \int_{\mathbf{T}^n} f \, d\varrho, \quad f \in A(\mathbf{D}^n).$$

We will denote by $M_0(\mathbf{T}^n)$ the convex set of representing measures for the origin. A measure $\varrho \in M_0(\mathbf{T}^n)$ is a Jensen measure if

$$\log |f(0)| \leq \int_{\mathbf{T}^n} \log |f| \, d\varrho, \quad f \in A(\mathbf{D}^n).$$

A band of measures \mathscr{B} on \mathbf{T}^n is a closed subspace of $M(\mathbf{T}^n)$ such that if $\mu \in \mathscr{B}, v \in M(\mathbf{T}^n)$, and v is absolutely continuous with respect to μ , then $v \in \mathscr{B}$. We shall need some results on measures that annihilate $A(\mathbf{D}^2)$. Let

- (1) \mathscr{B}_0 be the band generated by the representing measures at 0;
- (2) ℬ₁ be the band generated by measures μ∈A(D²)[⊥] such that μ is carried by a set E×T, where E is a Borel set with arc length zero;
- (3) 𝔅₂ be the band generated by measures μ∈A(D²)[⊥] such that μ is carried by a set T×E, where E is a Borel set with arc length zero;
- (4) \mathscr{B}_s be the band of measures singular to all the measures in \mathscr{B}_0 , \mathscr{B}_1 , and \mathscr{B}_2 .

Remark 2.1. The band \mathscr{B}_0 consists of those measures which are absolutely continuous with respect to some representing measure for 0.

The following result was obtained by Brian Cole in the early 1970's (see [Gam, pp. 143-146], [Bek]).

Theorem 2.2. Every measure $\mu \in M(\mathbf{T}^2)$ has a unique decomposition

$$\mu = \mu_0 + \mu_1 + \mu_2 + \mu_s,$$

where $\mu_0 \in \mathscr{B}_0$, $\mu_1 \in \mathscr{B}_1$, $\mu_2 \in \mathscr{B}_2$, and $\mu_s \in \mathscr{B}_s$. If $\mu \in A(\mathbf{D}^2)^{\perp}$, then $\mu_s = 0$, and $\mu_0, \mu_1, \mu_2 \in A(\mathbf{D}^2)^{\perp}$; moreover,

$$d\mu_1(z_1, z_2) = g(z_1, z_2) d\sigma(z_1) d\lambda(z_2),$$

$$d\mu_2(z_1, z_2) = h(z_1, z_2) d\lambda(z_1) d\tau(z_2),$$

where σ and τ are two Borel probability measures on **T** carried by a set of zero arc length, $g \in L^1(\sigma \times \lambda)$, $h \in L^1(\lambda \times \tau)$, and $g(\alpha, \cdot)$, $h(\cdot, \alpha) \in H_0^1(\mathbf{T})$ for every $\alpha \in \mathbf{T}$. Here, $H_0^1(\mathbf{T})$ is the restriction to **T** of the functions in $H_0^1(\mathbf{D}) = \{f \in H^1(\mathbf{D}): f(0) = 0\}$, where $H^1(\mathbf{D})$ is the usual Hardy space on the disc.

We shall need the following related lemma.

Lemma 2.3. A measure $g \cdot (\sigma \times \lambda)$, where σ is a singular Borel probability measure on **T**, and $g \in L^1(\sigma \times \lambda)$, annihilates $A(\mathbf{D}^2)$ if and only if $g(\alpha, \cdot) \in H_0^1(\mathbf{T})$ for σ -almost all $\alpha \in \mathbf{T}$.

Proof. If $g(\alpha, \cdot) \in H_0^1(\mathbf{T})$, then if $f \in A(\mathbf{D}^2)$, we have

$$\int_{\mathbf{T}^2} f(z_1, z_2) g(z_1, z_2) \, d\sigma(z_1) \, d\lambda(z_2) = \int_{\mathbf{T}^2} f(z_1, z_2) g(z_1, z_2) \, d\lambda(z_2) \, d\sigma(z_1) = 0,$$

so that $g \cdot (\sigma \times \lambda) \perp A(\mathbf{D}^2)$. If, on the other hand, $g \cdot (\sigma \times \lambda) \perp A(\mathbf{D}^2)$, we have for integers $n, m \ge 0$,

$$\int_{\mathbf{T}^2} z_1^n z_2^m g(z_1, z_2) \, d\lambda(z_2) \, d\sigma(z_1) = 0,$$

Håkan Hedenmalm

from which we can conclude, since σ is singular to λ , that

$$\int_{\mathbf{T}} z_2^m g(z_1, z_2) \, d\lambda(z_2) = 0$$

for σ -almost every $z_1 \in \mathbf{T}$. It follows that $g(z_1, \cdot) \in H_0^1(\mathbf{T})$ for σ -almost every $z_1 \in \mathbf{T}$.

A sequence $\{f_j\}_{j=1}^{\infty}$ of functions in $A(\mathbf{D}^2)$ is said to be a *Montel sequence* if $\sup_j ||f_j|| < \infty$ and $f_j(z) \to 0$ as $j \to \infty$ for every $z \in \mathbf{D}^2$. Following G. M. Henkin [Hen], we say that a measure $\mu \in M(\mathbf{T}^2)$ is an *A-measure* if

$$\int_{\mathbf{T}^2} f_j \, d\mu \to 0 \quad \text{as} \quad j \to \infty$$

for every Montel sequence $\{f_j\}_{j=1}^{\infty}$. Observe that this definition does not agree with that of Bekken [Bek]. Also observe that the *A*-measures form a closed subspace of $M(\mathbf{T}^2)$. The proof of the following theorem is identical to that of Valskii's theorem in [Rud, p. 187].

Theorem 2.4. If $\mu \in M(\mathbf{T}^2)$ is an A-measure, then there exist $\nu \in A(\mathbf{D}^2)^{\perp}$ and $g \in L^1(\lambda_2) = L^1(\mathbf{T}^2)$ such that $\mu = \nu + g\lambda_2$.

The following result is a reformulation of Corollary 3.3 in [Bek].

Theorem 2.5. For a measure $\mu \in M(\mathbf{T}^2)$, the following are equivalent:

- (a) $\mu \in \mathscr{B}_0$, that is, μ is absolutely continuous with respect to some representing measure for 0,
- (b) every $v \in M(T^2)$ with $v \ll \mu$ is an A-measure.

In other words, \mathscr{B}_0 is the biggest band contained within the set of A-measures.

On the other hand, the smallest band containing the A-measures is $\mathscr{B}_0 \oplus \mathscr{B}_1 \oplus \mathscr{B}_2$. We now state our main result.

Theorem 2.6. Every closed ideal I in $A(D^2)$ has the form

$$I = \mathscr{I}(Z(I) \cap \mathbf{T}^{2})$$

$$\cap \{f \in A(\mathbf{D}^{2}): f(\alpha, \cdot) \in u_{\alpha}H^{\infty}(\mathbf{D}) \text{ and } f(\cdot, \alpha) \in v_{\alpha}H^{\infty}(\mathbf{D}) \text{ for all } \alpha \in \mathbf{T}\}$$

$$\cap [I]_{w^{*}},$$

where u_{α} , $v_{\alpha} \in \mathcal{U} \cup \{0\}$ for each $\alpha \in \mathbf{T}$, and $[I]_{w^*}$ is the weak-star closure of I in $H^{\infty}(\mathbf{D}^2)$. Here, \mathcal{U} denotes the collection of inner functions in $H^{\infty}(\mathbf{D})$.

Proof. For $\alpha \in \mathbf{T}$, let $I(\alpha, \cdot)$ and $I(\cdot, \alpha)$ denote the ideals $\{f(\alpha, \cdot) \in A(\mathbf{D}): f \in I\}$ and $\{f(\cdot, \alpha): f \in I\}$, respectively; observe that these ideals are closed in $A(\mathbf{D})$ because $\{\alpha\} \times \overline{\mathbf{D}}$ and $\overline{\mathbf{D}} \times \{\alpha\}$ are peak sets for the bidisc algebra. Consider the weak-star closure of $I(\alpha, \cdot)$ in $H^{\infty}(\mathbf{D})$. By the well-known description of the weakstar closed ideals in $H^{\infty}(\mathbf{D})$ [Gar, p. 85], it has the form $u_{\alpha}H^{\infty}(\mathbf{D})$, where u_{α} is either an inner function in $H^{\infty}(\mathbf{D})$, or vanishes identically on D. This determines the func-

114

tions u_{α} up to unimodular constant factors. These are the u_{α} 's mentioned in the theorem. The functions v_{α} are defined similarly. Observe that with this choice of u_{α} and v_{α} we have

$$I \subset \mathscr{I}(Z(I) \cap \mathbf{T}^2)$$

$$\cap \{f \in A(\mathbf{D}^2): f(\alpha, \cdot) \in u_{\alpha} H^{\infty}(\mathbf{D}) \text{ and } f(\cdot, \alpha) \in v_{\alpha} H^{\infty}(\mathbf{D}) \text{ for all } \alpha \in \mathbf{T} \}$$

$$\cap [I]_{w^*},$$

so what remains to be shown is the reverse inclusion.

Let $\varphi \in A(\mathbf{D}^2)^*$ annihilate *I*. By the Hahn—Banach theorem, there is a measure $\mu \in M(\mathbf{T}^2)$ such that

$$\langle f, \varphi \rangle = \langle f, \mu \rangle = \int_{\mathbf{S}_n} f \, d\mu, \quad f \in A(\mathbf{D}^2);$$

then $\mu \perp I$. If we can show that

$$\mu \perp \mathscr{I}(Z(I) \cap \mathbf{T}^2)$$

$$\cap \{f \in A(\mathbf{D}^2): f(\alpha, \cdot) \in u_{\alpha}H^{\infty}(\mathbf{D}) \text{ and } f(\cdot, \alpha) \in v_{\alpha}H^{\infty}(\mathbf{D}) \text{ for all } \alpha \in \mathbf{T}\}$$

$$\cap [I]_{w^*},$$

the assertion will follow, again by the Hahn-Banach theorem. By Theorem 2.2,

$$\mu = \mu_0 + \mu_1 + \mu_2 + \mu_s,$$

where $\mu_0 \in \mathscr{B}_0$, $\mu_1 \in \mathscr{B}_1$, $\mu_2 \in \mathscr{B}_2$, and $\mu_s \in \mathscr{B}_s$. We intend to show that $\mu_0 \perp [I]_{w^*} \cap A(\mathbf{D}^2)$, $\mu_s \perp \mathscr{I}(Z(I) \cap \mathbf{T}^2)$,

$$\mu_1 \perp \{ f \in \mathscr{I}(Z(I) \cap \mathbf{T}^2) \colon f(\alpha, \cdot) \in u_{\alpha} H^{\infty}(\mathbf{D}) \text{ for all } \alpha \in \mathbf{T} \},\$$

and

$$\mu_2 \perp \{ f \in \mathscr{I}(Z(I) \cap \mathbf{T}^2) \colon f(\cdot, \alpha) \in v_{\alpha} H^{\infty}(\mathbf{D}) \text{ for all } \alpha \in \mathbf{T} \}.$$

Let $f \in I$ be arbitrary. Then $f \mu \perp A(\mathbf{D}^2)$, and

 $f\mu = f\mu_0 + f\mu_1 + f\mu_2 + f\mu_s \in \mathscr{B}_0 \oplus \mathscr{B}_1 \oplus \mathscr{B}_2 \oplus \mathscr{B}_s$

is the unique decomposition of $f\mu$. By Theorem 2.2, $f\mu_s=0$, and $f\mu_j \in A(\mathbf{D}^2)^{\perp}$ for j=0, 1, 2. It follows that μ_s is supported on $Z(f) \cap \mathbf{T}^2$, and by varying $f \in I$, we realize that μ_s is supported on $Z(I) \cap \mathbf{T}^2$, so that $\mu_s \perp \mathscr{I}(Z(I) \cap \mathbf{T}^2)$; we also get $\mu_j \perp I$ for j=0, 1, 2. We will now show that $\mu_0 \perp [I]_{w^*} \cap A(\mathbf{D}^2)$. By Theorem 2.5, μ_0 is an A-measure, so that by Theorem 2.4, $\mu_0 = v + \varphi \lambda_2$, where $v \in A(\mathbf{D}^2)^{\perp}$ and $\varphi \in L^1(\lambda_2)$. Since $\mu_0 \perp I$, we also have $\varphi \lambda_2 \perp I$. Now $\varphi \lambda_2 \perp [I]_{w^*}$, because $\varphi \lambda_2$ is in the predual of $L^{\infty}(\mathbf{T}^2)$, so we get $\mu_0 \perp [I]_{w^*} \cap A(\mathbf{D}^2)$. It remains for us to show that μ_1 annihilates

$$I_{u} = \{ f \in \mathscr{I}(Z(I) \cap \mathbf{T}^{2}) \colon f(\alpha, \cdot) \in u_{\alpha} H^{\infty}(\mathbf{D}) \text{ for all } \alpha \in \mathbf{T} \};$$

the verification process for the related assertion concerning μ_2 is identical. The measure μ_1 has a decomposition $\mu_1 = \mu_1^a + \mu_1^b$, where μ_1^b is supported on the set $Z(I) \cap T^2$, and $|\mu_1^a| (Z(I) \cap T^2) = 0$. Since μ_1^b annihilates $\mathscr{I}(Z(I) \cap T^2)$ and $\mu_1 \perp I$, we obtain

 $\mu_1^a \perp I$. If we can show that $\mu_1^a \perp I_u$, the assertion $\mu_1 \perp I_u$ follows. In what follows, we shall write μ_1 instead of μ_1^a . Just as before, let $f \in I$ be arbitrary. By Theorem 2.2, $f\mu_1$ has the form

$$f(z_1, z_2) d\mu_1(z_1, z_2) = g_f(z_1, z_2) d\sigma_f(z_1) d\lambda(z_2),$$

where σ_f is a Borel probability measure on T carried by a (Borel) set E_f of arc length $0, g_f \in L^1(\sigma_f \times \lambda)$, and $g_f(\alpha, \cdot) \in H_0^1(T)$ for all $\alpha \in T$; we use subscripts on σ and g to indicate that they may depend on f. We will now show that we can choose σ independently of f. Since $A(\mathbf{D}^2)$ is a separable Banach space, the closed subspace I is separable as well, which means that I has a countable dense subset \mathcal{F} . Let $\{\varepsilon_f\}_{f \in \mathcal{F}}$ be a sequence such that $\varepsilon_f > 0$ for all $f \in \mathcal{F}$ and $\sum_{f \in \mathcal{F}} \varepsilon_f = 1$. Moreover, let σ be the Borel probability measure $\sigma = \sum_{f \in \mathcal{F}} \varepsilon_f \sigma_f$, which is carried by the Borel set $\bigcup_{f \in \mathcal{F}} E_f$, which has arc length 0. Then $f\mu_1 \ll \sigma \times \lambda$ if $f \in \mathcal{F}$, so that

$$f(z_1, z_2) d\mu_1(z_1, z_2) = G_f(z_1, z_2) d\sigma(z_1) d\lambda(z_2),$$

where $G_f \in L^1(\sigma \times \lambda)$. We conclude that

$$\mu_1|_{\mathbf{T}^2 \setminus \mathbf{Z}(f)} = (G_f/f)(\sigma \times \lambda)|_{\mathbf{T}^2 \setminus \mathbf{Z}(f)}$$

for every $f \in \mathscr{F}$, so that in particular, $G_f/f \in L^1(\mathbb{T}^2 \setminus Z(f), \sigma \times \lambda)$, and two quotients G_{f_1}/f_1 and G_{f_2}/f_2 , where $f_1, f_2 \in \mathscr{F}$, are equal $\sigma \times \lambda$ -almost everywhere on $\mathbb{T}^2 \setminus (Z(f_1) \cup Z(f_2))$. Since \mathscr{F} was countable, this means that we can find a Borel measurable function Φ on \mathbb{T}^2 , which is 0 on $Z(\mathscr{F}) \cap \mathbb{T}^2(Z(\mathscr{F}) = Z(I))$ because \mathscr{F} is dense in I), and for every $f \in \mathscr{F}$, equals $G_f/f \sigma \times \lambda$ -almost everywhere on $\mathbb{T}^2 \setminus Z(f)$. From the estimate

$$\int_{\mathbf{T}^2 \setminus \mathbf{Z}(f)} |G_f|/f| \, d(\sigma \times \lambda) \leq |\mu_1|(\mathbf{T}^2)$$

and Lebesgue's monotone convergence theorem, it follows that $\Phi \in L^1(\sigma \times \lambda)$; in fact,

$$\|\Phi\|_{L^1(\sigma\times\lambda)}=|\mu_1|(\mathbf{T}^2\backslash Z(I))=|\mu_1|(\mathbf{T}^2).$$

Moreover, since $|\mu_1|(Z(I) \cap T^2) = 0$, we have

If $f \in I$, we get

$$f\mu_1 = \Phi f(\sigma \times \lambda) \in A(\mathbf{D}^2)^{\perp},$$

 $\mu_1 = \Phi(\sigma \times \lambda).$

so by Lemma 2.3, it follows that $(\Phi f)(\alpha, \cdot) \in H_0^1(\mathbf{T})$ for σ -almost every $\alpha \in \mathbf{T}$. Since $\Phi \in L^1(\sigma \times \lambda)$, we have $\Phi(\alpha, \cdot) \in L^1(\lambda)$ for σ -almost all $\alpha \in \mathbf{T}$. Let $\alpha \in \mathbf{T}$ be such that $\Phi(\alpha, \cdot) \in L^1(\lambda)$ and $(\Phi f)(\alpha, \cdot) \in H_0^1(\mathbf{T})$ for every $f \in \mathscr{F}$; observe that the collection of such α has full σ -measure. Then $\Phi(\alpha, \cdot) \lambda \perp f(\alpha, \cdot) H^{\infty}(\mathbf{T})$ for every $f \in \mathscr{F}$, where $H^{\infty}(\mathbf{T})$ is the restriction to \mathbf{T} of the space $H^{\infty}(\mathbf{D})$, and since \mathscr{F} was dense in I and $\Phi(\alpha, \cdot) \in L^1(\mathbf{T})$, we find that $\Phi(\alpha, \cdot) \lambda$ annihilates the weak-star closure $u_{\alpha}H^{\infty}(\mathbf{T})$ of $I(\alpha, \cdot)$ in $H^{\infty}(\mathbf{T})$, so that

 $u_{\alpha}\Phi(\alpha, \cdot)\in H_0^1(\mathbf{T}).$

Now let $\varphi \in I_u$ be arbitrary. Since $\varphi(\alpha, \cdot) \in u_{\alpha} H^{\infty}(\mathbf{T})$, we have

 $\varphi(\alpha, \cdot) \Phi(\alpha, \cdot) \in H^1_0(\mathbf{T}),$

and because this happens for σ -almost every $\alpha \in \mathbf{T}$, Lemma 2.3 says that

$$\varphi \mu_1 = (\varphi \Phi)(\sigma \times \lambda) \in A(\mathbf{D}^2)^{\perp}.$$

In particular, $\mu_1 \perp \varphi$, and the assertion $\mu_1 \perp I_{\mu}$ follows. The proof is complete.

Let us make the following observation. It has some implications concerning the choice of u_a 's and v_a 's in Theorem 2.6.

Proposition 2.7. Let $f \in A(\mathbf{D}^2)$, and assume $f(\alpha, \cdot) \in uH^{\infty}(\mathbf{D})$ for all $\alpha \in E$, where u is an inner function in $H^{\infty}(\mathbf{D})$, and E is a subset of T. If $\lambda(\overline{E}) > 0$, then $f(\alpha, \cdot) \in uH^{\infty}(\mathbf{D})$ for all $\alpha \in \mathbf{T}$.

Proof. Let $\mu \in M(\mathbf{T})$ be such that $\mu \perp u H^{\infty}(\mathbf{D}) \cap A(\mathbf{D})$, and introduce the function $F_{\mu}: \overline{\mathbf{D}} \to \mathbf{C}$ defined by the relation

$$F_{\mu}(\alpha) = \langle f(\alpha, \cdot), \mu \rangle, \quad \alpha \in \overline{\mathbf{D}}$$

Now because $f \in A(\mathbf{D}^2)$, it is easy to see that $F_{\mu} \in A(\mathbf{D})$. By assumption, $F_{\mu} = 0$ on E, and by continuity on \overline{E} , and since $\lambda(\overline{E}) > 0$, we may conclude that $F_{\mu} = 0$ on all of $\overline{\mathbf{D}}$. If we vary μ and apply the Hahn—Banach theorem, the assertion follows.

References

- [Bek] BEKKEN, O. B., Rational approximation on product sets, Trans. Amer. Math. Soc. 191 (1974), 301-316.
- [Gam] GAMELIN, T. W., Uniform algebras on plane sets, in G. G. Lorentz (ed.), Approximation Theory, Academic Press, New York, 1973.

[Gar] GARNETT, J. B., Bounded analytic functions, Academic Press, New York, 1981.

[Hed] HEDENMALM, H., Closed ideals in the ball algebra, Bull. London Math. Soc. 21 (1989), 469-474.

[Hen] HENKIN, G. M., Banach spaces of analytic functions on the ball and on the bicylinder are not isomorphic, *Functional Anal. Appl.* 2 (1968), 334-341.

[Rud] RUDIN, W., Function theory in the unit ball of Cⁿ, Springer-Verlag, New York-Berlin, 1980.

Received January 19, 1989

H. Hedenmalm Department of Mathematics Uppsala University Thunbergsvägen 3 S-752 38 Uppsala Sweden