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. 

Let D be the open unit disc in C, T = 0 D  the unit circle, and let D " = D X  ... •  
be the n-dimensional unit polydisc. Let H ~ (D") be the algebra of  bounded analytic 
functions on D", endowed with the uniform norm on D". The polydisc algebra is the 
space A(D")=C(D")nH~'(D"), also given the uniform norm on D". The spaces 
A(D) and A(D 2) are known as the disc and bidisc algebras, respectively. 

Let us introduce a weak-star topology on H =  (D"). The space L ~* (T") is the dual 
space of  LI(T"), so it has a weak-star topology. One can think of  H*~(D ") as a sub- 
space of  L = (T") via radial limits, and as such it is weak-star closed. We define the 
weak-star topology on H = ( D  ") by saying that a set U c H ~ ( D  ") is open i f  there 
is a weak-star open set V c L ~ ( T  ") with U= VnH~ (D"). 

For  a collection ~" o f  functions in A(D"), associate the zero set 

Z ( ~  r) = {zED": f(z) = 0 for all f E ~ } ,  

and if  E c ~ " ,  introduce the closed ideal 

J ( e )  = {fEa(Dn): f =  0 on E}. 

In this paper, we will try to describe the closed ideals o f  the bidisc algebra. 
The result we obtain is the following. Every closed ideal I in the bidisc algebra A (D ~) 
has the form 

I = J(Z(I)  n T')  

( 'I{fEA(Da): f(a, -)Eu, H*O(D) and f ( . ,a)Ev,  H*O(D) for all aET} 

n [I]w,, 
where u, and v, are inner functions in H**(D) for each ~ET, and [I]w* is the weak- 
star closure of  I in H~* (D~). It is easy to see that [I]w* is a (weak-star closed) ideal 
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in H = (D2). Unfortunately, there is no concrete description of  the weak-star closed 
in H ~176 (D~). 

The above description of  the closed ideals in A(D 2) can be generalized to A(D"). 
The result is the following, which we mention without proof. For c~ED and 1 -<]=<n, 
let ~j,~: A(D")~A(D "-x) be the restriction operator 

~ j , , f ( z l ,  ..., z,) = f ( z l ,  ..., zi_~, ~, zj+l . . . . .  z,), fEA(D"). 

Every closed ideal in A(D") has the form 

I =  {fEA(D"): ~ ' j , , f E ~ j . , l  for all 1 _<-j <= n and cr 

where [I]w. is the weak-star closure of  I in H~ Also, ~ . , I  is a closed ideal in 
A(D "-1) for all 1 <=j<=n and ~ET. For the unit ball in C", the author has obtained 
a corresponding result, with much less effort [Hed]. 

. 

Let A be arc length measure on T, normalized so that 2(1")=1, and set 2,-- 
2X. . .  •  (n-times), which is the n-dimensional volume measure on T", normalized 
so that 2 , ( I " )=  I. Let M(T") be the space of  finite Borel measures on I" .  We may 
regard M(T") as the dual space of  C(T") via the dual action 

( f ,  tt) -= f T ,  f d l l ,  fEC(T"),  gEM(T"). 

We will write f#  for the Borel measure with d( f t t )=fd t t .  
A representing measure for 0 is a Borel probability measure on I "  such that 

f(O) = fx , ,  f d e "  f E A  (D"). 

We will denote by Mo(T") the convex set of  representing measures for the origin. 
A measure QEM0(T" ) is a Jensen measure if  

log If(0)l ~-- fx. log Ifl de, fEA(D"). 

A band o f  measures ~ on 17" is a closed subspace of  M(T") such that if  ktE~, vEM(T"), 
and v is absolutely continuous with respect to #, then vE~. 
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. 

We shall need some results on measures that annihilate A(D2). Let 
(1) d0 be the band generated by the representing measures at 0; 
(2) d~ be the band generated by measures #EA(D2) • such that/2 is carried by a 

set EXT, where E is a Borel set with arc length zero; 
(3) dz be the band generated by measures /2EA(D~) • such that/2 is carried by a set 

T •  where E is a Borel set with arc length zero; 
(4) d ,  be the band of  measures singular to all the measures in d0, d~, and d2. 

Remark 2.1. The band do consists of those measures which are absolutely 
continuous with respect to some representing measure for 0. 

The following result was obtained by Brian Cole in the early 1970's (see [Gam, 
pp. 143--14@ [Bek]). 

Theorem 2.2. Every measure /2EM(T 2) has a unique decomposition 

12 : /20-}-/2l-~-/22-~-/2s, 

where /2oEdo, /21E,~1, /22~d~,  and /2sEd s. I f  /2EA(D2) • then /A=0, and 
/2o,/21,/2aEA(D~) • ; moreover, 

d/2~ (z~, z2) = g (zl, zz) dtr (z~) d2 (zz), 

a/2 (zl, = h (zl ,  d ,  

where a and �9 are two Borel probability measures on T carried by a set of  zero arc 
length, gELI(~• hEL1(2• and g(cq .), h ( . ,  ct)EHol(T) for every ~ET. Here, 
H0~(T) is the restriction to T of the functions in H~o(D)={fE HI(D): f(0)=0}, where 
Hi(D) is the usual Hardy space on the disc. 

We shall need the following related lemma. 

Lemma 2.3. A measure g.  (aX2), where a is a singular Borel probability meas- 
ure on T, and gELl(trX2), annihilates A(D ~) /f  and only i f  g(~, .)EHol(T) for 
a-almost all ~E T. 

Proof. If g(ct, .)EHol(T), then if fEA(D2), we have 

f x* f(zx, z2)g(zl, Z2) da(zl) d2(z,) = f T' f ( z l ,  z,)g(zl, zz) d2(z,) da(zx) = O, 

so that g.(a• If, on the other hand, g.(a• we have for 
integers n, m_->0, 

f r, z~ z'~ g(zl, z2) d2(zz) da(Zl) = O, 
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from which we can conclude, since a is singular to 2, that 

f T z rg(z l ,  d; (z2) = o 

for a-almost every zlET. It follows that g(zl, .)EHoa(T) for a-almost every 
zlET. 

A sequence {f~})o=~ of functions in A(D 2) is said to be a Montel sequence if 
sup1 I]f/][<~ and f/(z)-~0 as j ~ o  for every zED ~. Following G. M. Henkin 
[Hen], we say that a measure pEM(T 2) is an A-measure if 

f . r~ f Jd#~O as j ~  

for every Montel sequence {fJ}~=a. Observe that this definition does not agree 
with that of Bekken [Bek]. Also observe that the A-measures form a closed sub- 
space of M(T~). The proof of the following theorem is identical to that of Valskii's 
theorem in [Rud, p. 187]. 

Theorem 2.4. I f  pEM(T "~ is an A-measure, then there exist yEA(D2) • and 
gE La(22)=L~(T 2) such that #=v+g2~. 

The following result is a reformulation of Corollary 3.3 in [Bek]. 

Theorem 2.5. For a measure #EM(T2), the following are equivalent: 
(a) #EN0, that is, # is absolutely continuous with respect to some representing meas- 

ure for O, 
(b) every vEM(T 2) with v<<# is an A-measure. 

In other words, N0 is the biggest band contained within the set of A-measures. 
On the other hand, the smallest band containing the A-measures is N0@N~@N~. 

We now state our main result. 

Theorem 2.6. Every closed ideal I in A (D ~) has the form 

z = J ( z ( i )  

N{fEA(D2): f(~, .)Eu, H=(D) and f ( . , ~ )Ev ,  g~(D) for all ~ET} 
N [~]~,, 

where u,, v,E allw {0} for each ~E T, and [I]~, is the weak-star closure of I in H~ (D2). 
Here, oil denotes the collection of inner functions in H ~ (D). 

Proof. For ~ET, let I(~, -) and I ( . ,  ~) denote the ideals {f(~, . )EA(D):fEI} 
and { f ( . , e ) :  fEI}, respectively; observe that these ideals are closed in A(D) 
because {e}• and D• are peak sets for the bidisc algebra. Consider the 
weak-star closure of I(e, �9 ) in H = (D). By the well-known description of the weak- 
star closed ideals in H=(D) [Gar, p. 85], it has the form u,H ~ (D), where u, is either 
an inner function in H~~ or vanishes identically on D. This determines the func- 
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tions u~ up to unimodular constant factors. These are the u,'s mentioned in the 
theorem. The functions v, are defined similarly. Observe that with this choice of u, 
and v~ we have 

I ~  J (Z(1 )  n T ~) 

n {fEA(I)2): f(~, .)Eu~H~(D) and f ( . ,  ~)Ev~H~(I)) for all ~ET} 

N[IL,,  

so what remains to be shown is the reverse inclusion. 
Let ~pEA(D2) * annihilate I. By the Hahn--Banach theorem, there is a meas- 

ure /tEM(T 2) such that 

<f, ~o> = <f, /t> = f~~  f d/t, fEA(D2); 

then /t_k I. If we can show that 

/t_l_ J ( Z ( I )  N T ~ ) 

N{fEA(D2): f(~,-)Eu~H~(D) and f(.,ot)Ev~H~(D) for all ~ET} 

n [I]~., 

the assertion will follow, again by the Hahn--Banach theorem. By Theorem 2.2, 

/t ----/to+/q+/t2+/t~, 

where / t0E~o,/t lE~l,/ tzE~, and /tsE~. We intend to show that/t0-L [I]~, n A(D2), 
/t~ / J ( Z ( I )  n T2), 

/t~_L { fEJ(Z(I )nT~):  f(~, .)Eu~H~(D) for all ~ET}, 
and 

/t~_c ( fEJ(z(I )~T~):  f ( . ,  ~)C~n-(I))  for all ~ET}. 

Let fEI  be arbitrary. Then f/t_LA(D~), and 

f/t = f/t0 +f/t~ +fro +f/t~E ~0 �9 ~1 �9 ~ �9 ~ 
is the unique decomposition off/t. By Theorem 2.2, f/t~=0, and f / t i~A(D~) "L for 
j = 0 ,  1, 2. It follows that/t~ is supported on Z ( f ) n T  2, and by varying fEI,  we 
realize that/t~ is supported on Z ( I ) n T  2, so that / t ~ / J (Z ( / )nT2) ;  we also get 
/ ts&I for j = 0 ,  1, 2. We will now show that /toA_[I]w.nA(D~). By Theorem 2.5, 
/to is an A-measure, so that by Theorem 2.4, /to=V+cp22, where vEA(D~) • and 
cpEL~()~). Since /to_L/, we also have r Now r because r is 
in the predual of L'(T2), so we get /t0A_[I]w, nA(D2). It remains for us to show 
that/t~ annihilates 

I, = { fEJ(Z(I )nX~):  f(o~, .)Eu~H~(D) for all ~ET}; 

the verification process for the related assertion concerning/t~ is identical. The meas- 
_ _  a b ure/tt has a decomposition /t~-/t~+/t~, where/t~ is supported on the set Z ( I ) n T  2, 

and [/~](Z(/)nT~)=0. Since/t[ annihilates J ( Z ( / ) n T  2) and /tt_l_I, we obtain 
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. f ~ /. #1-1- �9 I f  we can show that #1-1- ~, the assertion /q 1 I u follows. In what follows, 
we shall write/zl instead of#~. Just as before, let fEI  be arbitrary. By Theorem 2.2, 
f/11 has the form 

f (zl ,  z2) d~l (Zl, 22) =- g f (z1, Z2) da f(z1) d,~(z2), 

where a I is a Borel probability measure on T carried by a (Borel) set E s of  arc length 
O, giEZl(af)'(.~.), and gI(a,  -)EH~(T) for all aET; we use subscripts on a and 
g to indicate that they may depend on f .  We will now show that we can choose a 
independently o f f .  Since A(D 2) is a separable Banach space, the closed subspace ! 
is separable as well, which means that I has a countable dense subset ~ .  Let {el}I~ s~ 
be a sequence such that ~ i>0  for all fEo~ and Z ~ , ~ s ~ i = l .  Moreover, let a 
be the Borel probability measure a = ~ ' i ~ e l a l ,  which is carried by the Borel set 
U s a g E s ,  which has arc length 0. Then f# l<<a•  if  fEo~, so that 

f (zl ,  z2) dpl (zl, z2) : G I (Zl, z2) d a  (-71) d,i (z2) , 

where Gj-ED(aXA). We conclude that 

~llT,\zcs~ = (G.r/f) (a • 

for every fE~ ' ,  so that in particular, Gy/fELI(TZ',,.Z(f), aN2), and two quotients 
Gs,/f~ and Gj./f2, where f~,fzE~-, are equal aN,t-almost everywhere on 
T~',,,(Z(fOuZ(f,)). Since ~- was countable, this means that we can find a Borel 
measurable function q~ on T ~, which is 0 on Z ( ~ ) n T 2 ( Z ( ~ ) = Z ( I )  because ~- is 
dense in I), and for every fE o~, equals G I / f  a • everywhere on T~,, .Z(f).  
From the estimate 

fT".,z(r) IGs/fl d(a•  <= I~I(T 2) 

and Lebesgue's monotone convergence theorem, it follows that CE Ll(a  • in fact, 

[I ~IIL~(, • x) ---- I#11 (Tz' \Z(I))  = I~11 (T~). 

Moreover, since I /hl(Z(/)nT2)=0,  we have 

I f  fEI, we get 
~1 = I ~ ( O ' X , I )  �9 

fl,1 = ~ f ( a  x A)E A (i)2)~, 

so by Lemma 2.3, it follows that (~f)(a ,  .)EHo~(T) for a-almost every aET. 
Since ~ELI(aX2) ,  we have ~(a, .)ELl(2) for a-almost all aET. Let aET be 
such that ~(a,  . )ELl( i )  and (~f)(a,  .)EH0~(T) for every f E f f ;  observe that 
the collection of  such a has full a-measure. Then ~ (a, �9 ) 2 I f ( a ,  �9 ) H** (T) for every 
f E S ,  where H**(T) is the restriction to T of  the space H'(D) ,  and since ~" was 
dense in I and r  .)ELl(T), we find that r .),i annihilates the weak-star 
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closure u~H~*(T) of  I(~, �9 ) in H~*(T), so that 

u,~(~,  �9 )c H0~(a3. 

Now let q~El, be arbitrary. Since ~p(~, .)Eu, H~*(T), we have 

rp(a, �9 )~ (a ,  �9 )EH~(T), 

and because this happens for a-almost  every aET, Lemma 2.3 says that 

~ 1  = (~o~) (a • Z)E A (D2) • 

In particular, #l•  and the assertion #l_kI ,  follows. The p roof  is complete. 
Let us make the following observation. It  has some implications concerning the 

choice of  u~'s and v,'s in Theorem 2.6. 

Proposition 2.7. Let  fEA(D2), and assume f ( a ,  . )EuH~' (D)  f o r  all aEE, 

where u is an inner funct ion in H = ( D ) ,  and E is a subset o f  T. I f  2 ( E ) > 0 ,  then 

f(ct, .)EuH~*(D) f b r  all c~ET. 

Proof. Let #EM(T)  be such that #_t_uH**(D)caA(D), and introduce the 

function Fz: D---C defined by the relation 

F~,(a) = <f(a, �9 ), it), otED. 

Now because lEA(D2), it is easy to see that F.EA(D). By assumption, F . = 0  on 
E, and by continuity on E, and since 2 ( E ) > 0 ,  we may conclude that  F~=0  on 
all o f  ~ .  I f  we vary tt and apply the Hahn- -Banach  theorem, the assertion follows. 
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