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Branched projective and affine structures on compact Riemann surfaces of  
genus g > l  were first constructed by Mandelbaum [8]. More recently, elliptic 
functions have been used [9] to construct branched projective structures on an 
arbitrary compact Riemann surface M of  genus g =  1. In this case, it has been 
shown that each projective structure with unique arbitrary branch point PEM 
of fixed ramification order # E Z + - { 1 }  is represented by a 2-connection of  the 

1 -- /~ 
form ~0a(z)= 2 ga (z - rc - l (P) )+2 ,  2EC, where ga(z)is  the Weierstrassfunc- 

tion [10] for the universal covering group G of  M and ~: C-~M is the universal 
covering map. Furthermore, it is known [2] that the branched local coordinates for 
each structure are the 0ocally meromorphic) ratios of  linearly independent solu- 
tions to the equation 

(1) . _  ~0, y -t---~- y = 0. 

It should be noted that i f  

(2) G = {To.,.)(z ) = z+m+nv,  V(m, n)EZ• fixed z3Im(z) >0},  

then Eq. (1) is a Hill's equation [7] with primitive periods 1 and �9 and, in particular, 
is a Lam6's equation in Weierstrassian form. 

In this paper, we use the spectral theory of Hill's equation in conjunction with 
results on projective and affme structures found in [5], [6], [8] and [9] to further 
classify the branched projective and affme structures on a compact torus M having 
modulus vEiR +. The reader is referred to [8] and [9] lbr detailed definitions of  
branched affine and projective structures and their associated divisors and con- 
nections and for preliminary results concerning these structures on surfaces of  
genus one. 

Recall that Eq. (1) (and, in fact, any Hill's equation whose coefficient, excluding 
2, is real-valued on some horizontal line in C) has discriminant function A (2) with 
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corresponding characteristic roots 2 satisfying A(2)= •  The double roots o f  
A (2)= __+2 correspond to coexisting solutions y~ ( i= 1, 2) of  Eq. (1), i.e., solutions 
both of  period 1 or 2; the simple roots are precisely all the endpoints of  instability 
intervals for Equation (1). 

We now proceed with a detailed description of  our findings. 

Lemma 1. The general Larn~'s equation 

(3) y"(x) + [2 - m (m + 1) k s sn 2 (x)] y (x) = 0, 

with k2E(0, 1), m E R - { 0 ,  - 1 }  and 2EC, can have coexisting solutions i f  and only 
i f  the coefficient set {~oa[2EC } (for fixed m) of  its Weierstrassian form Y"(z)+ 
(~o,(z)/2)Y(z)=O (obtained by the substitution x=(el--ea z) is the 1-(complex)- 
parameter family o f  2-connections for all projective structures having unique branch 
point =(Zo) of  odd integer ramification order # = 2 m + l E { 3 ,  5, ...}, i f  m > 0 ,  or 
# = 2 1 m l - l E { 3 , 5  . . . .  }, i f  m < 0 ,  on an arbitrary compact torus M=C/G with 
modulus zEiR +, where G is given by (2), z0=z/2 and x is defined as earlier. 

Proof. The change of  variables Y(z)=yO/e~-ea z), where e,=go (1/2), ea--- 
go (z/2) and go (z) is the Weierstrass function for G, transforms equation (3)into 
the equation 

1 -  2 

where 2"=2(el-ez)+m(m+l)e a and # = 2 m + l  if m -> - (1/2) or # = 2 1 m [ - 1  if 
m -< -(1/2) .  Lemmas 0 and 2 and Theorem 2 of  [9] imply that the functions q~z(z)= 
1 _ # 2  

- - ~ g o ( z - z 0 ) + 2 ,  V2EC and fixed #E{3,5 . . . .  }, form a 1-(complex)-parameter 

family of  2-connections for the class of  all projective structures on M having a 
single branch point u(z0) of  ramification order #. Also, the locally meromorphic 
ratios f ( z ) =  Yl(z)/Y2(z) of  linearly independent solutions to the differential equa- 
tions Y"(z)+(~px(z)/2)Y(z)=0 are branched local coordinates associated with these 
structures. Hence, each equation (3) is naturally associated with a projective struc- 
ture as specified in the statement of  the Lemma iff either 2m+lE{3 ,  5 . . . .  } or 
2 [ml - lE{3 ,  5 . . . .  } or, equivalently, iff m E Z - { 0 ,  -1} .  The condition zEiR + im- 
plies that sn2(x) (and m(m+l)k2sn2(x))ER if xER. In this case a theorem of  
Erd61yi [7] asserts that equation (3) can have coexisting solutions for some 2EC iff 
m E Z - { 0 ,  -1} ,  thus completing the proof  of  the Lemma. | 

Remark. For arbitrary PEM, a translation of  C gives the equation rc(z0)=P. 
Hence, Lemma 1 implies that each equation (3) with M E Z - { 0 ,  1} is associated 
with a projective structure having an arbitrary fixed branch point on M. 
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T h e o r e m  1. Let M be any compact torus with modulus zEiR + and let 
#E{3, 5 . . . .  } and PE M be fixed. Each projective structure on M with unique branch 
point P of  ramification order # must have at least one subordinate affine structure. 
Furthermore, for each given projective structure, the number of  subordinate affine 
structures is one i f  the parameter 2 in the associated LamO's equation (3) is one o f  the (It) 
endpoints o f  instability intervals for this equation, is two i f  2EC-{2[A(2)=_+2} 
and is either one or two i f  2 is a value for which coexisting solutions o f  equation (3) 
exist. 

ProoJ~ For each ItE{3, 5 . . . .  } and 2EC, the branched projective structure 
described in Lemma 1 has branched local coordinates with global analytic con- 
tinuation f(z)(=Y~(z)/Y2(z)) satisfying foA(z)=-~(A)of(z)  VAEG [2], where 
~h: G ~ M 6 b  is the monodromy homomorphism for Eq. (4). In particular, it is 
known [5] that ~O is conjugate in M6b to a homomorphism ?: G---M6b of exactly 
one of the following forms: 

(A) 7(Ai)(w) = a~w with a~EC*, i = I, 2, 

(B) ?(Ai)(w) = w+b i with biEC, i = 1,2, 

(C) ?(A,)(w) ( -  1)i-1 - - - ,  i - - -  1 , 2 ,  
w 

where AI=T(1,0) and Az=T(0,1) are generators for G. Therefore, we may assume 
without loss of generality that Eq. (4) has monodromy homomorphism ? and mono- 
dromy group ?(G). In (C), ?(G)=Dz and 7(G) is not conjugate in M6b to any 
affine group. In that case the ratio f of linearly independent solutions to Eq. (4) is 
doubly periodic with primitive periods 2 and 2-c. Furthermore, a classical result 
[1] implies that Yl(Z)=(f '(z))  -~/~ and Yz(z)=f(z)( f ' (z))  -~/2 are linearly inde- 
pendent doubly periodic solutions of Eq. (4) with primitive periods 4 and 4~. How- 
ever, Lam6's equation with m E Z - { 0 , - 1 }  or, equivalently, with #E{3, 5 . . . .  }, 
cannot have two independent doubly periodic solutions [11]. Therefore, ? is of  
form (A) or (B), ? (G) is affme and each projective structure considered in Theorem 1 
has at least one subordinate affine structure. An argument in the proof of  Theorem 4 
of  [6] establishes that any branched projective structure having a subordinate affme 
structure must have only one or two subordinate affme structures. 

A theorem of Erd61yi [7] implies that Eqs. (3) and (4) have m+ 1 intervals of 
instability if mEZ + or [m[ intervals of instability if m E Z - - { - 1 ) .  Lemma 1 
implies that these intervals have # endpoints, excluding the endpoint 2=2"=-_co 
of the zeroth interval. The condition zEiR + implies that these endpoints and 
intervals (for Eqs. (3) and (4)) are on the real axis. Floquet's theorem implies that: 

(1) If 2' (respectively, 2) is an endpoint of an instability interval for Eq. (4) 
(resp., Eq. (3)), then there exists a ratio f of linearly independent solutions which 
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is nontrivially additive for the period 1 and hence has monodromy homomorphism 
y of  form (B). 

(2) If 2 'EC-{2 ' IA(2 ' )=•  then there exists such a ratio of solutions f 
which is nontrivially multiplicative for the period 1 and hence has monodromy 
homomorphism 7 of form (A). 

(3) If 2' is such that coexistence occurs, then there exists such a ratio f which 
is trivially multiplicative (multiplier= 1) for the period 1 ; in this casefcan  be multi- 
plicative or additive for the period z and 7 is of form (A) or (B). 

If ~ is a nontrivial homomorphism of form (B) and ~ is conjugate in M6b to 
~: G~GA(1, C) (the general affine group of dimension one), then oo is the only 
fixed point of all nontrivial elements in ~(G) or ~7(G). Consequently, y and ~7 are 
conjugate in GA(1, C). Hence, there is exactly one subordinate affme structure if 
2" (respectively, 2) is an endpoint of an instability interval for Eq. (4) (resp., Eq. (3)) 
or is a coexistence value for which ~ is a nontrivial homomorphism of form (B) 
(if any such 2' exists). 

If  7 is of form (A), then the homomorphism ~7 defined by y(A)=Do~(A)oD -1 
V AEG, where D(w)=I/w, satisfies 

~(Ai)(w) = aVXw, i = 1, 2. 

Furthermore, the divisor (df)e of zeroes and poles of df in  a fixed fundamental set 
F for G is an invariant for each affme structure on M and satisfies deg (d f )v=2g-2 ,  
where g is the genus of M (see [8] and [9]). Also, the unique branch point n(z0)=P 
of each branched aft-me structure in Theorem 1 must be nonpolar, otherwise 
deg (df)e<O=2g-2.  Consequently, (df)v=(/~-  1 ) z 0 - 2 ~ = l  zl, where z~ are the 

simple poles o f f  in F, d e g ( d f ) e = # - l - 2 n = O ,  n = / ~ - 1  =>1 and f has simple 
2 

pole(s) in F. f and f = D o f  determine the same projective structure on M and f 
has monodromy homomorphism ~. However, (df)vr v since D ( ~ ) r  and 
f has pole(s) in F. Thus, f and f determine inequivalent affme structures on M. 
Hence, there are two subordinate affine structures if 2" (respectively, 2)EC-{the 
endpoints of instability intervals for Eq. (4) (resp., Eq. (3))}-{coexistence value(s) 
2" (resp., 2) for which V is a nontrivial homomorphism of form (B)}. I 

Corollary 1. There is a natural 1 -1  correspondence between the set of  affine 
structures on M having unique branch point P o f  fixed ramification order PE {3, 5 . . . .  } 

# - 1  
and a singly punctured hyperelliptic Riemann surface of  genus g>= (i.e., g>=m 
i f  m>O). 2 

Proof. If 21 . . . . .  2. are the endpoints of the intervals of instability for Eq. (3) 
and ~k are the points (if any) for which coexistence occurs with nontrivial mono- 
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dromy homomorphism (B), then the algebraic curve 

w ~ = ( t - 2 0  ... ( t - 2 . ) ( t - ~ 0  ... 

determines a hyperelliptic surface )9 /of  genus g=> p -  1 and a degree two map 
2 

t: 3 1 ~  having branch points t-~(;t,), i=1 . . . . .  /~, and t-l(~k), Vk, and branch 
point or accumulation point of branch points t-l(~'). Lemma 1 and Theorem 1 
together imply the existence of the commutative diagram 

)~r_ {t-l(~)} ' . C(= {2 in Eq. (3)}) 

affine structures / [ pr~ structures/ 
for Eq. (3), V2EC, ~ ~ ~for Fq. (3), V2EC, ~ 
fixed m E z - { o , - 1 } l  [f ixed m E Z - { O , - 1 } /  

containing the desired correspondence h (or h-l). ] 

Corollary 2. The monodromy group ~ (G) o f  any projective structure on M with 
unique branch point P of  ramification order #E{3, 5 . . . .  } is C** xC.~, C.. or C~. •  
(nEZ+-{1}). 

Proof. As in the proof of Theorem 1, 7(G) has generators either of form (A) 
or of form (B). The nonexistence of a basis of doubly periodic solutions to Lam6's 
equation for mEZ-{0 ,  -1}  implies that the constants ai, i=  1, 2, in (A) are not 
both roots of unity and that the constants bi, i=  1, 2, in (B) are not both zero. 
The conclusion follows from group theory. I 

In the next theorem P has even ramification order. 

Theorem 2. Let M be defined as in Theorem 1 and let #E{2, 4 . . . .  } and PE M 
be fixed. Each projective structure on M with unique branch point P of  ramification 

# - 1 ~ 1  ~,+ ~+ 
order # is associated with a Lamd's equation (3) satisfying m = - - - - ~ - ~  ~ - ~  , 

i f  re>O, or m= p + l  1 { 1 1  -~E~Z--Z--2 - , i f  m<O, aswel las  A(2)=0 and 

having a basis o f  linearly independent solutions with primitive periods 4 t/ el - e3 and 

4~ l/e---~ - e3. Also, 
# 

0 <= card {2EC[~ a projective structure on M associated with Eq. (3)} ~_ ~ .  

Proof. Lemma 2 of [9] implies that each projective structure having unique 
branch point PEM of ramification order #E{2, 4 . . . .  } is represented by a 2-con- 
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nection for G of the form ~pz,(z)= 1-/~2 ga (Z-Zo)+).', where 2'E C and n(z0)= P. 
2 

An argument analogous to part of the proof of  Lemma 1 establishes that for each 
1 

q~, there is an associated Lam6's equation (3) with m = ~t- 2 2 E Z + - Z  + if m > 0  

or with m - - -  2 E ~ Z - - Z - -  - ~ -  if m<0. Furthermore, Theorem3 of 

[9] implies that the monodromy homomorphism is of form (C). This observation 
and an argument in the proof of Theorem 1 together guarantee that all nontrivial 
solutions to the associated equation (3) (respectively, associated equation (4)) have 

primitive periods 4~/el--e3 and 4T~/~-e3 (resp., 4 and 4z). Consequently, 
Floquet's theorem implies that A(2)=A(2')=0 for these equations. For each 
#E{2,4 .... }, the proof of Theorem2 of [9] implies that the set I.={~/ECk0~, 
represents a projective structure on M} is C or satisfies card (I.)N/~/2. Therefore, 
the countability of the set {~.'ECIA(2')=0} for each Eq. (4) implies that I . r  
and card (I.)~/~/2. The observation that card (I ,)= card {2E C I 3 a projective struc- 
ture on M associated with Eq. (3)} completes the proof. I 

m E y Z - Z - { - ~ }  and A(2) r  then the monodromy group Corollary 3. I f  a 1 

of Eq. (3) (and of Eq. (4)) is an infinite, non-Abelian group. 

Proof. Eq. (3) is associated with a 2-connection ~Pz, with /rE{2, 4 . . . .  }. How- 
ever, Theorem 2 and the condition A (2)~0 together imply that Eq. (3) (respec- 
tively, Eq. (4)) does not have an associated projective structure on M and therefore 
does have a locally multivalued r a t i o f o f  linearly independent solutions in a neigh- 

borhood of the singular point I/el - e-----~ z0 (resp., z0). In fact, the roots of the indicial 
1+_# 1 

equation for Eq. (4) at z0 are ~ - z , - Z  and the local multivaluedness of f 

is caused by a logarithmic term [3]. Thus, we obtain the identity f(Az)=7(A)of(z), 
wheref(Az) represents the result of analytic continuation of f around a small, simple 
loop A enclosing z 0 and where 7(A) is a parabolic element of M6b. Furthermore, 
A is homotopic on M-{n(Zo)} to A1A2A;IA; 1, where A i, i=1 ,2 ,  are the 
canonical cross cuts on M. Also, the monodromy group of Eq. (4) is generated 
by 7(A~)(=7(Ag)), i=1,  2, with 7(A) satisfying 

7 (A) = 7 (A~ A.~ Ai- ~A~- 1) : ~ (a 0 o ? (A2) o (7 (1t0)-1 o (? (A2))-~. 

Therefore, 7(A) is an infinite-order generator for the first commutator subgroup 
of  the monodromy group and the monodromy group is an infinite, non-Abelian 

group. I 
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