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1. Introduction and preliminaries 

The topological space S is assumed to be locally compact, which means that 
whenever sEG, where G ~  S is open, there is a compact K and an open G' such 
that sEG'C_KC_G. Write f# and ~/" for the collections of open and compact sub- 
sets of  S, resp. Le t /deno te  some compact interval on the extended real line [_~o, ~],  
e.g. I = [ - ~ ,  0]. The topology o n / i s  the usual one generated by the sets ln[ - , ,~ ,  x) 
and In(y ,  co] for x, yEI. 

We say a function g: S -~ I is upper semicon tinuous provided { sE S: g (s) < x} E (~ 
for all xEL It is a nice exercise to show that this holds if, and only if, the hypograph 

hypo (g) = {(x, s)EI• x ~ g(s)} 

is closed in the product topology of  IX S (cf. Vervaat 0988)). Clearly two distinct 
functions cannot have the same hypograph. Write ~ ( S ,  I)  for the family of  upper 
semicontinuous functions from S to I. 

Vervaat's sup vague topology on o~(S, I)  is the coarsest topology containing 
the two families 

(la) {{gE~-(S,I):  g ( s ) <  x for all sEK}, 
and 
(lb) {{gEo~(S, I);  g(s) > x for some sEG}, GEf~, xE I}. 

Endowed with the sup vague topology, ~ ( S ,  I)  is a compact Hausdorff space. 
Our aim with this short note is to give a nonstandard proof of  this fact. Its main 
step is a characterization of  the standard part map. 

Standard proofs can be found in Vervaat (1988), Gerritse (1985) and, for Haus- 
dorff S, Norberg (1986). 

We continue with some remarks on topology. We write B ~ for the interior of  
Bc=S. Moreover, B is called saturated i f B  equals its saturation, sat (B), which by 
definition is the intersection of  the open neighborhoods of B. 
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Clearly K ~ S  is compact if, and only if, sat (K) is so. Thus, if sEGE~q, then 
sEK~ for some saturated KE~.  Similarly, if  g E ~ ( S ,  I)  satisfies g( s )<x  
for all sEKE~, then g ( s ) < x  for all sEsat(K). Thus, in (la) we may replace X" 
by the collection .~ of compact and saturated subsets of S. It is easily seen that .~ 
and X" coincide if S is Hausdorff. 

We conclude this introduction with some remarks on our nonstandard setting. 
Let N =  {1,2 . . . .  }. We work in a polysaturated enlargement of a superstructure con- 
taining S u I u N  (see Lindstrom's article p. 83 in Cutland (1988) or Stroyan & Bayod 
(1986), Section 0.4). The associated monomorphism satisfying the transfer principle 
is denoted *. The members of S u I u N  are treated as individuals in the super- 
structure, so we write a instead of  *a when a E S u l u N .  

The article by Lindstrom in Cutland (1988) is a short introduction to non- 
standard analysis. Our main reference to nonstandard analysis is however Hurd & 
Loeb (1985), but see also Albeverio, Fenstad, Hoegh-Krohn & Lindstrom (1986) 
and Stroyan & Bayod (1986). 

Assume, momentarily, that S is an arbitrary topological space. The set 

re(s) =n{*G"  sEGE~} ~ *S 

is called the monad of sES and we say that tE*S is near standard if tern (s) for 
some sE S. 

Note that S is a Hausdorff space if, and only if, monads of  distinct points in 
S are disjoint and that K ~  S is compact if, and only if, every tE*K is near stand- 
ard. The latter result is Abraham Robinson's nonstandard characterization of com- 
pactness. (For proofs, see Hurd & Loeb (1985), Proposition II1.1.12 and Theo- 
rem 1II.2.1.) 

2. The compactness theorem 

Let hE*~-(S, I). Then, by the transfer principle, h is a mapping from *S 
into *L We let/~ be the unique member of i f ( S ,  I)  satisfying the equivalence 

(2) x <= [~(s) ~:~ 3yEm(x)  3tEm(s): y ~ h(t) 

for xEI and sE S. 
To see that/~ exists and is unique, write 

H = {(y, t)E*I• y <= h(t)} 
and note that the set 

= {(x, s)EI>(S: m ( x ) > ( m ( s ) n H  #- 0} 

is closed in the product topology on I •  (Hurd & Loeb (1985), Theorem III.1.22). 
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If (x, s)EH and y<-x, then (y, s)EH as the reader easily shows. Thus H is the 
hypograph of a unique upper semicontinuous function from S into L 

2.1. Example. Assume hE*~-(R,I) is increasing (R denotes the real line 
( - ~ ,  ~)). Then ~ is increasing and right continuous. 

To see this, let s< t  and take x<-h(s). Then, for some JTEm (x) and gem (s), 
~<-h(g). If uEm (t), then u>g so we must have ~<=h(g)<=h(u). But then x<-h(t). 
Thus h is increasing. Now right continuity follows because ~ is upper semicontinuous. 

Fix sER and let 
x -- S - l i m  h(O. 

tr 

Recall from Stroyan & Bayod (1986), p. 170, that, this means that xER and that, 
for some uEm (s), we have h(v)Em (x) whenever vEm (s), v>=u. It is clear that 
x<=h(s) since h(u)Em(x) and uEm(s). If x<y<=h(s), then y<_-h(g) for some 
)TErn(y) and gEm(s). But then h(g)~m (x), so we must have g<u. This implies 
h(g)<=h(u). Thus fi<-h(u) and we reach the contradiction h(u)~m (x). We con- 
clude that 

h(s) = S - l imh( t ) ,  sER. [] 
tis 

Our first result characterizes the monad of gEm'(S, I). 

2.2. Theorem. Let hE*~(S,  I)  and gEt-(S,  I). Then hem (g) /f, and only 
if, ~=g. 

Our proof of Theorem 2.2 uses the following lemma, whose proof is a routine 
exercise. Thus omitted. 

2.3. Lemma. Assume hem (g). Let KE.~, GE~ and xEL Then the following 
two implications hold true: 

(3a) VsEK: g(s) < x =* VsE*K: h(s) < x, 
and 

(3b) 3sEG: g(s) > x=* 3sE*G: h(s) > x. 

Conversely, hEm(g) tf  these implications are true for all choices of  KE-~, GE~ 
and xE L 

Proof o f  Theorem 2.2. Firstly, suppose hem (g). Fix sES. Take xEL x<g(s) ,  
and let (G~) be the filter of open neighborhoods of s. By (3b), 

{t~*u,: x < h(O} ~ 0 
for all i. By polysaturation, 

N, (tE*6,: x < h(O} ~ O. 



142 Tommy Norberg 

Thus x<h(t) for some tENi*Gi=m(s). But then x<~f~(s). Next, take xEI, 
x>g(s). Choose KE.~, yEI such that sEK ~ and x>y>g(t)  for all tEK. By 
(3a), y>h(t) for all tE*K and in particular for all tern (s)C=*K~ But z>y 
for all zEro(x). Hence x>~(s) .  This shows that ]~=g. 

Conversely, suppose ~=g.  Take xEI, g(s)<x for all sEKE~. Fix tE*K. 
Then tErn(s) for some sEK. Now ]~(s)<x so h(u)<y for all uEm(s) and 
yEm (x). In particular h(t)<x. Thus (3a) holds true. To see (3b), let h(t)~_x 
for all tE*G, where GE(~. Fix sEG. If x<y, then h(u)<z for all uEm (s)C=*G 
and zero (y). Hence h(s)<y,  and fz(s)<=x follows. This shows (3b). By Lemma 3.2, 
hem (g). [] 

Now the main result of the paper is easy to prove. 

2.4. Theorem. The sup vague topology on ~ (S ,  I) is compact and Hausdorff. 

Proof. It follows from Theorem 2.2 that if hE*~(S,  I) then hem (/~), i.e., 
every member of *~(S ,  I) is near standard. By Robinson's theorem, #-(S, I) is 
compact. Theorem 2.2 also shows that if hem (gl)nm (g2), where g,, g~s I), 
then gx=f~=g~. Hence ~ ( S , I )  is a Hausdorffspace. [] 

2.5. Remarks. Endow the collection ~- of closed subsets of S with Fell's topology 
(&. Fell (1962)). This topology has the sets 

{FE~: F n K = 0 ,  F n G ~ O , . . . , F n G , ~ O } ,  

KEa, G1, ..., G, Ef#, 

as open base. Let HE*#'. Then 

/ t  = {sES: m ( s ) n H  : 0}E#-. 

(Hurd & Loeb (1985), Theorem lII.1.22). Let FE#-. Then H E m ( F )  if, and only 
if, /~--F. To see this, either proceed as in the proof of  Theorem 2.2 or identify FE #- 
with its characteristic function lvE#-(S, I) and use Theorem 2.2. We may con- 
clude, as in Theorem 2.4, the well-known fact proved by Fell (1962) that #- is a 
compact Hausdorff space. [] 

2.6. Remarks. Write f# (S, I) for the collection of all lower semicontinuous 
functions from S into L If hE*(#(S, I), we write/~ for the unique lower semicon- 
tinuous function from S into I satisfying 

~(s) <=x,~ 3yEm(x)~tEm(s): h(t) ~ y 
for xE1 and sE S. 

Endow ~(S, I) with the topology generated by all sets of the form 

{gEaJ(S, I): g(s) >- x for all sEK}, 
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where KE.~ and xEI, and all sets of the form 

{gEf#(S, I):  g(s) < x for some sEG}, 

where GEl# and xEL This is the analogue (or dual) of Vervaat's sup vague topology 
on ~ '(S,  I). 

Assume hE*(#(S, I) and let gE(#(S, I). Then hem (g), if, and only if, h=g.  
This follows by duality from Theorem 2.2. [] 

2.7. Remarks. Let ~(S,  I ) = ~ ' ( S ,  I ) n~ (S ,  I). We endow ~(S,  I) - -  the set 
of continuous functions from S into I - -  with the coarsest topology containing the 
relative topologies from both ~ ( S ,  I) and @(S, I). Let gE~(S, I). Write m c (g), 
m u (g) and m 1 (g) for the monads of g relative to the topologies of ~(S,  I), ~-(S, I) 
and @(S, I), resp. Then m e (g )=m u (g)nm I (g). It follows, e.g., that hE*~(S, I)  
is near standard if, and only if, h=h. 

In the case of a Hausdorff S, it is now easily seen that hEmc (g), if, and only 
if, h(t)Em (g(s)) whenever tErn(s). By Keisler (1984), Proposition 1.17, m e (g) 
is the monad of g taken with respect to the familiar compact-open topology gen- 
erated by all sets of the form 

{gE(~(S, I): g(K) ~ U}, 

where K E ~  and U ~ I  is open. Two distinct topologies cannot have the same 
monads (in a polysaturated enlargement, see Cutland (1988), p. 86). So the topology 
we have equipped ~(S,  I) with is the compact-open topology. Also this result is 
known. Refer to Vervaat (1981). [] 
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