
Local regularity of solutions to nonlinear 
Schr6dinger equations 

Per Sj61in 

In P. Sjfgren and P. Sj61in [4] we studied the regularity of  solutions to the 
Schr6dinger equation i O u ] O t = - P u + V u  in a half-space {(x, t)ER"• Here 
P is an elliptic self-adjoint constant-coefficient operator in x of order m=>2 and 
V = V ( x )  a real-valued potential. We assumed that VEC=(R ") and that D ' V  is 
bounded for every a, where D = ( D  1 . . . . .  19,) and Dk= --iO/Ox k. 

To state the results in [4] we introduce Sobolev spaces Hs=Hs(R") and mixed 
Sobolev spaces HQ,, for 0 ~ 0, r ~ 0. We set H~,, = HQ~, (R" • R) = (GQ | G,) .L ~ (R" + 1), 
where Ge and G, are Bessel kernels in R" and R, respectively. 

For fEL2(R ") we let u denote the solution to the above Schr6dinger equation 
with u(x, 0)=f(x). We also set 

~r there exists e>0  such that 

IO=r <= C=(l+Ixl) -a/2-" for every e} 
and 

Sf(x ,  t) = r t) 

where q~E~r and ~kECo(R ). The following result was proved in [4]. 

Theorem A. I f  0_->0, r=>0, then 

l[Sflln~,, <= C][f[ln~+.,r_r fESe, 

where the constant C depends on q~ and ~k. 

Theorem A expresses a local smoothing property for the Schr6dinger equation. 
Setting I=[0,  T], T>0,  we observe that it follows from the above estimate with 
r = 0  that 

H ouil,v; -<- c lIfll~ 
for Q =>--(m-- 1)/2. 

We shall here consider analogues of this estimate for solutions to the nonlinear 
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Schr6c~inger equation 
iOu/Ot=-Au+F(u),  t ~ O ,  xER". 

Our results are based on the work of  Kato [3] on this equation. 
We introduce some notation. We letp satisfy 1 <p<oo  for n =  1, 2 and 1 <p<:  

r for n=>3. Then set r=4(p+l ) / n (p -1 )  so that 2 < r < o o .  We write 
.0:(01 . . . . .  0,) where Oj---O/Oxj and se t  0 2 = ( O i O j ) n , j = X  . 

H s -  L~, and Bessel potential spaces are denoted L~, 1 ~ q < ~ ,  s=>0, so that _ 2 

we set Lq,~=L~(I; Lq(R")), l<:s_<-oo, l<--q<:oo. 
We assume FECI(R~), F complex-valued, F(0)=0,  and 

(1) [D'F(~)I <= Cl~[ p-1 for I~[ -> 1 and I~1 = 1. 

Then assume fEHI(R"). 
Kato [3] has proved that there exists a T ~ 0  such that the nonlinear Schr6- 

dinger equation 

(2) iOtu = --Au+ F(u), t >= O, xER n, 

has a unique solution uEC(I;H 0 with u ( 0 ) : f .  Also OuEL~(1;LP+I). Here A 
denotes the Laplace operator in the x-variable and F(u)(x, t)= F(u (x, t)). We shall 
first prove the following theorem. 

Theorem 1. Assume p and F are as above and let fEH~(R"), ~pE~. Let u denote 
the above solution to the equation (2). Then the following holds. 

In the case n = l  or 2 q~uEL2(I; H3/z) for l < p < o o .  
In the case 3_<-n_<-5 r L2(I; H3/,.) for l < p < p ~ ,  where 

n+4+ I/nZ + 24n+ 16 
Pl = 2n 

In the case n>-6 set 

fi(p)= p ( 3 - n ) + n + 3  
2 ( p + l )  

for l <-p<=(n+ l)/(n-1).  Then ~puE L2(I; H~(p)) for l <p<(n+ l)/(n-1).  

We remark that 2<p1<3  and pl<(n+2)/ (n-2)  for 3-<_n-<_5 and also that 
6(p) is a decreasing function o f p  on the interval [1, (n + 1)/(n-1)] with 6(1)=3/2 
and fi((n+ 1)/(n-  1)) = 1. 

Kato has also proved that if  u(O)=fEH2 then the solution u of  (2) belongs to 
C(I; H2). We shall prove the following result. 

Theorem 2. Assume that 1-<n<_-7 and that p and F are as above. Also assume 
that FEC2(R 2) and that ]D~F(~)l<=C[([max(p-2'~ for ]~[=>1 and ]~]=2. Assume 
that f E H  2 and q~Ed. Then the above solution u of  (2) satisfies ~ouEL~(I;//5/2) i f  
T > 0  is sufficiently small. 
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We remark that in' the case n=<3 Theo rem2  was essentially proveff by 
Constantin and Saut [2]. 

Following Kato~ introduce the following spaces:  

We also set 

Xo = L~'~ n 'L  p+I'~ 

X =  C(I; L q n g  p+~'" 

X = L~'~nL p+I'" 

X" = L2"l+L1+l/v'" 

Y = {vEX'; OvEYJ 
Y = {vEX; OvEX} 

Y ' =  {vEX'; • 

r0 = {v~x0;  Ov~Xo}. 

W = {vEX'; 0vEX, 0%EX}, 

W = {vEX; OYEZ, 02vEX} 
and 

W" = {vEX'; OvEX', 02vEX'}. 

The norms in these spaces are defined in the obvious way (cf. [3]). 
We shall need the following well-known estimates (Sobolev's theorem). 

Lemma. O) I f  l < p < q < o o ,  s>O and 1/q>=l/p-S/n then 

llfl[~ <-- C[IfliL~. 

(ii) I f  l < p < o ~ ,  p>n/k and k>=l then 

[Ifl[~ <= CIlfIILs 

Choose ~ E C o ( R  ~) so that ~b = 1 in a neighbourhood of  the origin. Set FI=~F 
and F ~ = ( 1 - - ~ ) F  so that 

F=F~+F2. 
We shall now prove the theorems. 

Proof of Theorem 1. According to the proof  of  Theorem I in [3], p. 120, we 
have uEY=Y i.e. u and 0uEX'. It follows that 

(3) uE C(I; L 2) n L p+l'r 

and 

(4) OuEC(I; L ~ ) n L  p+I''. 

According to Lemma 2.2 in [3] uE Y implies F(u)E Y' i.e. F(u)EX" and O(F(u))EX'. 
The proof  of  Lemma 2.2 really shows that 

(5) F~(u) and tg(F~(u))EL 2'1 
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and 
(6) 
Now 

([3], Lemma 1.1). With 

Hence 

F2(u) and O(F2(u))EL 1+1/p''. 

u( t )  e itn - i  t = f ei(t-*)aF(u(z)) dz 

q~Ed and s_->l we obtain 

I ] ~ o u ( t ) l l ~ .  < i ,~ ' 

T T 
II~oullL,(,;.~) <---- tl~e"afllL,(,, n~) + f ~ ( f  ~ ]l~e"n e-'F(u(v))llL dt) ~/~ d~. 

From SjSgren and Sj61in [4] it follows that 

II q~ullL,(i; n,) <- C II fI[ n,_l,, + c f l dt. 

it follows ttaat for 1<s_<-3/2 

q~uEL2(I; Hs) if F(u)ELI(I; Hs_i/2). 

1 < s - <  3/2) and it re- 

Since fE H1 

(7) 

We conclude from (5) that FI(u)ELI(I; Hs-~/z) (assuming 
mains to consider Fz(u). We shall use (6). We have 

(8) IIF (uO))ll,,,_o <- 
where 

n n 
1 - - - -  1 - - e - - -  

l + l / p  2 
([1], p. 153), and hence 

n(p - 1) 
e = e ( p ) - -  2 ( p + l ) "  

It follows from the conditions on p that 0 < ~ ( p ) < l  and hence F2(u)ELI(I; L 2) 
according to (6). We shall now estimate IlO(F2(u))Hz .... We write U=Ul+iu~ where 
uj real. If  u is smooth the chain rule yields 

OF~ or~ 
(9) aj (F~ (u)) = ~ (u) aj ux + ~ (u) Oj u2. 

Choose rPoECo(R" ) such that good0, f rpodx=l. Set cpAx)=e-"q~o(X/0 and 
Um(t)=q~l/m*(u(t)) , m=3,  4, 5 . . . . .  where . denotes convolution in R". Then (9) 
holds with u replaced by u,,. 

For  a.e. tEI we have (because of  (3) and (4)) 

(10) u(t)EL2c~L p+~ and Ou(t)ELZnZ p+I. 
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(11) 

and 

We fix a t such that (10) holds. To prove (9) we shall prove that 

F2(um(t)) ~ F2(u(t)), m ~ o% 

(12) 0F~ OF 2 Oxl (Um(t))OJum'l(t) ~ - '~ (u ( t ) )OJu l ( t ) '  m ~oo, 

in the sense of  distributions in R". In proving (11) and (12) we write u and u,. instead 
o f  u(t) and u,.(t). 

It is clear that F~(Um)~F2(u) a.e. in R" since u, ,~u a.e. Also 

IF~(um)l <- Cluml p <= C(Mu)',  

where Mu denotes the Hardy--Li t t lewood maximal function of  u. Then 
MuCLp+I(R") and hence (Mu)PCLI(B(O; R)) where B(0; R) denotes a ball in R". 
It is then clear that 

f ,,o;.) dx O. , .  or 9 

according to Lebesgue's theorem on dominated convergence (for every R > 0 )  and 
hence (11) follows. To prove (12) we observe that 

Of  2 (Um)Oj Ilm l = -~1  (Um)(q)l]m * (Oj Ul) ) "-+ ~ (U)Oj II 1 
OX 1 

a.e. and 

(Um)~ j Urn, 1 ~ C lumlP-lM(Oj ul) ~ C[M(lul  + 10ul)] ~. 

It then follows from (10) that [M(lul + IOul)]PELI(B(O, R)) and (12) follows from an 
application of  Lebesgue's theorem on dominated convergence as above. Hence (9) is 
proved and it follows that 

(13) 10(F2(u))l <- Clul~-llOul. 
Then define ~ by 2 / (p+  1)+ I / a =  1 so that ~ = ( p +  1) / (p-1) .  H61der's inequality 
yields 

f..lO(F (u))12dx <-_ c f , .  lul2,-,iOul2ax 

C ( L "  lil[(2P--2'~t dx)  lla ( L  n ]0UIP+I dx)2/(P+l'" 

Now ( 2 p - 2 ) e = 2 ( p + l )  and it follows that 

(14) II0(F (.))II, <-- Cliull~;~,llOull,+l, 
where the norms are taken over R" and we have written u instead of  u(t). It follows 
from (i) in the Lemma that 

(15) liull~,+2 -< C lIuHLr§ 
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i f  1/(2p + 2) => 1/(p + 1)- 1/n, which is equivalent to 

(16) 

Now assume 
that it holds for 
and (15) yields 

(17) 
Hence 

n 
p > ~ - - 1  

3=<n~5. Then (16) holds for n = 3  and 4 and we may also assume 
n = 5  by increasing p (since 5 / 2 - I < p l ) .  A combination of  (14) 

IIo(r=(u))ll= <= c lluN ,-,. 

and it follows from (3) and (4) that O(Fz(u))ELI(I; L 2) 
is equivalent to 

,% § 0, 

if p<=r. The last inequality 

(18) 

which holds since 
replace (17) with 

II 1I < c IIH U 2 p + 2  ~ U L12~ 

1/(2p+2)>-l/2-1/n according to the Lemma. We can then 

[]a(&(u))[l~ ~ Cllull~,7' ll~lI,~,~-, 
and it follows from (3) and (4) that c3(Fz(u))ELl(I; L2). 

It remains to study the case n>-6. Because of  (8) and (6) Fz(u)ELI(I; HI-~), 
where e = e (p) = n (p - 1)/2 (p + 1). According to (7) it then follows that 

~ouE L2(I; Ha/z-~) 

if  1<3/2-5<-3/2  i.e. 0=<s<l/2 and this holds for p<(n+l)/(n-1). It is easy to 
see that 3/2-e(p)=f(p) and the proof of  Theorem 1 is complete. 

Proof of Theorem 2. We first assume that l<=n=<5 and 2 < p < ~  for n=l, 2 
and 2<p<(n+2)/(n-2) for 3_<-n=<5. We set 

Gv(t) = f~ e i(t-~)4 v(s) ds. 

It then follows from Lemmas 1.2 and 2.1 in [3] that G is a bounded mapping from 
W'  to W c W  and that 

(19) llC~H~ ~- CIl,,nw, 

which is easily seen to hold for 1 <P<-Pl. This completes the proof of Theorem 1 in 
the case 3<_-n<_-5. 

In the case n = l  or 2 we replace (15) by the inequality 
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with C independent of T. We shall then prove that F maps W into W ' .  Therefore 
assume that u C W  i.e. 

(20) u, Ou, c32uE L 2'~ n L p+ I''. 

It follows from Lemma 2.2 in [3] that F maps Y into Y' and 

(21) [IF(v)llr <-- C ( T + r  1-" Ilv/i~ -a) ilvliy, 
where e = n ( 1 / 2 - 1 / ( p + l ) )  so that 0 < e < l .  Thus 

(22) II F(u)]lx, + Ila(f(u))llx, f i T  + ZX-= I1ui1r162 
It remains to study IIo=(fC.))llx,. 

Defining ul, uz and u,, as above we shall prove that 

(23) O, Oj(F(u))  OF ( O2F O2F = (u)Oiul + ~ (u)Oi u2] Oj ul (u) O, Oj . l  + (-g~xi ox~ax2 / 

OF 02F 02F 

This follows from the chain rule if  u is smooth and the general case follows from 
an approximation argument of  the type which led to (9). In fact, it is not hard to 
see that for instance 

F(um(t))-~ f ( u ( t ) ) ,  m ~ co, 

OF OF 
Oxl (Um(t))OiOjUm'l(t) ~ v..~--ff~-r (u(t))c)iOjul(t)'  m ~oo,  

and 
02F 02F 

(Um(t))OiOm l(t)OjUm 1(0 --~l (U(t))Oiul(t)OjUl(t), m ~ ,  Ox~ " " -" 

in the sense of  distributions in R" for a .e . t .  This can be proved using Lebesgue's 
theorem on dominated convergence and the fact that 

u(t), Ou(t), 02u(t)C L 2 ca L 9+1 

for a .e . t .  Similar convergence results hold for the other terms on the right-hand 
side of (23). We omit the details. 

From (23) we obtain 

(24) ]02(F(u))[ <= C(1 § p-a) IO~ul + C(1 +luV -z) t0ul 2 

= cl02ul +ClulP-~lO2ul +ClOul~+ClulP-21Oul 2 = A t § 2 4 7 2 4 7  

We have 

(25) ilAI~L,,. ---- C f ~  (JR- la~ul2 dx)  ~'~ at  <- CTII0'~II~,,- --< CrlI~H~. 
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Using H61der's inequality we also obtain 

fR-I&11+1/' dx = C ( f  R. luI(P-I)<P+I)/PIO2u?+VP dx) v" 

<- c ( fR .  I"l'+' dx)(p-1)/P (fR. 102Ul'+I dx)l/P : ClIulI(pP++lX'(P-"/v]la2uli(pP++ll)/" 

where we have written A= and u instead of  As(t) and u(t). We have 
1 /2-1 /n  and it follows that 

Jl<~+l < = CiIuiI~ 
and 

ilA2lll+l/p ~ Cl[ullv+tllO uli ,+l ~ CIiz/ ]]aaui]p+l . 

Invoking H61der's inequality we obtain 

f ,  II&llf+~/v dt <= C(ess/sup llull'dl)" f , lI0~uS'+, dt 

<= Cl[u!ii~-')" { f  , []0=ulI;+~ dt)"/'T I/q, 

where q is defined by r' /r+ 1/q= 1 so that q = ( r - 1 ) / ( r - 2 ) .  Hence 

(26) []A2IIL,+,/~,-' ~ C]]uHgv -ll[02ulir~+,,- Z 1/~" <- CZ 1-2/" ]Julia. 

To estimate A 3 we observe that 

Ii&ll~ = cliauil ,  ~. 

Then first assume p +  1 <4.  According to the Lemma we have 

if  1/4>=l/(p+l)--l/n i.e. 
p > 2  and n=<5. Hence 

]iaulI, -< c(lbOuiiL~,., + II0uh) 

and this inequality obviously holds also for p + 1 >4. Thus 

(27) 

and 

(28) 

[' li < c][Oull +, lOu ~ = L~ 

4n <- (p + 1) (n + 4). However, this inequality holds since 

where ~ = I - 2/r. 
We then have 

A4 <- Cu~ 

1/@+1)> 

ll&ti~ ~ c ( l lu l l~r ,  + Ii0uli~) 

f ,  , f ,  II&IIL,,, =< C I]UllL~.,dt+C l[Oull~dt 

<= C / f ~  I[ull~§ dt)~/" T' + C T M ~  <= CT'llull~ + CTilull~,, 
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where 

(29) 

since 

Uo = [ul + IOul. It is clear that 

IlUollL,+~, ~ ~ ClluIIw 
L ~ c L  v+~. We have 

f g ~  "41+~/" dx <- C f s ~  ug+lax 
and 

![&Iil+~/~ =< CIlu011g+~ 
and it follows that 

(L " }1,, (30) IlA, HL,+lJ,.~ =~ c IIuoIl~+l dt ~ Cllull~Tl/ ' ' .  

Combining (22), (25), (26), (28) and (30) we obtain 

llF(u)llw. <= CT llullw + c r  1-= [lulir + c r '  Ilul[~ + CT'  llul[~, + CT l] u lily + C T~-I/" Ilu[l~v. 

It follows that there exists a number fl, 0 < f l < l ,  such that 

(31) II F(u)[lw ~ CTP EUiiw + liul[~) 
for 0 < T < I .  

We introduce an operator Go by setting 

6 o f ( t )  = e,tafi 

It then follows from Lemma 2.1 in [3] that Go maps H2 into W and 

(32) llGof][w <= clTf][n2 
where C is independent of  T. 

Now fix fEH~ and set 

(33) ~(v) = G o f - i G f ( v ) ,  yEW. 

Combining (19) and (31) we obtain 

(34) [IGF(v)[]w <= C[[F(v)[Iw, ~ crP(l[V][w+ Hv][~v). 

Then set BR(W)={vEW;  ][V[tw<=R}. We choose R > I  and vEBR(W ) and 
then have 

I[~(v)ll,, <-- Cllfli , ,  + CT~ (Hvllw + [lvlI~) ~ cIIUIIn, + CTPRP. 

We choose R>CIIf l IH,  and then T so small that 

cllfIl~+ C T# Rp < R. 

It is then clear that 4~ maps BR(W ) into BR(W ). According to [3], p. 120, we 
also have 

H GF(v) - GF(w)H x -~ C(T+ T~-=R p-x) ][ v -Wllx <= d [Iv - Wlix, 
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(36) 

where 

where 0 < d < l ,  if  v and wEBR(W ) and T is small. It is not  hard to prove that 
BR(W) with the X-metric is a complete metric space and we have proved that ~ is 
a contraction on this space. The contraction theorem then implies that �9 has a 
fixed point uEW and we have u = ~ ( u ) E W .  It follows from Lemma 1.1 in [3] 
that u is a solution to the Schr6dinger equation (2) with u ( 0 ) = f  

We have to prove that qmEL~([; H5/2) and arguing as in the p roo f  of  Theo- 
rem 1 we see that it is sufficient to prove that F(u)EL~(I; H~). 

The argument in the proof  of  Theorem 1 shows that F(u) and O(FI(U))EL 2'1 
and to study O(F2(u)) we shall use (14). According to the Lemma we have 

(35) iiulh.+~ ~ Cliull~ 

i f  1/(2p+2)>=l/2--2/n, which is equivalent to 4p+4>=np. This inequality holds 
since n_<-5 and we obtain 

IlO(F~(u))ll2 <= C llulI~.~ a ]Iaulip+~. 

Invoking the facts that uEL=(I; L]) and OuEL p+~'' we conclude that O(F2(u))EL ~'x. 
It  remains to prove that ;)~(F(u))EL2'L As above we have 

[O=(F(u))] _-< A,+A~ + A~ §  

and 

A~ = C 102ul, 

A 2 = ClulP-ll(~'~zl], 

A3 = C]Oul ~, 

A~ = c I u l P - 2 1 O u l  2. 

It is clear from (25) and (28) that Aa and A3 belong to L 2'5. We have 

JR- IA2I" dx = C JR,  ]ul 2P-210" ul 2 dx 

and the argument which gave (14) now gives 

il&h ~ c lLuli~y-h I10~,4.+,. 
Invoking (35) we obtain 

l l & h  <= c l[ullff I [[02,,I[.+1 

and using the facts that uEL~(I;  L~) and 02uEL p+I'" we conclude that A2EL 2'1. 
It remains to study A4. We may assume that A,=CIulP-~IOuI2z when Z is the 

characteristic function of  the set where l ul > 1. We first assume 1 <= n ~  3. We have 
p +  1 ~ n  and the Lemma yields 

!l o iJ c l io  ii 'I r, -< -< Cluli L +1. u = = u L ~ + '  = 
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Hence we obtain 

fR A~dx = c fR" lul~'-~lOul~x ax <- C[lull'~e+,fR" lul~'-'z dx. 

The Lemma also implies ]lu][=<=C [lullL~ (since 2>n/2)  and setting q = m a x  (2, 2 p - 4 )  
we get 

fR. lul~-~z dx <= fR. lul~ dx <- c ( l lu ih+  [lulls) ~ = c . .  

It follows that 

= C.IIulIL~+, 

and since uELr(I;L~ +1) where r>2 ,  we obtain AaEL 2'1. 
In the case n = 4  or 5 we set 1/ql=l / (p+l)- l /n  and since p + l < n  we have 

q l < ~ .  The Lemma yields 
[lOull~ <- cllouilir+, 

and 

since n<=5. 

and 

n ( p + l )  3n 
~ ~ 4  

ql = n - p - 1  n - 3  

Defining s by 4/ql+l/s=l we obtain 

fR A~dX = C fR~ lul~'-'lOul'x ax <- c { f  lul,~,-',z ax)l"{f  loul,,ax) "~, 

ItA,II~ ~ c ( f  lul(~, - ' , 'z  dx)a/~'llull~§ 

We have uEL'(I;L~ +1) where r > 2  and to prove that A4EL ~'1 it is therefore 
sufficient to prove that 

(37) f [ul(2P-a)S dx <= C, 
lul>l 

for a.e. tEL We shall use the fact that uEL*~(I; L~). In the case n = 4  we have 
1/2-2/n=0 and it follows from the Lemma that Ilullq<=CllullL~ for every q with 
2<-q<~,.  Hence (37) follows. 

In the case n = 5  we have 1/2-2/n=1/10 and it follows that uELI~ It is 
therefore sufficient to prove that (2p-4)s<-10. We have 

n ( p + l )  5 @ + 1 )  
(n+4)p+4-3n 9 p - l l  

and 

(2p-4)s = 5(p+l)  (2p--4). 
9p-~l  

It is therefore slffficient to prove that ( p +  1) (p-2)<=9p-  1 t, i,e. ( p -  1)(p-9)<=0~ 
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which is true since 2 < p < 7 / 3 .  Hence Theorem2 is proved in the case 1-<n=<5 
and p > 2 .  

We shall then study the case 1 =<n-<5, l<p=<2. Assume that F satisfies the 
conditions in Theorem2.  Choose pl  so that 2 < p 1 < ~  for n = l , 2  and 2 < p ~ <  
(n+2)/(n-2) for 3~n=<5. Then F satisfies the conditions in Theorem 2 with p 
replaced byp~. I f  f ,  ~o and u are as in Theorem 2 the above argument therefore shows 
that ~ouE L~(I; H5/2). 

We shall then study the case n = 6  or 7. We have l < p < ( n + 2 ) / ( n - 2 )  and 
(n+2)/(n-2)<=2 so that p < 2 .  We shall modify the above argument in the case 
l < - n ~ 5  and p > 2 .  

We replace (24) with 

(38) .41+A +A3, 

where A i are as above. We obtain (25) and (26) as above. In the proof  of  (28) we 
need the inequality 4n <= (p + 1)(n + 4). Since we may replace p with a larger number 
Pl as above it is sufficient to have 

I n + 2  + l ] ( n + 4 ) .  
4 n <  t n - 2  ) 

However this inequality holds since n ~  7. 
We obtain (31) also in this case and the above argument gives a solution uEW 

to the Schr6dinger equation (2). To prove that q)u~L~(I; H5/2) we then have to 
prove that F(u)ELI(I;Hz). As above we have F(u)EL 2"1 and O(FI(u))EL ~,1 and 
to estimate O(F2(u)) we shall use (14). As in the case 1 =<n_-<5 we can then apply 
the inequality (35) if 4->_(n-4)p. It is sufficient to have 4>-(n-4)(n+2)/(n-2) 
and this holds for n=6 .  In the case n = 7  we replace (35) with 

(39) ][uii2p+2 ~ Ci[uj[L,I*~, 

which holds for I/(2p+2)>=l/(p+l)-2/7 i.e. p~3/4. We obtain II0(f (u))ll   
Cllutl[.§ Since uCL'(I;L'~ +~) we conclude that O(~(u))EL 2'~ i f  p<-r. How- 

ever, in this case we have p < 2  and r > 2  and hence O(Fz(u))~L 2'1. It remains 
to prove that 02(F(u))EL ",1 and we shall use the estimate (38). The inequality 
(25) can be applied to A1 and to estimate Az we can use (35) as above. In the proof  
of(35) we need 4 ~ ( n - 4 ) p  which holds for n = 6  since 4=(n-4)(n+2)/(n-2) in 
this case. 

In the case n =  7 we replace (35) with (39) and obtain 

w l ] U l I L ~ + I  �9 

It then follows that AzEL 2'1 as in the above proof  that 0(F2(u))EL 2'1. 
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T o  es t imate  A3 we use (28). In  the p r o o f  o f  (28) we need the inequal i ty  4n ~_ 
( p +  1 ) (n+4 )  and  it is sufficient to have 

f n §  
+ 1) ( n + 4 ) .  4n < I,-~-Z-~_ 2 

However ,  this inequali ty holds for  n = 6  or  7. The  p r o o f  o f  T h e o r e m  2 is complete.  
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