Local regularity of solutions to nonlinear Schrödinger equations

Per Sjölin

In P. Sjögren and P. Sjölin [4] we studied the regularity of solutions to the Schrödinger equation $i \partial u / \partial t=-P u+V u$ in a half-space $\left\{(x, t) \in \mathbf{R}^{n} \times \mathbf{R}_{+}\right\}$. Here P is an elliptic self-adjoint constant-coefficient operator in x of order $m \geqq 2$ and $V=V(x)$ a real-valued potential. We assumed that $V \in C^{\infty}\left(\mathbf{R}^{n}\right)$ and that $D^{\alpha} V$ is bounded for every α, where $D=\left(D_{1}, \ldots, D_{n}\right)$ and $D_{k}=-i \partial / \partial x_{k}$.

To state the results in [4] we introduce Sobolev spaces $H_{s}=H_{s}\left(\mathbf{R}^{n}\right)$ and mixed Sobolev spaces $H_{\varrho, r}$ for $\varrho \geqq 0, r \geqq 0$. We set $H_{\varrho, r}=H_{\varrho, r}\left(\mathbf{R}^{n} \times \mathbf{R}\right)=\left(G_{\varrho} \otimes G_{r}\right) * L^{2}\left(\mathbf{R}^{n+1}\right)$, where G_{e} and G_{r} are Bessel kernels in \mathbf{R}^{n} and \mathbf{R}, respectively.

For $f \in L^{2}\left(\mathbf{R}^{n}\right)$ we let u denote the solution to the above Schrödinger equation with $u(x, 0)=f(x)$. We also set

$$
\begin{gathered}
\mathscr{A}=\left\{\varphi \in C^{\infty}\left(\mathbf{R}^{n}\right) ; \text { there exists } \varepsilon>0\right. \text { such that } \\
\left.\left|D^{\alpha} \varphi(x)\right| \leqq C_{\alpha}(1+|x|)^{-1 / 2-\varepsilon} \text { for every } \alpha\right\}
\end{gathered}
$$

and

$$
S f(x, t)=\varphi(x) \psi(t) u(x, t)
$$

where $\varphi \in \mathscr{A}$ and $\psi \in C_{0}^{\infty}(\mathbf{R})$. The following result was proved in [4].
Theorem A. If $\varrho \geqq 0, r \geqq 0$, then

$$
\|S f\|_{H_{e, r}} \leqq C\|f\|_{\boldsymbol{H}_{\boldsymbol{e}+m r-(m-1) / 2}}, \quad f \in \mathscr{P}
$$

where the constant C depends on φ and ψ.
Theorem A expresses a local smoothing property for the Schrödinger equation. Setting $I=[0, T], T>0$, we observe that it follows from the above estimate with $r=0$ that

$$
\|\varphi u\|_{L^{2}\left(I ; H_{e+(m-1) / 2}\left(\mathbf{R}^{n}\right)\right)} \leqq C\|f\|_{H_{e}}
$$

for $\varrho \geqq-(m-1) / 2$.
We shall here consider analogues of this estimate for solutions to the nonlinear

Schrödinger equation

$$
i \partial u / \partial t=-\Delta u+F(u), \quad t \geqq 0, \quad x \in \mathbf{R}^{n}
$$

Our results are based on the work of Kato [3] on this equation.
We introduce some notation. We let p satisfy $1<p<\infty$ for $n=1,2$ and $1<p<$ $(n+2) /(n-2)$ for $n \geqq 3$. Then set $r=4(p+1) / n(p-1)$ so that $2<r<\infty$. We write $\partial=\left(\partial_{1}, \ldots, \partial_{n}\right)$ where $\partial_{j}=\partial / \partial x_{j}$ and set $\partial^{2}=\left(\partial_{i} \partial_{j}\right)_{i, j=1}^{n}$.

Bessel potential spaces are denoted $L_{s}^{q}, \quad 1 \leqq q<\infty, s \geqq 0$, so that $H_{s}=L_{s}^{2}$, and we set $L^{q, s}=L^{s}\left(I ; L^{q}\left(\mathbf{R}^{n}\right)\right), 1 \leqq s \leqq \infty, 1 \leqq q<\infty$.

We assume $F \in C^{1}\left(\mathbf{R}^{2}\right), F$ complex-valued, $F(0)=0$, and

$$
\begin{equation*}
\left|D^{\alpha} F(\zeta)\right| \leqq C|\zeta|^{p-1} \text { for }|\zeta| \geqq 1 \quad \text { and } \quad|\alpha|=1 \tag{1}
\end{equation*}
$$

Then assume $f \in H_{1}\left(\mathbf{R}^{n}\right)$.
Kato [3] has proved that there exists a $T>0$ such that the nonlinear Schrödinger equation

$$
\begin{equation*}
i \partial_{t} u=-\Delta u+F(u), \quad t \geqq 0, \quad x \in \mathbf{R}^{n}, \tag{2}
\end{equation*}
$$

has a unique solution $u \in C\left(I ; H_{1}\right)$ with $u(0)=f$. Also $\partial u \in L^{r}\left(I ; L^{p+1}\right)$. Here Δ denotes the Laplace operator in the x-variable and $F(u)(x, t)=F(u(x, t))$. We shall first prove the following theorem.

Theorem 1. Assume p and F are as above and let $f \in H_{1}\left(\mathbf{R}^{n}\right), \varphi \in \mathscr{A}$. Let u denote the above solution to the equation (2). Then the following holds.

In the case $n=1$ or $2 \varphi u \in L^{2}\left(I ; H_{3 / 2}\right)$ for $1<p<\infty$.
In the case $3 \leqq n \leqq 5 \varphi u \in L^{2}\left(I ; H_{3 / 2}\right)$ for $1<p<p_{1}$, where

$$
p_{1}=\frac{n+4+\sqrt{n^{2}+24 n+16}}{2 n}
$$

In the case $n \geqq 6$ set

$$
\delta(p)=\frac{p(3-n)+n+3}{2(p+1)}
$$

for $1 \leqq p \leqq(n+1) /(n-1)$. Then $\varphi u \in L^{2}\left(I ; H_{\delta(p)}\right)$ for $1<p<(n+1) /(n-1)$.
We remark that $2<p_{1}<3$ and $p_{1}<(n+2) /(n-2)$ for $3 \leqq n \leqq 5$ and also that $\delta(p)$ is a decreasing function of p on the interval $[1,(n+1) /(n-1)]$ with $\delta(1)=3 / 2$ and $\delta((n+1) /(n-1))=1$.

Kato has also proved that if $u(0)=f \in H_{2}$ then the solution u of (2) belongs to $C\left(I ; H_{2}\right)$. We shall prove the following result.

Theorem 2. Assume that $1 \leqq n \leqq 7$ and that p and F are as above. Also assume that $F \in C^{2}\left(\mathbf{R}^{2}\right)$ and that $\left|D^{\alpha} F(\zeta)\right| \leqq C|\zeta|^{\max (p-2,0)}$ for $|\zeta| \supseteqq 1$ and $|\alpha|=2$. Assume that $f \in H_{2}$ and $\varphi \in \mathscr{A}$. Then the above solution u of (2) satisfies $\varphi u \in L^{2}\left(I ; H_{5 / 2}\right)$ if $T>0$ is sufficiently small.

We remark that in the case $n \leqq 3$ Theorem 2 was essentially proved by Constantin and Saut [2].

Following Kato [3] we introduce the following spaces:

$$
\begin{aligned}
X_{0} & =L^{2, \infty} \cap L^{p+1, \infty} \\
\bar{X} & =C\left(I ; L^{2}\right) \cap L^{p+1, r} \\
X & =L^{2, \infty} \cap L^{p+1, r} \\
X^{\prime} & =L^{2,1}+L^{1+1 / p, r^{\prime}} \\
\bar{Y} & =\{v \in \bar{X} ; \partial v \in \bar{X}\} \\
Y & =\{v \in X ; \partial v \in X\} \\
Y^{\prime} & =\left\{v \in X^{\prime} ; \partial v \in X^{\prime}\right\} \\
Y_{0} & =\left\{v \in X_{0} ; \partial v \in X_{0}\right\} .
\end{aligned}
$$

We also set

$$
\begin{aligned}
& \bar{W}=\left\{v \in \bar{X} ; \partial v \in \bar{X}, \partial^{2} v \in \bar{X}\right\}, \\
& W=\left\{v \in X ; \quad \partial v \in X, \partial^{2} v \in X\right\}
\end{aligned}
$$

and

$$
W^{\prime}=\left\{v \in X^{\prime} ; \partial v \in X^{\prime}, \partial^{2} v \in X^{\prime}\right\} .
$$

The norms in these spaces are defined in the obvious way (cf. [3]).
We shall need the following well-known estimates (Sobolev's theorem).
Lemma. (i) If $1<p<q<\infty, s>0$ and $1 / q \geqq 1 / p-S / n$ then

$$
\|f\|_{q} \leqq C\|f\|_{L_{g}^{p}} .
$$

(ii) If $1<p<\infty, p>n / k$ and $k \geqq 1$ then

$$
\|f\|_{\infty} \leqq C\|f\|_{L_{k}} .
$$

Choose $\psi \in C_{0}^{\infty}\left(\mathbf{R}^{2}\right)$ so that $\psi=1$ in a neighbourhood of the origin. Set $F_{1}=\psi F$ and $F_{2}=(1-\psi) F$ so that

$$
F=F_{1}+F_{2} .
$$

We shall now prove the theorems.
Proof of Theorem 1. According to the proof of Theorem I in [3], p. 120, we have $u \in \bar{Y} \subset Y$ i.e. u and $\partial u \in \bar{X}$. It follows that

$$
\begin{equation*}
u \in C\left(I ; L^{2}\right) \cap L^{p+1, r} \tag{3}
\end{equation*}
$$

and
(4)

$$
\partial u \in C\left(I ; L^{2}\right) \cap L^{p+1, r} .
$$

According to Lemma 2.2 in $[3] u \in Y$ implies $F(u) \in Y^{\prime}$ i.e. $F(u) \in X^{\prime}$ and $\partial(F(u)) \in X^{\prime}$.
The proof of Lemma 2.2 really shows that

$$
\begin{equation*}
F_{1}(u) \text { and } \partial\left(F_{1}(u)\right) \in L^{2,1} \tag{5}
\end{equation*}
$$

and
(6)

$$
F_{2}(u) \text { and } \partial\left(F_{2}(u)\right) \in L^{1+1 / p, r}
$$

Now

$$
u(t)=e^{i t \Delta} f-i \int_{0}^{t} e^{i(t-\tau) 4} F(u(\tau)) d \tau
$$

([3], Lemma 1.1). With $\varphi \in \mathscr{A}$ and $s \geqq 1$ we obtain

$$
\|\varphi u(t)\|_{H_{s}} \leqq\left\|\varphi e^{i t \Delta} f\right\|_{H_{s}}+\int_{0}^{t}\left\|\varphi e^{i(t-\tau) \Delta} F(u(\tau))\right\|_{H_{s}} d \tau .
$$

Hence

$$
\|\varphi u\|_{L^{2}\left(I ; H_{s}\right)} \leqq\left\|\varphi e^{i t \Delta} f\right\|_{L^{2}\left(I ; H_{s}\right)}+\int_{0}^{T}\left(\int_{0}^{T}\left\|\varphi e^{i t \Delta} e^{-i t \Delta} F(u(\tau))\right\|_{H_{s}}^{2} d t\right)^{1 / 2} d \tau
$$

From Sjögren and Sjölin [4] it follows that

$$
\|\varphi u\|_{L^{2}\left(; H_{s}\right)} \leqq C\|f\|_{H_{s-1 / 2}}+C \int_{I}\|F(u(t))\|_{H_{s-1 / 2}} d t .
$$

Since $f \in H_{1}$ it follows that for $1<s \leqq 3 / 2$

$$
\begin{equation*}
\varphi u \in L^{2}\left(I ; H_{s}\right) \quad \text { if } \quad F(u) \in L^{1}\left(I ; H_{s-1 / 2}\right) \tag{7}
\end{equation*}
$$

We conclude from (5) that $F_{1}(u) \in L^{1}\left(I ; H_{s-1 / 2}\right.$) (assuming $1<s \leqq 3 / 2$) and it remains to consider $F_{2}(u)$. We shall use (6). We have

$$
\begin{equation*}
\left\|F_{2}(u(t))\right\|_{H_{1-\varepsilon}} \leqq C\left\|F_{2}(u(t))\right\|_{L_{1}^{1+1 / p}} \tag{8}
\end{equation*}
$$

where

$$
1-\frac{n}{1+1 / p}=1-\varepsilon-\frac{n}{2}
$$

([1], p. 153), and hence

$$
\varepsilon=\varepsilon(p)=\frac{n(p-1)}{2(p+1)}
$$

It follows from the conditions on p that $0<\varepsilon(p)<1$ and hence $F_{2}(u) \in L^{1}\left(I ; L^{2}\right)$ according to (6). We shall now estimate $\left\|\partial\left(F_{2}(u)\right)\right\|_{L^{2}, 1}$. We write $u=u_{1}+i u_{2}$ where u_{j} real. If u is smooth the chain rule yields

$$
\begin{equation*}
\partial_{j}\left(F_{2}(u)\right)=\frac{\partial F_{2}}{\partial x_{1}}(u) \partial_{j} u_{1}+\frac{\partial F_{2}}{\partial x_{2}}(u) \partial_{j} u_{2} \tag{9}
\end{equation*}
$$

Choose $\varphi_{0} \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ such that $\varphi_{0} \geqq 0, \int \varphi_{0} d x=1$. Set $\varphi_{\varepsilon}(x)=\varepsilon^{-n} \varphi_{0}(x / \varepsilon)$ and $u_{m}(t)=\varphi_{1 / m} *(u(t)), m=3,4,5, \ldots$, where $*$ denotes convolution in \mathbf{R}^{n}. Then (9) holds with u replaced by u_{m}.

For a.e. $t \in I$ we have (because of (3) and (4))

$$
\begin{equation*}
u(t) \in L^{2} \cap L^{p+1} \quad \text { and } \quad \partial u(t) \in L^{2} \cap L^{p+1} \tag{10}
\end{equation*}
$$

We fix a t such that (10) holds. To prove (9) we shall prove that

$$
\begin{equation*}
F_{2}\left(u_{m}(t)\right) \rightarrow F_{2}(u(t)), \quad m \rightarrow \infty, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial x_{1}}\left(u_{m}(t)\right) \partial_{j} u_{m, 1}(t) \rightarrow \frac{\partial F_{2}}{\partial x_{1}}(u(t)) \partial_{j} u_{1}(t), \quad m \rightarrow \infty \tag{12}
\end{equation*}
$$

in the sense of distributions in \mathbf{R}^{n}. In proving (11) and (12) we write u and u_{m} instead of $u(t)$ and $u_{m}(t)$.

It is clear that $F_{2}\left(u_{m}\right) \rightarrow F_{2}(u)$ a.e. in \mathbf{R}^{n} since $u_{m} \rightarrow u$ a.e. Also

$$
\left|F_{2}\left(u_{m}\right)\right| \leqq C\left|u_{m}\right|^{p} \leqq C(M u)^{p},
$$

where $M u$ denotes the Hardy-Littlewood maximal function of u. Then $M u \in L^{p+1}\left(\mathbf{R}^{n}\right)$ and hence $(M u)^{p} \in L^{1}(B(0 ; R))$ where $B(0 ; R)$ denotes a ball in \mathbf{R}^{n}. It is then clear that

$$
\int_{B(0 ; r)}\left|F_{2}\left(u_{m}\right)-F_{2}(u)\right| d x \rightarrow 0, \quad m \rightarrow \infty
$$

according to Lebesgue's theorem on dominated convergence (for every $R>0$) and hence (11) follows. To prove (12) we observe that

$$
\frac{\partial F_{2}}{\partial x_{1}}\left(u_{m}\right) \partial_{j} u_{m, 1}=\frac{\partial F_{2}}{\partial x_{1}}\left(u_{m}\right)\left(\varphi_{1 / m} *\left(\partial_{j} u_{1}\right)\right) \rightarrow \frac{\partial F_{2}}{\partial x_{1}}(u) \partial_{j} u_{1}
$$

a.e. and

$$
\left|\frac{\partial F_{2}}{\partial x_{1}}\left(u_{m}\right) \partial_{j} u_{m, 1}\right| \leqq C\left|u_{m}\right|^{p-1} M\left(\partial_{j} u_{1}\right) \leqq C[M(|u|+|\partial u|)]^{p} .
$$

It then follows from (10) that $[M(|u|+|\partial u|)]^{p} \in L^{1}(B(0, R))$ and (12) follows from an application of Lebesgue's theorem on dominated convergence as above. Hence (9) is proved and it follows that

$$
\begin{equation*}
\left|\partial\left(F_{2}(u)\right)\right| \leqq C|u|^{p-1}|\partial u| . \tag{13}
\end{equation*}
$$

Then define α by $2 /(p+1)+1 / \alpha=1$ so that $\alpha=(p+1) /(p-1)$. Hölder's inequality yields

$$
\begin{gathered}
\int_{\mathbf{R}^{n}}\left|\partial\left(F_{2}(u)\right)\right|^{2} d x \leqq C \int_{\mathbf{R}^{n}}|u|^{2 p-2}|\partial u|^{2} d x \\
\leqq C\left(\int_{\mathbf{R}^{n}}|u|^{(2 p-2) x} d x\right)^{1 / \alpha}\left(\int_{\mathbf{R}^{n}}|\partial u|^{p+1} d x\right)^{2 /(p+1)} .
\end{gathered}
$$

Now $(2 p-2) \alpha=2(p+1)$ and it follows that

$$
\begin{equation*}
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leqq C\|u\|_{2 p+2}^{p-1}\|\partial u\|_{p+1} \tag{14}
\end{equation*}
$$

where the norms are taken over \mathbf{R}^{n} and we have written u instead of $u(t)$. It follows from (i) in the Lemma that

$$
\begin{equation*}
\|u\|_{2 p+2} \leqq C\|u\|_{L_{1}^{p+1}} \tag{15}
\end{equation*}
$$

if $1 /(2 p+2) \geqq 1 /(p+1)-1 / n$, which is equivalent to

$$
\begin{equation*}
p \geqq \frac{n}{2}-1 \tag{16}
\end{equation*}
$$

Now assume $3 \leqq n \leqq 5$. Then (16) holds for $n=3$ and 4 and we may also assume that it holds for $n=5$ by increasing p (since $5 / 2-1<p_{1}$). A combination of (14) and (15) yields

$$
\begin{equation*}
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leqq C\|u\|_{L_{1}^{p+1}}^{p} \tag{17}
\end{equation*}
$$

Hence

$$
\int_{I}\left\|\partial\left(F_{2}(u)\right)\right\|_{2} d t \leqq C \int_{I}\|u\|_{L_{1}^{p+1}}^{p} d t
$$

and it follows from (3) and (4) that $\partial\left(F_{2}(u)\right) \in L^{1}\left(I ; L^{2}\right)$ if $p \leqq r$. The last inequality is equivalent to

$$
p^{2}-\left(1+\frac{4}{n}\right) p-\frac{4}{n} \leqq 0
$$

which is easily seen to hold for $1<p \leqq p_{1}$. This completes the proof of Theorem 1 in the case $3 \leqq n \leqq 5$.

In the case $n=1$ or 2 we replace (15) by the inequality

$$
\begin{equation*}
\|u\|_{2 p+2} \leqq C\|u\|_{L_{1}^{2}} \tag{18}
\end{equation*}
$$

which holds since $1 /(2 p+2) \geqq 1 / 2-1 / n$ according to the Lemma. We can then replace (17) with

$$
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leqq C\|u\|_{L_{1}^{2}}^{p-1}\|u\|_{L_{1}^{p+1}}
$$

and it follows from (3) and (4) that $\partial\left(F_{2}(u)\right) \in L^{1}\left(I ; L^{2}\right)$.
It remains to study the case $n \geqq 6$. Because of (8) and (6) $F_{2}(u) \in L^{1}\left(I ; H_{1-\varepsilon}\right)$, where $\varepsilon=\varepsilon(p)=n(p-1) / 2(p+1)$. According to (7) it then follows that

$$
\varphi u \in L^{2}\left(I ; H_{3 / 2-\varepsilon}\right)
$$

if $1<3 / 2-\varepsilon \leqq 3 / 2$ i.e. $0 \leqq \varepsilon<1 / 2$ and this holds for $p<(n+1) /(n-1)$. It is easy to see that $3 / 2-\varepsilon(p)=\delta(p)$ and the proof of Theorem 1 is complete.

Proof of Theorem 2. We first assume that $1 \leqq n \leqq 5$ and $2<p<\infty$ for $n=1,2$ and $2<p<(n+2) /(n-2)$ for $3 \leqq n \leqq 5$. We set

$$
G v(t)=\int_{0}^{t} e^{i(t-s) 4} v(s) d s
$$

It then follows from Lemmas 1.2 and 2.1 in [3] that G is a bounded mapping from W^{\prime} to $\bar{W} \subset W$ and that

$$
\begin{equation*}
\|G v\|_{W} \leqq C\|v\|_{W^{\prime}} \tag{19}
\end{equation*}
$$

with C independent of T. We shall then prove that F maps W into W^{\prime}. Therefore assume that $u \in W$ i.e.

$$
\begin{equation*}
u, \partial u, \partial^{2} u \in L^{2, \infty} \cap L^{p+1, r} . \tag{20}
\end{equation*}
$$

It follows from Lemma 2.2 in [3] that F maps Y into Y^{\prime} and

$$
\begin{equation*}
\|F(v)\|_{Y^{\prime}} \leqq C\left(T+T^{1-\alpha}\|v\|_{Y}^{P-1}\right)\|v\|_{Y} \tag{21}
\end{equation*}
$$

where $\alpha=n(1 / 2-1 /(p+1))$ so that $0<\alpha<1$. Thus

$$
\begin{equation*}
\|F(u)\|_{X^{\prime}}+\|\partial(F(u))\|_{X^{\prime}} \leqq C\left(T+T^{1-\alpha}\|u\|_{W}^{p-1}\right)\|u\|_{W} \tag{22}
\end{equation*}
$$

It remains to study $\left\|\partial^{2}(F(u))\right\|_{X^{\prime}}$.
Defining u_{1}, u_{2} and u_{m} as above we shall prove that

$$
\begin{gather*}
\partial_{i} \partial_{j}(F(u))=\frac{\partial F}{\partial x_{1}}(u) \partial_{i} \partial_{j} u_{1}+\left(\frac{\partial^{2} F}{\partial x_{1}^{2}}(u) \partial_{i} u_{1}+\frac{\partial^{2} F}{\partial x_{1} \partial x_{2}}(u) \partial_{i} u_{2}\right) \partial_{j} u_{1} \tag{23}\\
+\frac{\partial F}{\partial x_{2}}(u) \partial_{i} \partial_{j} u_{2}+\left(\frac{\partial^{2} F}{\partial x_{1} \partial x_{2}}(u) \partial_{i} u_{1}+\frac{\partial^{2} F}{\partial x_{2}^{2}}(u) \partial_{i} u_{2}\right) \partial_{j} u_{2}
\end{gather*}
$$

This follows from the chain rule if u is smooth and the general case follows from an approximation argument of the type which led to (9). In fact, it is not hard to see that for instance

$$
\begin{aligned}
F\left(u_{m}(t)\right) & \rightarrow F(u(t)), \quad m \rightarrow \infty \\
\frac{\partial F}{\partial x_{1}}\left(u_{m}(t)\right) \partial_{i} \partial_{j} u_{m, 1}(t) & \rightarrow \frac{\partial F}{\partial x_{1}}(u(t)) \partial_{i} \partial_{j} u_{1}(t), \quad m \rightarrow \infty
\end{aligned}
$$

and

$$
\frac{\partial^{2} F}{\partial x_{1}^{2}}\left(u_{m}(t)\right) \partial_{i} \partial_{m, 1}(t) \partial_{j} u_{m, 1}(t) \rightarrow \frac{\partial^{2} F}{\partial x_{1}^{2}}(u(t)) \partial_{i} u_{1}(t) \partial_{j} u_{1}(t), \quad m \rightarrow \infty
$$

in the sense of distributions in \mathbf{R}^{n} for a.e. t. This can be proved using Lebesgue's theorem on dominated convergence and the fact that

$$
u(t), \partial u(t), \partial^{2} u(t) \in L^{2} \cap L^{p+1}
$$

for a.e. t. Similar convergence results hold for the other terms on the right-hand side of (23). We omit the details.

From (23) we obtain

$$
\begin{gather*}
\left|\partial^{2}(F(u))\right| \leqq C\left(1+|u|^{p-1}\right)\left|\partial^{2} u\right|+C\left(1+|u|^{p-2}\right)|\partial u|^{2} \tag{24}\\
=C\left|\partial^{2} u\right|+C|u|^{p-1}\left|\partial^{2} u\right|+C|\partial u|^{2}+C|u|^{p-2}|\partial u|^{2}=A_{1}+A_{2}+A_{3}+A_{4} .
\end{gather*}
$$

We have

$$
\begin{equation*}
\left\|A_{1}\right\|_{L^{2,1}}=C \int_{0}^{T}\left(\int_{\mathbf{R}^{n}}\left|\partial^{2} u\right|^{2} d x\right)^{1 / 2} d t \leqq C T\left\|\partial^{2} u\right\|_{L^{2, \infty}} \leqq C T\|u\|_{W} \tag{25}
\end{equation*}
$$

Using Hölder's inequality we also obtain

$$
\begin{gathered}
\int_{\mathbf{R}^{n}}\left|A_{2}\right|^{1+1 / p} d x=C\left(\int_{\mathbf{R}^{n}}|u|^{(p-1)(p+1) / p}\left|\partial^{2} u\right|^{1+1 / p} d x\right)^{1 / p} \\
\leqq C\left(\int_{\mathbf{R}^{n}}|u|^{\mid p+1} d x\right)^{(p-1) / p}\left(\int_{\mathbf{R}^{n}}\left|\partial^{2} u\right|^{p+1} d x\right)^{1 / p}=C\|u\|_{p+1}^{(p+1)(p-1) / p}\left\|\partial^{2} u\right\|_{p+1}^{(p+1) / p}
\end{gathered}
$$

where we have written A_{2} and u instead of $A_{2}(t)$ and $u(t)$. We have $1 /(p+1)>$ $1 / 2-1 / n$ and it follows that

$$
\|u\|_{p+1} \leqq C\|u\|_{L_{1}^{2}}
$$

and

$$
\left\|A_{2}\right\|_{1+1 / p} \leqq C\|u\|_{p+1}^{p-1}\left\|\partial^{2} u\right\|_{p+1}^{\prime} \leqq C\|u\|_{L_{1}^{1}}^{p-1}\left\|\partial^{2} u\right\|_{p+1}
$$

Invoking Hölder's inequality we obtain

$$
\begin{gathered}
\int_{I}\left\|A_{2}\right\|_{1+1 / p}^{r^{\prime}} d t \leqq C\left(\underset{I}{\left.\operatorname{ess} \sup \|u\|_{L_{1}^{2}}^{p-1}\right)^{\prime} \int_{I}\left\|\partial^{2} u\right\|_{p+1}^{r} d t}\right. \\
\leqq C\|u\| \stackrel{(p-1) r^{\prime}}{ }\left(\int_{I}\left\|\partial^{2} u\right\|_{p+1}^{r} d t\right)^{r^{\prime / r}} T^{1 / q}
\end{gathered}
$$

where q is defined by $r^{\prime} / r+1 / q=1$ so that $q=(r-1) /(r-2)$. Hence

$$
\begin{equation*}
\left\|A_{2}\right\|_{L^{1+1 / p, r^{\prime}}} \leqq C\|u\|_{W}^{p-1}\left\|\partial^{2} u\right\|_{L^{p+1, r}} T^{1 / q r^{\prime}} \leqq C T^{1-2 / r}\|u\|_{W}^{p} \tag{26}
\end{equation*}
$$

To estimate A_{3} we observe that

$$
\left\|A_{3}\right\|_{2}=C\|\partial u\|_{4}^{2}
$$

Then first assume $p+1<4$. According to the Lemma we have

$$
\|\partial u\|_{4} \leqq C\|\partial u\|_{L_{1}^{p+1}}
$$

if $1 / 4 \geqq 1 /(p+1)-1 / n$ i.e. $4 n \leqq(p+1)(n+4)$. However, this inequality holds since $p>2$ and $n \leqq 5$. Hence

$$
\|\partial u\|_{4} \leqq C\left(\|\partial u\|_{L_{1}^{p+1}}+\|\partial u\|_{2}\right)
$$

and this inequality obviously holds also for $p+1>4$. Thus

$$
\begin{equation*}
\left\|A_{3}\right\|_{2} \leqq C\left(\|u\|_{L_{2}^{p+1}}^{2}+\|\partial u\|_{2}^{2}\right) \tag{27}
\end{equation*}
$$

and

$$
\begin{gather*}
\left\|A_{3}\right\|_{L^{2,1}} \leqq C \int_{I}\|u\|_{L_{2}^{p+1}}^{2} d t+C \int_{I}\|\partial u\|_{2}^{2} d t \tag{28}\\
\leqq C\left(\int_{I}\|u\|_{L_{2}^{p+1}}^{r} d t\right)^{2 / r} T^{\gamma}+C T\|u\|_{W}^{2} \leqq C T^{\gamma}\|u\|_{W}^{2}+C T\|u\|_{W}^{2}
\end{gather*}
$$

where $\gamma=1-2 / r$.
We then have

$$
A_{4} \leqq C u_{0}^{p}
$$

where $u_{0}=|u|+|\partial u|$. It is clear that

$$
\begin{equation*}
\left\|u_{0}\right\|_{L^{p+1}, \infty} \leqq C\|u\|_{W} \tag{29}
\end{equation*}
$$

since $L_{\mathbf{1}}^{2} \subset L^{p+1}$. We have

$$
\int_{\mathbf{R}^{n}} A_{4}^{1+1 / p} d x \leqq C \int_{\mathbf{R}^{n}} u_{0}^{p+1} d x
$$

and

$$
\left\|A_{4}\right\|_{1+1 / p} \leqq C\left\|u_{0}\right\|_{p+1}^{p}
$$

and it follows that

$$
\begin{equation*}
\left\|A_{4}\right\|_{L^{1+1 / p}, r^{\prime}} \leqq C\left(\int_{I}\left\|u_{0}\right\|_{p+1}^{p r} d t\right)^{1 / r^{\prime}} \leqq C\|u\|_{W}^{p} T^{1 / r^{\prime}} \tag{30}
\end{equation*}
$$

Combining (22), (25), (26), (28) and (30) we obtain
$\|F(u)\|_{W^{\prime}} \leqq C T\|u\|_{W}+C T^{1-\alpha}\|u\|_{W}^{p}+C T^{\gamma}\|u\|_{W}^{p}+C T^{\gamma}\|u\|_{W}^{2}+C T\|u\|_{W}^{2}+C T^{1-1 / r}\|u\|_{W}^{p}$.
It follows that there exists a number $\beta, 0<\beta<1$, such that

$$
\begin{equation*}
\|F(u)\|_{W} \leqq C T^{\beta}\left(\|u\|_{W}+\|u\|_{W}^{p}\right) \tag{31}
\end{equation*}
$$

for $0<T<1$.
We introduce an operator G_{0} by setting

$$
G_{0} f(t)=e^{i t \Delta} f
$$

It then follows from Lemma 2.1 in [3] that G_{0} maps H_{2} into \bar{W} and

$$
\begin{equation*}
\left\|G_{0} f\right\|_{W} \leqq C\|f\|_{H_{2}} \tag{32}
\end{equation*}
$$

where C is independent of T.
Now fix $f \in H_{2}$ and set

$$
\begin{equation*}
\Phi(v)=G_{0} f-i G F(v), \quad v \in W . \tag{33}
\end{equation*}
$$

Combining (19) and (31) we obtain

$$
\begin{equation*}
\|G F(v)\|_{W} \leqq C\|F(v)\|_{W^{\prime}} \leqq C T^{\beta}\left(\|v\|_{W}+\|v\|_{W}^{p}\right) \tag{34}
\end{equation*}
$$

Then set $B_{R}(W)=\left\{v \in W ;\|v\|_{W} \leqq R\right\}$. We choose $R>1$ and $v \in B_{R}(W)$ and then have

$$
\|\Phi(v)\|_{W} \leqq C\|f\|_{H_{2}}+C T^{\beta}\left(\|v\|_{W}+\|v\|_{W}^{p}\right) \leqq C\|f\|_{H_{2}}+C T^{\beta} R^{p}
$$

We choose $R>C\|f\|_{H_{2}}$ and then T so small that

$$
C\|f\|_{H_{2}}+C T^{\beta} R^{p}<R .
$$

It is then clear that Φ maps $B_{R}(W)$ into $B_{R}(W)$. According to [3], p. 120, we also have

$$
\|G F(v)-G F(w)\|_{X} \leqq C\left(T+T^{1-\alpha} R^{p-1}\right)\|v-w\|_{X} \leqq d\|v-w\|_{X},
$$

where $0<d<1$, if v and $w \in B_{R}(W)$ and T is small. It is not hard to prove that $B_{R}(W)$ with the X-metric is a complete metric space and we have proved that Φ is a contraction on this space. The contraction theorem then implies that Φ has a fixed point $u \in W$ and we have $u=\Phi(u) \in \bar{W}$. It follows from Lemma 1.1 in [3] that u is a solution to the Schrödinger equation (2) with $u(0)=f$.

We have to prove that $\varphi u \in L^{2}\left(I ; H_{5 / 2}\right)$ and arguing as in the proof of Theorem 1 we see that it is sufficient to prove that $F(u) \in L^{1}\left(I ; H_{2}\right)$.

The argument in the proof of Theorem 1 shows that $F(u)$ and $\partial\left(F_{1}(u)\right) \in L^{2,1}$ and to study $\partial\left(F_{2}(u)\right)$ we shall use (14). According to the Lemma we have

$$
\begin{equation*}
\|u\|_{2_{p+2}} \leqq C\|u\|_{L_{2}^{2}} \tag{35}
\end{equation*}
$$

if $1 /(2 p+2) \geqq 1 / 2-2 / n$, which is equivalent to $4 p+4 \geqq n p$. This inequality holds since $n \leqq 5$ and we obtain

$$
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leqq C\|u\|_{L_{2}^{2}}^{p-1}\|\partial u\|_{p+1}
$$

Invoking the facts that $u \in L^{\infty}\left(I ; L_{2}^{2}\right)$ and $\partial u \in L^{p+1, r}$ we conclude that $\partial\left(F_{2}(u)\right) \in L^{2,1}$.
It remains to prove that $\partial^{2}(F(u)) \in L^{2,1}$. As above we have

$$
\begin{equation*}
\left|\partial^{2}(F(u))\right| \leqq A_{1}+A_{2}+A_{3}+A_{4} \tag{36}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}=C\left|\partial^{2} u\right| \\
& A_{2}=C|u|^{p-1}\left|\partial^{2} u\right| \\
& A_{3}=C|\partial u|^{2}
\end{aligned}
$$

and

$$
A_{4}=C|u|^{p-2}|\partial u|^{2}
$$

It is clear from (25) and (28) that A_{1} and A_{3} belong to $L^{2,1}$. We have

$$
\int_{\mathbf{R}^{n}}\left|A_{2}\right|^{2} d x=C \int_{\mathbf{R}^{n}}|u|^{2 p-2}\left|\partial^{2} u\right|^{2} d x
$$

and the argument which gave (14) now gives

$$
\left\|A_{2}\right\|_{2} \leqq C\|u\|_{2 p+2}^{p-1} \| \partial^{2} u_{i p+1}^{\|}
$$

Invoking (35) we obtain

$$
\left\|A_{2}\right\|_{2} \leqq C\|u\|_{L_{2}^{2}}^{p-1}\left\|\partial^{2} u\right\|_{p+1}
$$

and using the facts that $u \in L^{\infty}\left(I ; L_{2}^{2}\right)$ and $\partial^{2} u \in L^{p+1, r}$ we conclude that $A_{2} \in L^{2,1}$.
It remains to study A_{4}. We may assume that $A_{4}=C|u|^{p-2}|\partial u|^{2} \chi$ when χ is the characteristic function of the set where $|u|>1$. We first assume $1 \leqq n \leqq 3$. We have $p+1>n$ and the Lemma yields

$$
\|\partial u\|_{\infty} \leqq C\left\|\partial u_{L_{i}^{p+1}} \leqq C\right\| \|_{L_{i}^{p+1}}
$$

Hence we obtain

$$
\int_{\mathbf{R}^{n}} A_{4}^{2} d x=C \int_{\mathbf{R}^{n}}|u|^{2 p-4}|\partial u|^{4} \chi d x \leqq C\|u\|_{L_{2}^{p+1}}^{4} \int_{\mathbf{R}^{n}}|u|^{2 p-4} \chi d x
$$

The Lemma also implies $\|u\|_{\infty} \leqq C\|u\|_{L_{2}^{2}}$ (since $2>n / 2$) and setting $q=\max (2,2 p-4)$ we get

$$
\int_{\mathbf{R}^{n}}|u|^{2 p-4} \chi d x \leqq \int_{\mathbf{R}^{n}}|u|^{q} d x \leqq C\left(\|u\|_{2}+\|u\|_{\infty}\right)^{q}=C_{u}
$$

It follows that

$$
\left\|A_{4}\right\|_{2} \leqq C_{u}\|u\|_{L_{2}^{p+1}}^{2}
$$

and since $u \in L^{r}\left(I ; L_{2}^{p+1}\right)$ where $r>2$, we obtain $A_{4} \in L^{2,1}$.
In the case $n=4$ or 5 we set $1 / q_{1}=1 /(p+1)-1 / n$ and since $p+1<n$ we have $q_{1}<\infty$. The Lemma yields

$$
\|\partial u\|_{q_{1}} \leqq C\|\partial u\|_{L_{1}^{p+1}}
$$

and

$$
q_{1}=\frac{n(p+1)}{n-p-1}>\frac{3 n}{n-3}>4
$$

since $n \leqq 5$.
Defining s by $4 / q_{1}+1 / s=1$ we obtain

$$
\int_{\mathbf{R}^{n}} A_{4}^{2} d x=C \int_{\mathbf{R}^{n}}|u|^{2 p-4}|\partial u|^{4} \chi d x \leqq C\left(\int|u|^{(2 p-4) s} \chi d x\right)^{1 / s}\left(\int|\partial u|^{q_{1}} d x\right)^{4 / q_{1}}
$$

and

$$
\left\|A_{4}\right\|_{2} \leqq C\left(\int|u|^{(2 p-4) s} \chi d x\right)^{1 / 2 s}\|u\|_{L_{2}^{p+1}}^{2}
$$

We have $u \in L^{r}\left(I ; L_{2}^{p+1}\right)$ where $r>2$ and to prove that $A_{4} \in L^{2,1}$ it is therefore sufficient to prove that

$$
\begin{equation*}
\int_{|u|>1}|u|^{(2 p-4) s} d x \leqq C_{u} \tag{37}
\end{equation*}
$$

for a.e. $t \in I$. We shall use the fact that $u \in L^{\infty}\left(I ; L_{2}^{2}\right)$. In the case $n=4$ we have $1 / 2-2 / n=0$ and it follows from the Lemma that $\|u\|_{q} \leqq C\|u\|_{L_{2}^{2}}$ for every q with $2 \leqq q<\infty$. Hence (37) follows.

In the case $n=5$ we have $1 / 2-2 / n=1 / 10$ and it follows that $u \in L^{10, \infty}$. It is therefore sufficient to prove that $(2 p-4) s \leqq 10$. We have

$$
s=\frac{n(p+1)}{(n+4) p+4-3 n}=\frac{5(p+1)}{9 p-11}
$$

and

$$
(2 p-4) s=\frac{5(p+1)}{9 p-11}(2 p-4)
$$

It is therefore sufficient to prove that $(p+1)(p-2) \leqq 9 p-11$, i.e. $(p-1)(p-9) \leqq 0$,
which is true since $2<p<7 / 3$. Hence Theorem 2 is proved in the case $1 \leqq n \leqq 5$ and $p>2$.

We shall then study the case $1 \leqq n \leqq 5,1<p \leqq 2$. Assume that F satisfies the conditions in Theorem 2. Choose p_{1} so that $2<p_{1}<\infty$ for $n=1,2$ and $2<p_{1}<$ $(n+2) /(n-2)$ for $3 \leqq n \leqq 5$. Then F satisfies the conditions in Theorem 2 with p replaced by p_{1}. If f, φ and u are as in Theorem 2 the above argument therefore shows that $\varphi u \in L^{2}\left(I ; H_{5 / 2}\right)$.

We shall then study the case $n=6$ or 7 . We have $1<p<(n+2) /(n-2)$ and $(n+2) /(n-2) \leqq 2$ so that $p<2$. We shall modify the above argument in the case $1 \leqq n \leqq 5$ and $p>2$.

We replace (24) with

$$
\begin{equation*}
\left|\partial^{2}(F(u))\right| \leqq A_{1}+A_{2}+A_{3}, \tag{38}
\end{equation*}
$$

where A_{i} are as above. We obtain (25) and (26) as above. In the proof of (28) we need the inequality $4 n \leqq(p+1)(n+4)$. Since we may replace p with a larger number p_{1} as above it is sufficient to have

$$
4 n<\left(\frac{n+2}{n-2}+1\right)(n+4)
$$

However this inequality holds since $n \leqq 7$.
We obtain (31) also in this case and the above argument gives a solution $u \in W$ to the Schrödinger equation (2). To prove that $\varphi u \in L^{2}\left(I ; H_{5 / 2}\right)$ we then have to prove that $F(u) \in L^{1}\left(I ; H_{2}\right)$. As above we have $F(u) \in L^{2,1}$ and $\partial\left(F_{1}(u)\right) \in L^{2,1}$ and to estimate $\partial\left(F_{2}(u)\right)$ we shall use (14). As in the case $1 \leqq n \leqq 5$ we can then apply the inequality (35) if $4 \geqq(n-4) p$. It is sufficient to have $4 \geqq(n-4)(n+2) /(n-2)$ and this holds for $n=6$. In the case $n=7$ we replace (35) with

$$
\begin{equation*}
\|u\|_{2 p+2} \leqq C\|u\|_{L_{2}^{p+1}} \tag{39}
\end{equation*}
$$

which holds for $1 /(2 p+2) \geqq 1 /(p+1)-2 / 7$ i.e. $p \geqq 3 / 4$. We obtain $\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leqq$ $C\|u\|_{L_{2}^{p+1}}^{p}$. Since $u \in L^{r}\left(I ; L_{2}^{p+1}\right)$ we conclude that $\partial\left(F_{2}(u)\right) \in L^{2,1}$ if $p \leqq r$. However, in this case we have $p<2$ and $r>2$ and hence $\partial\left(F_{2}(u)\right) \in L^{2,1}$. It remains to prove that $\partial^{2}(F(u)) \in L^{2,1}$ and we shall use the estimate (38). The inequality (25) can be applied to A_{1} and to estimate A_{2} we can use (35) as above. In the proof of (35) we need $4 \geqq(n-4) p$ which holds for $n=6$ since $4=(n-4)(n+2) /(n-2)$ in this case.

In the case $n=7$ we replace (35) with (39) and obtain

$$
\left\|A_{2}\right\|_{2} \leqq C\|u\|_{L_{2}^{p+1}}^{p}
$$

It then follows that $A_{2} \in L^{2,1}$ as in the above proof that $\partial\left(F_{2}(u)\right) \in L^{2,1}$.

To estimate A_{3} we use (28). In the proof of (28) we need the inequality $4 n \leqq$ $(p+1)(n+4)$ and it is sufficient to have

$$
4 n<\left(\frac{n+2}{n-2}+1\right)(n+4)
$$

However, this inequality holds for $n=6$ or 7 . The proof of Theorem 2 is complete.

References

1. Bergh, J. and Löfström, J., Interpolation spaces, Grundlehren der mathematischen Wissenschaften 223, Springer-Verlag, 1976.
2. Constantin, P. and Saut, J. C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 413-439.
3. Kato, T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique théorique, 46 (1987), 113-129.
4. Sjögren, P. and Sjölin, P., Local regularity of solutions to time-dependent Schrödinger equations with smooth potentials, Preprint 1988:15, Dept. of Math., Chalmers Univ. of Technology and Univ. of Göteborg.

Received May 30, 1989

P. Sjölin
Uppsala University Department of Mathematics Thunbergsvägen 3 S-752 38 Uppsala Sweden

