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1. Introduction 

The purpose of  this paper is to show that the unique continuation results in [10] 
extend naturally to the setting of  second order parabolic operators. Previously, we 
showed that if  P(x, D) is a second order elliptic differential operator with a C ~ 

hi2 n real principal part,  and if  Ie(x, D)ul<-IVu[ for some VELIoc(R ), then u must 
vanish identically if  it vanishes in an open subset. In this work (x, t) will denote a 
generic point in R"XR,  with n->2, and we shall assume that P(x, t, D) is a second 
order elliptic operator acting on R" with bounded coefficients whose principal part  
is real and C~ We shall be concerned with parabolic operators o f  the form 

(1.1) L = L(x,  t, D, Dr) = - ~ +  P(x,  t, D). 

Here we are using the notation D=D~=i-l (O/OXl . . . .  , ~/~x.). The natural (non- 
isotropic) dilations associated to L are given by 

(1.2) 6,(x, t) = (exl, ex2 . . . . .  ex,, e2t), e > O, 

and the homogeneous dimension o f  R"XR with this dilation structure is n +2 .  
Thus, the natural condition to impose on the potentials V(x,  t) in the unique con- 
tinuation theorem for L is that vrrm+2)/~rDnvo~ 

To state our chief result we first need to recall the definition of  the normal set 
N ( F ) c T * ( R " X R ) \ O  associated to a closed subset F c R " X R .  N(F)  will be the 
set o f  all (x0, to, ~o, %) where (xo, to)~F, 0#(~0, z0)CR"XR, and 

(x, 0 <-- ~g(xo, to) when (x0, t0) EF, 

The author was supported in part by a Sloan Fellowship, a Presidential Young Investigator 
Award, and NSF grant DMS--8805814. 
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for some real valued C = function satisfying dTt(xo, to)= --+(40, zo)- If  the coeffi- 
cients of L were analytic, then the classical Holmgren uniqueness theorem (see [5, 
Chpt. 8]) implies that a solution u of Lu=O must have the property that if 
(x0, to, 40, z0)EN(supp u) then 40=0. In other words, there is always unique con- 
tinuation across non-characteristic hypersurfaces. We shall allow singular potentials, 
and our main result is : 

Theorem 1.1. Suppose that LuE L~o~(X) where X is a connected open subset o f  
R"• Then i f  

(1.3) ILu(x ,  t)l <- IVul 

for some VEL}~+~II~(X), it follows that N(supp u) is non-characteristic for L. 
Thus, i f  (xo, to, 40, z0)EN(supp u), one must always have 40=0. 

Corollary 1.2. Let f2 be a connected open subset of  R n and T>0. Assume that 
VCL~g+'~/~(~• T]), and suppose that (1.3) holds. Then i f  u vanishes in an 
open subset (9 c f2 • [ - T ,  T], it follows that u must vanish identically in the hori- 
zontal component o f  O. This means that u(x, t0)=0 if  (x0, t0)E~ for some Xo. 

If VELro ~ this result is due to Nirenberg [7] in the constant coefficient case and 
to Saut and Scheurer [8] under the weaker assumptions that the leading coefficients 
are C 1. Our methods allow one to obtain the essentially optimal results concerning 
the potential V in the differential inequality; however, they require that one make 
what are probably non-optimal regularity assumptions on the coefficients involved. 
Nonetheless, even in the constant coefficient case, it seems that there are no previous 
unique continuation theorems of this type involving VEL~o ~ for q < ~  ; however, 
Garofalo and Kenig [3] proved certain results for constant coefficient operators 
under restrictive assumptions regarding the support of u. Similar results for other 
constant coefficient parabolic differential operators were also proved in Kenig and 
Sogge [6]. 

To prove Theorem 1.1 we must show that there is local unique continuation 
across any non-characteristic hypersurface S. If, locally, such a surface is given by 
the equation ~(x, t )=0,  there is no loss of generality in assuming that ~(0, 0)=0 
and that (07J/Ox,)(O, 0)~0. This means that S can be locally written as a graph 
x,=~k(x', t), where x'~-(x~ . . . . .  X,_x) denote the first ( n - l )  coordinates. Further- 
more, by making the change of variables (x', x , - ~ ( x ' ,  t), t), which preserves the 
parabolic character of L, we see that we can assume that S is the hyperplane x,,=O. 
Next, if, as in Nirenberg [7], we now use the Holmgren transform 

(x', x , ,  0 ~ (x', x ,  + t2 + lx'l 2, t), 

which takes the hyperplane x , = 0  to the parabola x~=t2+lx'l  ~, we see that we 
can assume further that suppuc~{(x, t):  x, ~ 0} = (0, 0). Finally, by using the 
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natural geodesic coordinates associated to the principal part of  P, we can make 
one more change of  variables so that, in the new coordinates, u has the same sup- 
port properties, but, modulo a lower order differential operator in x, L is of  the 
form 

(1.l') L = @+DZn+~z  k<n g jk(x' t)OjOk 
0 "' 

where gjk is a positive definite matrix. 
Putting together all of  these straightforward reductions, we conclude that we 

need only show that u vanishes near (0, 0) when supp u and L are as above. But 
standard arguments as in, say, [10] now imply that Theorem 1.1 is a corollary of  
the following Carleman inequalities. 

Theorem 1.3. Let L be as in (1.1") and put 

(1.4) w. = x.-x~./2e. 

I f  e>O is sufficiently small but fixed and i f  2 > 0  is sufficiently large 

(1.5) ~l~l~l)~l+l/(n+a)-I'llIe-~W.D~vl[L~+lle-aW.Vl[L~, <= Clle-X~oLvl[L, 

whenever vEC o is supported in a sufficiently small neighborhood of  (0, 0). Here 
p=2(n+2)/ (n+4)  and p' is the conjugate exponent p '=2(n+2)/n  which forces 
1 / p -  1/p'=2/(n+ 2). 

The proof of  Theorem 1.3 is modeled after the corresponding result for second 
order elliptic operators in [10]. Replacing v by eaW.v one sees that it is enough to 
obtain the appropriate estimates (see w 3) for the conjugated operators 

Note that (for fixed (x, t)) 
(~, z) with 

where II" II 

(1.6) 

L z = e-~W.LeXW~. 

the symbol of  this operator only vanishes for certain 

always denotes the parabolic norm: 

II(r 011 = 1/l~l~+ I~l. 

Inverting Lx microlocally far enough away from the zero set of  the symbol is easy. 
To handle the other part of  the inverse, as in [10], one constructs a parametrix 
using singular Fourier integrals with complex phase. Choosing the "correct" phase 
function is the key step, and, as before, it is constructed from an eikonal equation 
which comes from the factor of  the symbol of  Lx which vanishes for large (4, *). 
This phase function will basically be a sum of  two types : the main part will reflect 
the Euclidean dilations, while the other part will vanish of  order two in the space 
variables along the diagonal, and will reflect the parabolic dilations. To make the 
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necessary estimates for the non-trivial part of  the parametrix (and the associated 
remainder term) we shall use a parabolic version of  the equivalence of  phase func- 
tions and certain variants of  the oscillatory integral theorem of  Carleson--Sj61in, 
H6rmander, and Stein (see [11]) that was used in the study of Carleman inequalities 
for elliptic operators. It is surprising that essentially "elliptic oscillatory integral 
theorems" alone should be what is needed for proving our Carleman inequalities 
for parabolic operators, rather than say a variant of  the "parabolic restriction 
theorem" of Strichartz [12]. However, in a different setting, a similar phenomenon 
was observed in Seeger [9], where estimates for non-isotropic operators were de- 
duced from operators having the standard dilation structure. The experts might 
also notice that Lemma 2.5 involves both types of  operators that were used by Carle- 
son--Sj61in [1] and Fefferman [2] in their different proofs of  the disc multiplier 
theorem. 

This paper is organized as follows. In the next section we shall collect the tools 
which will be needed for our proof of  Theorem 1.3. In w 3 we shall complete the proof, 
and in an appendix we shall prove the "non-isotropic" oscillatory integral lemma 
that is used. As usual C will denote a generic constant which is not necessarily 
the same at each occurrence, and log # will always denote the base-2 logarithm 
of / t .  Finally, we are very grateful to Anders Melin for helpful criticisms and com- 
ments. 

2. Main tools 

The easy part of  the parametrix for L~ will involve pseudo-differential operators 
whose symbols respect the parabolic structure of  R " •  outlined above. We shall 
say that a is a parabolic symbol of  order m, written as aES~a r, if  a is C ~~ and 
satisfies 

(2.1) ID~lD~D~aa(x, t, 4, z)l --<-- C,~ ][(~, v)[I m-I~ll-~' 

for all multi-indices cei,/L 
As in the usual case, the kernels of  parabolic pseudo-differential operators are 

C = away from the diagonal. Furthermore, it is easy to estimate their size, and one 
has the following result. 

I_emma 2.1. Let a be in S~a,. Then the kernel associated to a, 

K(x,  t, y, s) = (2~)-r l) f f e~t<'-y'e>+('-')'Ja(x, t, ~, z)d~ dz, 

is C** away f rom the diagonal (x, t ) = ( y ,  s) and 

[K(x, t ,y ,  s)[ ~ C[[(x-y ,  t-s)ll  -("+~)- ' .  

For f ixed m, the constant depends only on finitely many o f  the constants in (2.1). 
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Recall that the non-isotropic dimension of R" •  that is associated to parabolic 
pseudo-differential operators as above is not n + l ,  but n+2 .  Thus, the estimates 
in Lemma 2.1 are the natural analogue of  those for the usual type of pseudo-dif- 
ferential operators. 

Next, to estimate the boundedness of  the pseudo-differential operators which 
will appear in our constructions, we shall require the parabolic analogue of  the 
Hardy--Littlewood--Sobolev inequality. 

Lemma2.2. Suppose that l ~ p < q < ~ o  and that 1 /p-1 /q=~/(n+ 2). Let 

I~ f(x, t) = f f f ( x -  y, t -  s)I[ (y, s ) l i -  (" + 2 )+ ,  ely ,is. 
Then 

II I~ f[f L~"• <---- C~pq llf[ILpea"• 

We shall only require the estimates for the special case where ~=2.  
To prove Lemma 2.2, one first notices that, by Minkowski's integral inequality, 

if we fix t, it is possible to control the norm over R ~ as follows: 

III~f]lL'(a"'dx) <= f~-= I]f f ( x - -  y, t--S)(1/IX-- yl ~ + IS-- il) -("+~)+~ dY]iLq~a,,dx) ds. 

But, Young's inequality for convolution in R", and the relationship between p and 
q give 

[ f f ( x -  y, t-s)(1/Ix- yl2+ I t -s [ )  -('+2~+~ dy z,(R",dx) 

~- cit -si  - '+~ { f  if(x, t-s)l" dx) "p. 
Thus, 

tts=fi/,-.~'~"• ~ C(/_ ~_ {f_~/If(., t - ~ ) t t , , o ~ . . ~ : , i t - s i  - ' + ( ' ' ' - ' , ~ ,  ~s] q dt )  ',~ , 

and so the desired estimate follows from applying the usual fractional integration 
theorem for R. 

Similar arguments, which reduce the proof of  the appropriate boundedness of  
operators acting on functions of  R " •  to estimating an operator acting on 
functions of  one less variable, will be used throughout. 

Another tool we shall require is a parabolic version of  the equivalence of  phase 
functions for pseudo-differential operators. This will be useful in constructing the 
non-trivial part of  the parametrix for La. 

Suppose that P~, is a linear operator of the form 

(P~, u)(x, t) = (2re) -("+1) f f e t~'(~''' Y'~' r t, y, s, ~, z)u(y, s)d~ dz dy ds, 

where the symbol P~ S~a r is assumed to have fixed compact support in (x, t, y, s). 
We shall assume that q~ is C ~ Im r and that 

(2.2) IVr => cl(x-y, t-s)l, 
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for some c>0 .  Note that the last assumption involves the Euclidean norm. On 
the other hand, if we let ~ol=(x-y, ~)+( t -s )v  be the usual phase function for 
pseudo-differential operators, then we shall also assume that 

(2.3) q~--~ol = O([j(x--y, t-s)lZ~l[(~,  ~)11), 
and so, in particular, 

0 
Ve(~o-cp0 = O(]l(x-y, t-s)]i 2) and ~-~-(~o-~01) = O([l(x-y, t-s)l]2[l(r ~)]1-1). 

Under these hypotheses, we have the following result which is the parabolic analogue 
of  the usual equivalence of  phase function theorem for pseudo-differential operators. 

I_emma 2.3. Let ~o be as above. Then if  P(x, t, y, s, 4, z)C S~ar, P~, is a parabolic 
pseudo-differential operator of order m. Moreover, modulo an operator of  order ( m -  1), 
P~, equals 

(27r) -(n+l) f f eiE(x-Y'c)+(t-s~le(x, t, x, t, ~, z) u(y, s) d~ dz dy ds. 

Proof. To establish this result we need only make some straightforward modifica- 
tions of  proof  of  the usual result in H6rmander [4]. We first let ~Oo(X, t, y, s, ~, r)-- 
q~(x, t, y, s, 4, z), and, as above, (pl(x, t, y, s, 4, z )=~x-y ,  ~>+(t-s)z. Then for 
0 < 5 < 1 ,  we put opt(x, t,y, s, ~, z)=(1-e)Cpo+e~o 1, and 

(e,u)(x, 0 = (2=)-("+ ~ f f e'*~ t, y, s, 4, z)u(.y, s) d~ dz dy ds. 

Since ~0o--q~ satisfies (2.2) and (2.3), we can assume that for all 0=_<e==_l, 

(2.4) IVr => e l (x -y ,  t -s)l  if P r 0 and II(~, ~)Ii large. 

We may have to decrease the support  o f  the symbol P near the diagonal; however, 
since (2.4) holds for ~ =0,  Po-P~, would have to be an integral operator with smooth 
kernel. 

Next, notice that 

(2.5) -b-'/- ~ u  = (2~)-(~+l~ f f [i(~o,- ~oo)]Je'~'~e(x, t, y, s, ~, ~)u(y, s)cl~ cI~ dy cls. 

The symbol here 
[i(~o~ - ~Oo)]Je(x, t, y ,  s, ~, ~) 

is a priori only in S~ '+~, but (2.3) implies that it vanishes like II(x-y, t-s)ll 2J near 
the diagonal. To exploit this let 

/ - /=  0/0T+,4r and a, = e-i~'~He ~'.. 

Clearly, (2.3) and (2.4) imply that there is a constant c > 0  so that 

la,[ > ell(x-y,  t-s)ll ~ for large [](3, ~)ll- 
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To use this, notice that if we let A be the adjoint of the operator (liar)H, then the 
kernel of the operator in (2.5) equals (2z0-("+a) times 

f e'~oAJ{[i(~ol-~oo)]JP(x, t, y, s, ~, z)} d~ dz. 

Since one can now check that the symbol in this oscillatory integral is actually in 
S ~  j, it follows that this kernel becomes arbitrarily smooth as j---+co, since (2.4) 
holds. 

To use this set 
(-- 1) j d J 

O j ~ 

Then, Taylor's formula gives 

Po = zko -1 Q j + ( -  1)~/k! f2 ~-l(dld,)~e~ d,. 

Thus, if we let Q be defined by the formal series .~o  Q J, it follows that Q is a pseudo- 
differential operator, and moreover P 0 - Q  has a smoothing kernel. Finally since, 
modulo a pseudo-differential operator in Sps 1, Q0 equals the pseudo-differential 
operator with symbol P(x, t, x, t, 4, z) we are done. | 

The last ingredient we shall require is a variant of the standard oscillatory 
integral theorems of Carleson--Sj61in, H6rmander, and Stein in [11]. These will 
allow us to estimate the mapping properties of the main terms in the parametrix 
for L z. Given the non-isotropic nature of the dilations (1.2) associated to L, one 
should not expect to be able to use the results in [11] alone; however, it is fortunate 
that in the arguments to follow, one can make a change of variables that allows 
one to apply easy variants of  the usual oscillatory integral theorems. 

The operators we shall need to control are of the form 

(2.6) R,,i f(Y) = fR"-I 2("-1)J/~ ei2JuO(r' z) aj (y, z) f ( z )  dz, 

for 0=<j<=log p, and send functions defined in R "-1 to functions in R n. We shall 
assume that both ~ and aj are in C=(Rn• with the aj being supported in a 
fixed small neighborhood of J/" of (0, 0) and ~ having non-negative imaginary 
part. In addition we shall require several technical assumptions. 

First, as in Stein [ll], we shall assume that ~ is non-degenerate in the sense 
that its mixed Hessian has maximal rank. Specifically, we require 

(2.7) detf  02~ ] ~,OyjOZk j l _ j , k ~ _ n _  1 ~ 0 on ,/r 

In addition, we shall impose the following Carleson--Sj61in condition: 

(2.8) 030 ( 0 , 0 ) = 0  Vj, but det [O0/OY.l r  on .A ~, o  Oy. 
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As we shall see, the non-degeneracy condition (2.8) insures that oscillatory integral 
operators with phase function ~ have better bounds as operators from L p into itself, 
rather than form L p into the dual space L p', for certain exponents p. 

Remark  2.4, The model case occurs when 

(y, z) -~ I(Yl -- z l ,  ..., y , -1  -- z,  -1, Y, -- 1)1 

and, as above, both y and z are assumed to be close the origin. The phase functions 
which will occur in the proof of  the Carleman inequalities will be related to 
this one. 

Now let us describe the hypotheses for the amplitudes aj above. In addition to 
assuming that they have fixed compact support, we shall assume that 

(2.9) aj(y ,  z) = 0 if I ( y l - z l  . . . . .  y , -1 -z , -1 ) l  ~ 2 - j .  

Also, we shall assume that the derivatives of  aj satisfy the natural bounds associated 
to this support property: 

# -< (Yl ,  Y . -1 ) ,  (2.10) ID~, , zDyaj (y ,  z)l = C~a2 JIll, y '  = .... 

for constants C,a independent o f j .  
Having stated the various technical assumptions, the desired result is the 

following. 

Lemma 2.5. Let  ~b and aj be as above, and let Ru, j be as in (2.6), where # > 1 ,  
and 0<=j~log g. Then, i f  Jt/" above is small enough, 

(2.11) 
1 1 

IIR f l l  < C2<"-i)J<I/P-~/")/~ -r -~+--~- t t ,y LP'(R n) = # LP(Rn-,), 1 ~ p ~ 2, = 1. 

n + l  
Also, i f  l ~ p ~ 2 ,  and r . . . . .  p ' ,  one has the estimates 

n - 1  

(2.12) ][ R u, y f [1 r.-Ca-) ~ C 2(" - 1)j(1/p - -  l / r ) / 2 / 2 - -  niP' II f [1LP(R n - x). 

The constant C in these inequalities depends only on finitely many o f  the constants 

in (2.10) and remains bounded when q/ belongs to a bounded subset o f  C ~ .functions 

satisfying (2.7) and (2.8). 

In the case where j =  0, this result is the usual oscillatory integral theorem in 
[11]. On the other hand, in the other extreme case where j=log/~,  the reader can 
check that (2.11) and (2.12) are a trivial consequence of (2.9), and thus oscillation in 
(2.6) is irrelevant. The proof of  Lemma 2.5 for the other cases is a straightforward 
modification of  the arguments in [10]; however, for the sake of completeness it will 
be ~iven gn an appendix, 
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For  the proof  of  the Carleman inequalities, we shall actually need a slight variant 
the inequalities (2.12). By an easy argument which uses H61der's inequality, the 
reader can check that (2.9) and (2.12) give 

(2.13) HR~.jfIILrCa, ) <= C2--(n--X)J(X/P--l/r)/2#-n/P'Hf[[Lr(R.-a ) if 2 ( n + l )  
n-----------i--- -<- r <-~, 

and i f p  and r are related as in (2.12). 
As we indicated in Remark 2.4, we shall only be interested in a special case of  

Lemma 2.5. This will allow us to prove estimates for certain oscillatory integral 
operators sending functions of  n variables now to functions of  n variables. These 
new operators will have phase functions q~ which are close to the model function 
I x - y l  in the sense that 

(2.14) IO~[q~(x ,y) -[x-y l] l  <- g0, 0 _<- I~1 <- N, 

and will be of  the form 

Su.j f (x )  = f .. 2("-a)i/2e'ZJ"q'(x,Y)aj(x, y ) f (y)  dy, xER". 

The analogues of  (2.9) and (2.10) for the new function a j~Co(R"XR")  will 
be that 

(2.9') a y ( x , y ) = O  if [x-y[r or I x ' - y ' l = > 2  -J  

(2.10') " P < " tDx',y, Dx,,y, aj(x, Y)I = C~p 2JIll- 

I f  one keeps in mind Remark 2.4, then the usual Carleson--Sj61in arguments (see 
[1], [11] and the arguments in w 4) together with (2.11) and (2.13) imply that the 
operators Su, j satisfy the same bounds as Ru, j .  In particular, we know the L P ~ L  p" 
norm of  S~,j when p is as in the Carleman inequality. Also, by (2.11) and (2.13), one 
knows bounds for its L p ~ L  p norm when p is equal to 2 or 2 (n+  1 ) / (n -  1). But, by 
interpolating between these two estimates and using duality we can also estimate its 
L q ~ L  ~ norm when q is one o f  the exponents in the Carleman inequality. In fact, 
we can conclude that, for these exponents, the norm must satisfy better bounds ~ 
than the estimates in (2.13) for r = 2 ( n + l ) / ( n - 1 ) .  We collect these facts which 
will be useful later on in the foIlowing. 

Corollary 2.6. Let aj and q~ be as above and assume that Im r Then if, in 
addition, go is sufficiently small and N is sufficiently large in (2.14), 

2 ( n + 2 )  
(2.15) [IS~'/fIILP't'R") ~ C2(n--l/n+2)J#--(n--lln+Z)(nl2)llfl[LPfR")' P'--- n + 4  

1 For the exponents q which occur in the Carleman inequality, the sharp mapping properties 
of the S,,~ from Lq(R n) ~Lq(R n) a r e  not known (even when j=0). Fortunately, the bounds cor- 
responding to q=2(n+ 1)/(n- 1) are good enough for our applications. 
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Also, one has the estimate 

(2.16) 

IIS.4 fIIL,~. > <= C2-(n-1/n+ l)fJ/~) lt-(n-1/n+ l)(,/z)]IfIlLqo~,,), q=< 2 ( n + 2 )  2 ( n + 2 )  
n + 4  ' n 

3. Proof of Theorem 1.3 

Recall that w,= x , , -  x~/2e. If  e > 0  is sufficiently small but  fixed, and 

L~ = e-aW, Le aw., 

we must show that if  2 > 0  is large 

(3.1) Zt=z_~l,~l+l'C"+l)-I=lll~vll~(a-•215 <- CIIL~VIIL,(a.• 

when the function v and the exponents p and p" are as in Theorem 1.3. 
I f  we recall (1.1"), then we see that the symbol of  La is 

= t) 4i ~k + ~.-- 2t2w, 4n-- (2w~) -- 2w8. Lz (x, t, 4, z) iz + Z j ,  k<. gjk (X, , �9 , ' 2 " 

Consequently, i f  we let A~ be the differential operator whose adjoint A: has symbol 

(3.2) a](x ,  t, ~, Z) = - - i T + Z j ,  k<n gyk(x, t)~jr162 2 

1 2 1 ~ ~ . 1 

then (3.1) follows from 

(3.1') ZI,I  ~1 ;1+ 1/(.+ ~)-t,1114 ~!l ~- + I1 oll ~,' --< c IIA~ ~tl~- 

By adapting the calculus in [10], we claim that we can choose a phase function 
satisfying the hypotheses o f  Lemma 2.3 so that the integral operator T * =  T~" 

with kernel 

(3.3) (2.)- ,.+1, f ei~(~'t'Y'*'r A~ (y, s, 4, z) d~ dz 

is a suitable right parametrix for A~. To be more specific, we claim that if  v is sup- 
ported in a small ball B around (0, 0)CRY• then 41 can be chosen so that i f  T 
is the adjoint of  T*, 

(3.4) T(A~v) = v+Rv,  
where 
(3.5) ][TI[cL,(B),~'(B)) ~-- C and I[D~T[[r <: C)~ -1-11(n+l)+l~l, 

while the remainder term R =  Rx only satisfies 

~R (3.6) [ID~ II(LqCB),Lq(B)) ~ C)~-l/(n+l)+lal, q "~ t 9, P'~, 
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for ]a i~ l .  Here we are of  course using the notation that ]l" [](Lr(B),I.,,(B)) denotes 
the operator norm from L'(B)  to L~(B). Since it is easy to check that (3.5) and 
(3.6) would imply (3.1), we are left with constructing �9 and proving these estimates. 

Next, notice that (3.2) implies that 

A~(x, t, 4, ~) = 0 ~ (4, ~ ) ~ ( x ) ,  

where 6 4 denotes the non-isotropic dilations defined in (1.2), and 

(3.7) 12 =12~, t =- {(4, z): 4 ~ + Z j ,  k<,gjk(x, t)~j4k = (W') ~ and z = 2w~'4,}. 

This set is shown in the following figure. 

_ H 

J - -  I | 
i 
| 

| i 
| i 

' T 

' T I 

| 

Figure 1 

The first step in constructing T* is to notice that one can use standard arguments 
to microlocally invert A~ away from 3~(~). Specifically, let flCCo(R ) equal one 
near the origin, but have small support. We then define fl0=fl0,x by setting 

flo(4, z) = 1 - f l (1  -lr ~-23./2).  

Then if, as we may, we assume that 

Zj.k<n g jk(O, O)DjDtr = --Ax', x" = (x, ,  ..., xn-a), 

it follows that fl0 vanishes on 6z(~) (if ](x, t)[ is small enough). Moreover, one even 
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has the bounds: 

[A](x, t, 4, z)l => c(ll(~, z)l[ +2)  2 on supp flo 

for some c >0 .  Thus, if we let T* be the integral operator with kernel 

- (, + z) f eit<x - y' r + ( '- ~m (2re) a~(_v, s, ~, ~) /~o(~, ~) d~ d~, 

easy arguments would show that its adjoint satisfies 

To (A x v) = (2re) - (" + 1~ f f eit(x - , ,  r + (,- s),l flo (4, z) v (y, s) d~ dz dy ds + Ro v, 

where Ro is an integral operator whose kernel is majorized by a fixed constant times 

;--1 !I(x__y, t--s)[!--(n+2)+1 

To prove this one would use Lemma 2.1. I f  one uses this along with Young's in- 
equality, one sees that Ro actually satisfies better estimates than those in (3.6) when 
+=0 ,  namely 

Similar considerations show that D~,Ro also satisfies better bounds than those 

in (3.6). 
Likewise, the operator To satisfies better bounds than are needed. In fact, note 

--2 that To belongs to a bounded subset of  Sp,~, and also 22-1~ID~T0 is in a bounded 
subset of  Sp~ when I~I-<- 1. With this in mind, one can use Lemmas 2.1 and 2.2, 
together with Young's inequality to see that To satisfies the analogue of  the first 
inequality in (3.5), as well as an improved version of  the second estimate where 
1 / (n+ l )  is replaced by 1 in the exponent. 

Next, let 
fll(~, z) = 1 -//0(4, z). 

We wish to construct integral operators T1 and R1 satisfying the analogues of  (3.5)-- 
(3.6) whose adjoints have kernels which are similar to the one in (3.3), and 

(3.8) T~ (A x v) = (2n)-("+ " f f eit<~-y'r #l (~, z)v(y,  s) d~ dz dy ds + Rl v. 

As we shall see the adjoint Tz* will have a kernel of  the form 

f ei~(x,t,y,s,r 
(3.9) (2rr)-("+a) A](y,  s, 4, "c) fll(~, 7:) d~ dz 

where �9 will have to be chosen with some care, but will be as above, and R1 will 
behave like 2T,.  Thus, if  we could construct �9 and prove these estimates, then, by 
adding To and 7"1 and applying Lemma 2.3, we would get an integral operator T as 
above, and the proof  would be complete. 
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To finish the construction, recall that in the elliptic case studied in [10], the 
phase function was constructed from an eikonal equation arising from the non- 
elliptic factor of  the symbol. A similar thing happens here. Recall from (3.2) that 
the imaginary part of A z vanishes when ' ,2 * ~,,/w~- z/[22 (w~) ] = 0. On account of  
this, it is natural to factor the symbol with respect to this variable. By using the 
quadratic rule and 0.2) one finds that 

A~(x, t, 4, v) = az(x ,  t, r z)((~,/w'~-v/I2J.(w'~)2])-i[bx(x, t, 4, v)-21), 

where Ga is in S~a r on supp/~1 and is elliptic with respect to the parabolic norm. 
In fact, it satisfies 

IGx] --> c(H(~, *)][ +2)  some c > 0. 

The other factor, of  course, does not enjoy this property since it vanishes on 
6z(E). The function bx appearing is real (on the support of  131) and is given by the 
formula 

1 l /  ~.T ,2 
ba(x, t, 4, *) = ~ _  ~ Zk<, gik(x' t){J{k-- )----~W" -t- 422(W;)2 " 

The important thing, though, is that if  5>0 is small, then on the support of  fll 

Ib~(x, t, 4, *)1 <= Cll(~, ~)I! 
(3.10) 

0 
0xl bz_->ce-X]l(~,,)l] some c > 0 .  

In the last expression, we have to assume, as we may, that both ]xl] and the support 
of/~ above are small, and use the fact that @ / ~ x l ) w ' ~ e - L  

Since Gx is "elliptic", we are led to construct the phase function �9 in (3.9) from 
the other factor of  A~. Specifically, if  we let 

Bz(x,  t, ~, ,)  = { , / w ' -  ,/[2~.(w3 21 - ibm(x, t, ~, ,) ,  

then, following [10], we would like �9 to satisfy the eikonal equation 

(3.11) Ba(x, t, ~,~, ,)  = B , (y ,  s, ~, z), (~, ,)Esuppfll  

and, in addition, have the properties that 

(3.12) 4~ = ( x - y ,  ~ ) + ( t - s ) , + O ( l [ ( x - y ,  t-s)lrl[(~, z)ll) 
(3.13) Im �9 _--> 0. 

Here we are using the notation that ~ = V ~  ~. We should emphasize the fact that 
(3.1 i) does not involve t derivatives of  ~ ;  this is because the parabolic nature of  the 
problem requires us to treat the space and time directions differently. On the other 
hand, since (3.12) implies that O~/Ot-T=O(ll(~, z)ll), we shall be able to handle 
the error term which arises from the fact that (3.11) involves only x derivatives. It 
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is mainly for this reason that it is crucial that the quadratic term in (3.12) involve 
the parabolic norm and not the Euclidean norm of (4, z). 

Since Bx is complex valued and in general only C =, a solution to (3.11)--(3.12) 
need not exist. However, let us now argue that i f  certain natural conditions are 
placed on ~ which would guarantee (3.12), then an essentially unique approximate 
solution will exist which will satisfy (3.13) if  the number e > 0  occurring in the 
definition of  w~ is small enough. We shall then see that this approximate solution 
to the eikonal equation will serve our purposes. 

To construct �9 let us first "freeze" x , = y ,  in the coefficients. Then, we must 
consider the real boundary value problem: 

b~(x', y , ,  t, q~x, z) = bz(Y, s, 4, z) 

~ o = 0  when ( x - y ,  4 ) = O  and q~x=4 when (x, t) = (y, s). 

This equation has a unique solution q~(x, t, y, s, 4, z) for small (x, t) is close to 
(y, s). Further, one can check that q~ must be real and be of  the form 

~o --- ( x - y ,  ~ ) + o ( l l ( x -  y, s-t)ll~[l(~, ~)l[). 
Next, we try to solve the following complex boundary value problem involving 

an unknown function O (x, t, y, s, 4, "c): 

Bz(x, t, q~x+~'~, z) = Bx(y, s, 4, z) 

~ k = 0  when x , = y ,  and ~ - - - 0  when (x, t) = (y, s). 

As in (3.11), we need only worry about the case where the parameters (4, z) belong 
to the support o f t 1 .  Since (O/O4,)B~(O, 0, ~ox+~, "c)~0 this is an elliptic non-linear 
boundary value problem; however, as we pointed out before, an exact solution need 
not exist since Bx is complex valued. Nonetheless, results in Treves [13, Chpt. 10], 
[14] imply that an (essentially unique) approximate solution ~k must always exist 
when (x, t) and (y, s) are close and small. This function will be an approximate 
solution in the sense that, for every N, 

(3.14) Bz(x, t, ~ox+~ ,  ~)--Bz(y, s, 4, z) = O([Im ~IN[I(~, ~)111-~), 

and because of  the choice of  q~, it must be of  the form 

(3.15) r = O(Ix , - y , I  211(4, ~)ll)- 

Furthermore, by using (3.10) and Taylor's formula, one can argue that if  the e > 0  
appearing in the definition of  w~ is small enough and fl~(~, z)~0,  

(3.16) Im ~ >= c Ixn-y.I  2 ][(4, z)][, 

where c>0 .  For similar arguments see [10]. As usual, (3.14) will allow us to argue 
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essentially as if  ~9 were an exact solution in what follows, while (3.16) will be crucial 
for the L p estimates of  the parametrix. 

We can now finally say what the phase function �9 in our parametrix (3.9) is. I f  
q~ and ~k are as above, we shall take 

#(x,  t, y, s, 4, z) = q~(x, t, y, s, 4, ~)+O(x, t, y, s, 4, , )+(t-s) , .  

Clearly, then # satisfies (3.12), and 

(3.13') Im �9 _-> c Ix,-y,[Z 11(4, ~)ll- 
Next, set 

a = iA~(x, t, Dx, Dt)(tp+O)ESI,r. 
Then, 

(3.8') A~,(T~v) = (21r)-("+l) f f  d~1(~, z)v(y, s) d~ d'c dy ds+R~,oV, 

where R* is an integral operator whose kernel equals (2~) -("+l) times 1,0 

f i l l  aeiq~ + f G x (x, t, q) x + ~x , Z) fll d~ d~ + O (2-N). (3.17) A~(y , s ,~ , z )  d~dz e i~ Gi (y , s ,~ , z )  

The last term comes from (3.14) and (3.13'). Equation (3.8') resembles (3.8), and, 
in fact, if  we let R~ equal R* plus the operator 1,0 

(3.18) 

(2re)-(" + 1) f f e,t<~- r. r + it- ~),~ fit v d{ d,  dy as - (2z0 - (" + 1) f f e,e fll v d{ dr dy ds, 

then we get (3.8) by taking adjoints. But the equivalence of  phase function lemma, 
Lemma 2.3, implies that the adjoint of  the operator in (3.18) satisfies the same 
bounds as the operator R0 above. Also, since q~+Ox={  when ( x , t ) = ( y , s ) ,  if  
one recalls that Ga is bounded below in the parabolic norm, then it is not hard to 
argue that the integral operator corresponding to the second summand in (3.17) has 
an adjoint satisfying the same bounds. 

Putting all of  this together, we have shown that, if  we now set 

(3.19) R ,iv = (2=)-('+1) f f  fll ae ~ 
A~(y, s, 4, z) vd~d~dyds ,  

then our task would be over if  we could show that TI satisfies the bounds in (3.5), 
while R1,1 satisfies those in (3.6). For later reference we note that, since a E S ~  r, 
the support properties of  fll imply that R1,1 behaves like 2T~. 

Let us first concentrate on proving the desired estimates for T~. First, we define 
the dilated (and transposed) phase functions 

(3.20) ~z(x, t, y, s, 4, z) = --2-i~Cv, s, x, t, 24, 29"~). 

Then, a change of  scale argument and (3.9) implies that the kernel of  T~ equals a 
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constant multiple times 

(3.9') Kl(x, t, y, s) = 2"j- 
ei2Ox(x,t,y,s,~,r) 

L(x, t, r  ~) fl(1 - I ~ [ ) f l ( z -  2r de dz. 

Here we have used the fact that .4z(x, t, 24, 22T)=22L(x, t, r  z), if  .4x 
denotes the complex conjugate. 

Notice that (3.12) implies that on the support of  the integrand 

�9 ~ = ( x - y ,  ~ )+2( t - s ) z+O( lx -y l2+ls - t l ) ,  

which means, that, i f  2 is large but Ix-y[ is small, ~a is close to the model phase 
function ( x - y ,  ~ ) + 2 ( t - s ) z .  The extra factor of  2 with the t - s  variable compli- 
cates things, and we basically have to split the operator T~ as TI=T~~ 1, where 
T~ ~ comes from the part of  the kernel where It-sl is small compared to 2 -1. To 
handle the first piece, we shall apply the estimates in Corollary 2.6 corresponding 
to the special case j = 0 .  On the other hand, to estimate the norm of  Ta 1, we shall 
need to use all o f  the estimates in this oscillatory integral lemma. 

Let us now be more specific about the splitting of  T~. Let q~Co(R ) have the 
property that 

q(s) -- 1 if [sl ~ 1 and q(s) --- 0 if Isl ~ 2. 

We then let ~0 be the integral operator with kernel 

K~ = qO~(t-s))K~, 

and let T1 ~ be the difference between T1 and Ta ~ Of course this means that the kernel 
of  T~ 1 vanishes for [t-s[ smaller than 2 -1. By Minkowski's inequality, we would 
have the desired bounds for T1 if  we could show that both T1 ~ and Tx 1 satisfy (3.5). 

Let  us first handle Tx ~ We noted before that in K~ the s and t variables are 
weighted more heavily by an extra factor of  2. On account of  this, it is more natural 
to consider a dilated version, :~o, of  T1 ~ This will be the integral operator whose 
kernel is 

/~1 ~ (X, t, y, s) = K1 ~ (x, t/2, y, s/2). 

We would have the right estimates for Ta ~ if  we could show that the scaled version 
satisfies 

(3.5.0) II~~ ~ C21-(1/p-1/p') and ITD~~ <= C)~ -1/("+'+1''. 

To prove these, we shall need to take a closer look at the kernel. By (3.9'), 

f eiZ~(x,t,y,s,~,t ) 
(3.21) K~ = 2"n(t-s) L(x , t / ) . ,~- iVw, ,*)  /~( l -1~l) /~(v-2~,)d~d*,  

where 

~a = ~ ( x ,  t/A, y, s/)o, ~, "c) = ( x - y ,  r  + O ( l x - y p  +l(t-s)/2[). 
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Since we need only prove (3.5.0) when 2r~~ 1 acts on functions with small support, we 
see that ff~ is close to the usual Euclidean phase function ( x - y ,  ~)+(t-s)v  when 
2 is large. This fact will allow us to compute the oscillatory integral in (3.21) and 
eventually apply Corollary 2.6. 

To rewrite/~o in a more useful way, recall that the symbol in the last oscillatory 
integral is singular on the set ~ defined in Figure 1. Away from ~, however, it is 
C ~. And, in fact, since L(y, s, ~-iVw~, ~) vanishes only of  first order on this set, 
we are in a situation that is similar to the one studied in [10]. 

In fact, let H:FIy,: Rn+l-,-Rn+l denote the projection onto the n dimensional 
subspace 

H = H, .  = {(x, t): t = 2w'~(y.)x.}cR "+1. 

This is the hyperplane containing the set Z in Figure 1. Unfortunately, Z is not 
a sphere in H, so matters are complicated slightly. Nonetheless, if  one repeats the 
stationary phase arguments in [10], one sees that 

ei,;,~v(x,t,y,s) 
(3.22) ~1 ~ = ~v=o,1)~(n-1)/2av(x, t, y, s) II-l(x- y, t-s)l(n-1)/2[(x- y, t - s ) l  ' 

where av=av, ~ and ~o,,z are C = when H ( x - y ,  t - s ) r  and have the following 
properties. First, there is a fixed non-singular transformation A: H ~ H ,  sending 
the unit sphere into an ellipse so that ( -  1)v% is close to [Al-l(x-y, t-s)l .  To be 
more specific, given e0>0 and N finite, if  (x, t) is close to (y, s) and 2 is large, 

(3.23) ID~[( - 1)vg%-lAII(x-y,  t-s)lll <-- ~01//(x-y,  t - s ) l  1-1~1, 0 -<_ I~1 <= N, 

provided that I I I (x-y ,  t - s ) l=>2-L On the other hand, for each fixed N, the 
functions a~ in (3.22) satisfy 

(3.24) IO~a~l <- C,(1 +2(x , -y , )2 ) -NI l -1(x-y ,  t - s ) l  -I~1. 

The rapid decay in the x, -y , ,  direction of course occurs because of  (3.13'). 
We are now in a position to prove (3.5.0). In the second inequality there, it is 

easy to see that the arguments giving the estimates for ~ = 0  can be adapted to 
prove those for Ictl--1 since D~7]~ ~2~11 when I~l=l .  Therefore, for simplicity, 
we shall only treat the case of  ~=0.  To prove these estimates, we shall need to 
break up the kernel dyadically with respect to the H variables. To this end, choose 
o~C o (R) satisfying 

supp Qc[1/4, 1], and ~ O ( 2 - - k s )  ~--- 1, s > O. 

We then, for k=O, 1, 2 . . . . .  let ~~ be the integral operator with kernel 

10().2-klII(x--y , t--s)l)g ~ k > 0 

/~O'k = [ [ 1 - - Z ] ~  0 Q(22-JIH(x--y, t - -s) l ) ]g  ~ k = 0. 
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We claim that, if B is a small enough ball around (0, 0)ER"•  and if  2 is 
sufficiently large, then Young's inequality and Corollary 2.6 yield 

(3.25) [ITO, kfIILP'fB) --< C21-<I/p-x/~)2-zk/f'+z) [IfIIL"CB) 

(3.26) IJ~l~ _<-- C;~-l/<"+l>(22-~)-t"-'>z2<"+l~llflls, cB >, 

whenever f~C~'(B).  By summing a geometric series, it is plain that these two 
sets of  inequalities imply the desired result. The series converge since ~~ f ( x ) = 0  
when xEB if  k_->log2 and B is small. 

Let us start with (3.25). One can check that, when k = 0 ,  the L'  norm of  the 
kernel is O(,~ 1-~l/p-1/p')) if r satisfies I /r= 1 - ( l / p -  1/p')=n/(n+2). Consequently, 
the estimate in (3.25) for k = 0 follows from Young's inequality. 

To prove the bounds for k > 0 ,  we shall first estimate the mapping properties of 
an operator acting on functions of  one less variable. Recall that a similar argument 
was used in the proof of  Lemma 2.2. This time, if  x. and y, are fixed, and if  x ' =  
(xl, ..., x , - 0 ,  the new operator will be given by 

(3.27) (T~ ', t) = f . .  Xe (x, t, y, s)g(y', s) dy" ds. 

Of course the LP (R") -+ LP" (R ") norm of  this operator equals (2k/2) "tl-~I/p-1/p')J 
times the norm of  the dilated operator 

(3.28) f x, ,  ~t, ~y', y , ,  ~s)g(y', s) dy" ds, ct = 2~12. 

However, if  we use Corollary 2.6 (where the parameters there are j = 0  and /~=2k), 
we see that the operator in (3.28) must have an L P ~ L  p" norm which is 
majorized by 

)~(,- 1)/2 (2k/2)-(,- 1)/z 2-  k(,--I)/,' ((X. -- y,)2 + (2k/2f.)--a/2. 

But, then a little arithmetic shows that if  r=(n+2)/n,  as above, then the LP~L  p" 
norm of  the operator in (3.27) is controlled by a constant multiple of  

)a - ta/p- a/,,) 2 - 2k/f,, +~ ) X [(2/2 k) -1 + 1/, ((X. -- y.)' + (2k12) 2) -- 1/2]. 

Finally since the L'  norm of  the term in the brackets is uniformly bounded, we get 
the desired result from Young's inequality for R, i f  we repeat the argument in the 
proof of  Lemma 2.2. 

Notice that so far we have not used the rapid decay of  the kernel in the x , - y ,  
direction, i.e. (3.24). However, to prove the L P ~ L  p inequalities (3.26) this will 
be crucial. In fact, if  one argues as above, except uses the LP-+L p estimates in 
Corollary 2.6, then one finds that the LP-~L p norm of  the restricted operator 
(3.27) is dominated by 

2-1/t"+1) (22-J) -("-1)/2("+a) • [21/~(1 +2(X. _ y,)2)-~r 
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for every N. However, because the term in the brackets is uniformly in L 1 when 
N > I ,  it is clear that we also get (3.28). This finishes the proof  of  the estimates 
for T1 ~ 

To finish the estimates for the main part  of  the parametrix, we must prove that 
T~ x satisfies 

(3.5.1) [ITIII(,,(~),~'(~)) <---- C and [ID%T~I](L,(B),L,(B)) <= C2 -1-1/(n+l)+lal. 

Since the estimates for ~ a D~T/, [~1 =1 ,  follow from the same arguments, we shall 
only consider the case where ~--0  in the second inequality. 

Recall that the kernel of  T~ 1, 

K~ : [ 1 - . ( 2 ( s - t ) ) ] K ~  

vanishes when 2 - x < - l s - t [ ~  c o where Co can be assumed to be as small as we wish. 
Thus, if  we let 0 be as above and set 

gl ,  J = e(22-Jls- t l )K~,  

then the desired estimates would follow if  we could show that the associated integra 
operator satisfies 

(3.29) 
and 

II T~ jI](LP, L~') <~ C ~-  xlfn+ 2) 2-((n+ l)y)ln(n+ 2) 

1] TI, jI](L", L") ~ C)~ -1-1l(n+l) 2 -((n-Dj)12n(n+l) 

when 0_<-j<=log 4. 
As before, it is more natural to consider a dilated version of  the operator. But 

i n this case the dilated operator, ~ j ,  will have a kernel of  the form 

K~,j = KXa.j(2J x ", xn, ~2Jt, 2Y y ', Y., 22J s). 

Note that /~1 1,j vanishes when Ix ' -y ' l  is larger than a constant times 2 - j  or 
It-siC[I]4, 1]. Furthermore,  the stationary phase arguments that give (3.22) 
imply that 

/~l/,J = ,~v=0.1 ~("-l)/2 av,j(X, t, y, s)2-J((n+l)/2) ei2J~'J(x't'Y's), 

where now (if the support of  B is small) 9v, j can be assumed to satisfy 

", 2-J (x . - -y . ) ,  t-s)l] I <= ~0, 0 =< I~l <= N, 
while 

ID~,,r,Ds <_- C=( l + 2 ( x . -  y.)2) -N, 
for every fixed N. 

I f  one keeps in mind the support  properties of  a~, i and repeats the 
above arguments, then the estimates in Corollary 2.6 for /z=2 and 0_<-j~_log ,~ 
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give that 

ii L,') -~ c[)? -(~Ip-zlp')2"j(~/p-~Ip')] X 

Jl <-- c[ 2-,1("+')2"j] X 2-(( ' - ' ) j /2"( '+l ) ) -  

Since these estimates are equivalent to (3.29), this finishes the proof of  (3.5). 
To finish matters, we have to complete the proof of  (3.6). That is, we need 

to show that the remainder oqerator R~,~ in (3.19) satisfies the bounds in (3.6). 
However, since R~,~2T~, it is not hard to see that the arguments for T~ will also 
give the desired estimates for RL1. This completes the proof of the Carleman in- 
equalities for the operator L. 

4. Appendix: non-isotropic Carleson--Sj61in estimates 

In this section we shall sketch a proof of  Lemma 2.5. As we pointed out before, 
this is just a modification of  arguments in Stein [11]. One of  the main ingredients 
in the proof of  our oscillatory integral lemma is the following L 2 oscillatory integral 
theorem. 

Lemma 4.1. Suppose that aj(x, y) is a function o f  x, yER d which vanishes when 
Ixl or lyF is >=1 or Ix-yl=>2-L In addition assume that 

(4.1) ID~a~(x, Y)I = C, 2jl'l for all ~, 

where the constants are independent o f  j>~O. Let 9(x,  y)CC=(Rd• d) be real 
and satisfy the non-degeneracy condition 

(4.2) det(O2qg/OxjOyD ~ 0 for Ixh ly[ -<- 1. 

Then i f  
(It, j f )  (x) = f R. 2Jd/~ ei2ju~(x' y)aj (x, y ) f (y)  dy, 

it follows that there is a constant C independent o f  j so that 

(4.3) ][ Iu, j f[[ Z'~Rd) <= C# -a/2 Hf[I~=cR~)" 

Proof. The desired inequality holds if  and only if  

(4.3') ]i [~,j lu,j f][ 2 <--_ Clz-d il f]i2. 

But the kernel of the operator in (4.3') is 

(4.4) 2in f a. ei2i#t~(x" ~')-~(x' ~)1 at (X, y) aj (x, z) dx. 

The non-degeneracy hypothesis (4.2) on the phase function means that 

(4.5) IV~[q~(x,y)-qg(x, z)][ -> c l y - z l  some c > 0 
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if  x and z are sufficiently close. After possibly contracting the support of  aj in the 
definition of  I~,.j we can always assume that this is the case in the above oscillatory 
integral. But then, (4.5) and a straightforward integration by parts argument which 
takes into account (4.1) and the support properties of x~a j ( x ,  y) (when y is fixed) 
gives that (4.4) is O(( l+l~ lY-z l )  -u) for any N. This clearly yields (4.3'). II 

We now claim that this gives the LP(R"-I)~LP'(R ") estimates in Lemma 2.5 
for the operators 

(R~, j f )  (y) = fa--12("- 1)j/2 e i2J~(y, z) aj (y, z) f(y)  dy. 

In fact, if we recall (2.7), then Lemma 4.1 with d = ( n - 1 )  implies that whenever 
y,  is fixed 

][(Rt~,jf)(", Yn)I[L2(R "-1) ~ C# -(n-1)/2 ilf[IL'(R"-X). 

Since we are assuming that aj has compact support, this clearly gives (2.11) for 
p - 2 .  Inequality (2.11) is trivial for p = l ,  and, hence, by the M. Riesz 
interpolation theorem, the LP-~L p' estimates in Lemma 2.5 must hold for all 
1 ~ p - < 2 .  

To finish the proof of Lemma 2.5, we need to prove (2.12). However, by inter- 
polating with the trivial inequality for p =  1, one sees it is enough to prove the 
estimate for the other endpoint, which by duality, would follow from 

. < 2 (n+  1) 
(4.6) ][Ru, jf[]L2(Ii,-,)=C2((n-1)12(n+l))J#-(n(n-1)/2(n+l))l]fllLp(R,), p - -  n + 3  

But, if Tu, j=Ru,jR*,3, then 

* 2 - - f a  IlR~,,jfll.a - T~, j f f  dx <= [!Tu,jfHLp'(rt.)l!fllkP(R. ). 

Consequently, (4.6) would be true if  

I 2(n + 1) (4.6') IITu,jflILp'~.) <= C2((n-1)/(n+l))J#-r p = n + 3  

Note that, unlike Ru, j,  the operators Tu, j send functions of n variables to func- 
tions of  n variables. Also, notice that the kernel of Tu, j is 

(4.7) Ku,j(x, z) = fn,-12~n-1)Jei2Jutr (x' y)aj(z,  y) dy. 

The notation may be a bit confusing since now Y=(Yl . . . . .  Y,-1) denotes a 
vector in R"-L Keeping this in mind, let us define an analytic family of  kernels as 
follows. Fix a real qCCo(R ) satisfying r / (s )=l  for s near 0. Then, like in [11], 
we define for ~EC, the analytic family of  distributions 

er f 2("-X)Jei2Jut(r162 y)aj(z,  y)q2(yn)(Yn)+ l+tI dy dyn. 
- r ( o  a R .  
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Then, if T~ r j is the associated integral operator, we have 

T~j=Tg,j, if  ( = 0 .  

Consequently, by invoking Stein's analytic interpolation theorem as in [11], we see 
that (4.6') follows from: 

(4.8) ]lTu;,yfi12 <= C2-J~-"IIfH2, R e ( 0  = 1 

n - 1  
(4.9) llT~,jfll~ <-- c2("-l)Jl]flI1, Re(~) - 2 

Let us start with the first inequality. To begin, note that (4.8) holds if  and only 
i f  the oscillatory integral operators 

f a  ~ ei2MO(x,y)+x.r,Jaj(x, y)rl(y,,)(y,,)+l+r f (y ,  y,,) dy dy n 

send L2--,.-L 2 with norm 0(2-J/2# -'/2) when R e ( ( ) = l .  However, for such (, 
(y,)+l+; is a uniformly bounded function, and so, by taking adjoints, we see that 
we would be done if  we could show that the operators 

2(("- 1)/2)~ JR- e-i2J;,t,(z, y)+ z,,rj a j (z, y) rl (y,) g (z) dz 

enjoy the same mapping properties. This last statement is true if  and only if  the 
integral operators with kernel 

(4.10) 2(.-x)J f R,, ei2J,"t(q'(x,r)-o(=,r))+(x.-z.)y.]aj(x, y)aj(z,  y)q2(y,) dy dy,, 

send L2--,-L 2 with norm 0 (2 -@-" ) .  But, by (2.7) and (2.8), we can assume that 
the n • n matrix 

03 [ Eo(x. 
is non-singular. Therefore, by repeating the proof of Lemma 4.1, one can check that 
the kernel (4.10) is dominated by 

(1 + U I x -  zl)- N (1 + 2J/t IX.-- Z,[) -N 

for any N, if x and z are sufficiently close, as we may always assume. Finally, since 
this means that the L x norm of  the kernel (4.10) is O(2-J#-") ,  we get (4.8). 

To prove the other inequality, (4.9), first recall that 

e ~ 
F(~) f 2= eUJ'~(~"-"")"rf(Y")(Y")+l+~ dy. 

n - 1  
~= O(( l+2Y~lx"-y , I )  ("-~)/2) if Re(()  - 2 



A unique continuation theorem for second order parabolic differential operators 181 

Consequently, since (4.9) holds if  and only if  K~d(x, z)=O(2(~-l)J),  we would be 
done if  we could show that the original kernel in (4.7) satisfies the bounds 

(4.9') Ig~, j (x ,  z)[ ~ C(1 +2-J~lx-zl)-<<"-l)/~). 

To prove this we o f  course have to use our non-degeneracy assumptions (2.7) 
and (2.8) for the phase function ~k. First o f  all, i f  ( x - z ) / [ x - - z l  is in a small fixed 
neighborhood of  •  . . . . .  0, 1)~S ~-1, the second half  o f  (2.8) implies that  

det , y ) - ~ ( z , y  ~clx-z l  some c > 0 .  

This together with the usual stationary phase estimates (see e.g. [5], [11]) gives (4.9') 
in this case. On the other hand, we claim that (2.7) and the first hal f  o f  (2.8) imply 

that, i f  (x-z)/Ix-zl is outside of  a fixed neighborhood of  :k(0 . . . . .  0, 1), then 
K ~ , j = O ( ( l + 2 - J # l x - z l )  -N) for any N, provided that  the amplitudes aj vanish 
outside of  a sufficiently small neighborhood Jr" of  the origin in R n •  "-1. Under  
these assumptions, we have that in ~,, 

IVy[~(x,y)-~(z,y)]l ~clx-zl  some c >0 ,  

which clearly yields the claim by integration by parts.  Thus, i f  the neighborhood 
,,4/" in Lemma 2.5 is sufficiently small we have the desired result, and this completes 
the proof.  
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