Hankel operators between weighted Bergman spaces in the ball

Robert Wallstén

Summary and introduction

Let m denote the Lebesgue measure on the unit ball $B \subset C^{n}$ and let, for $-1<$ $\alpha<\infty, \mu_{\alpha}$ be the measure $c_{\alpha}\left(1-|z|^{2}\right)^{\alpha} d m(z)$, where c_{α} is chosen such that $\mu_{\alpha}(B)=1$, i.e. $c_{\alpha}=(\Gamma(n+\alpha+2)) / \pi^{n} \Gamma(\alpha+1)$.

The closed subspace of all holomorphic functions in $L^{2}\left(d \mu_{\alpha}\right)$ is denoted A^{α} and called a weighted Bergman space. Since A^{α} is closed in $L^{2}\left(d \mu_{\alpha}\right)$ there is a self-adjoint projection P_{α} of $L^{2}\left(d \mu_{\alpha}\right)$ onto A^{α}, which is given by a kernel:

$$
P_{\alpha} f(z)=\int \frac{1}{(1-\langle z, w\rangle)^{n+\alpha+1}} f(w) d \mu_{\alpha}(w)
$$

The big and small Hankel operators can now be defined:

$$
\begin{gathered}
H_{f}(g)=\left(I-P_{\alpha}\right)(f g), \\
\tilde{H}_{f}(g)=\bar{P}_{\alpha}(\overline{f g}) .
\end{gathered}
$$

Here, \bar{P}_{α} denotes the projection onto the subspace $\bar{A}^{\alpha} \subset L^{2}\left(d \mu_{\alpha}\right)$ of anti-holomorphic functions. H_{f} and \widetilde{H}_{f} will be studied as operators from A^{β} into $L^{2}\left(d \mu_{\alpha}\right)$ and the symbol f is assumed to be holomorphic.

For an operator T between Hilbert spaces the singular numbers are defined by $s_{n}(T)=\inf \{\|T-K\|\} ;$ rank $\{(K) \leqq n\}, n \geqq 0$. We denote by S_{p} (Schatten-von Neumann class) the ideal of operators for which $\left\{s_{n}(T)\right\}_{n \geqq 0} \in l^{p}, 0<p<\infty$. In accordance with this definition the class of bounded operators is denoted by S_{∞}. In our case, operators from A^{β} into $L^{2}\left(d \mu_{\alpha}\right)$, the corresponding Schatten-von Neumann class is written $S_{p}^{\beta \alpha}$.

Finally, for $0<p \leqq \infty$ and $-\infty<s<\infty$, we define the Besov space of holomorphic functions by

$$
B_{p}^{s}=\left\{f:\left(1-|z|^{2}\right)^{m-s} \mathscr{R}^{m} f(z) \in L^{p}\left(\left(1-|z|^{2}\right)^{-1} d m\right)\right\}
$$

where $m>s$ is a non-negative integer and $\mathscr{R}=\sum z_{j} \partial / \partial z_{j}$. Generalizing Janson's results [J] for the disk we have

Theorem 1. Let $\alpha, \beta>-1, n \geqq 2$ and $0<p \leqq \infty$.
(i) If $2 n / p<1+\alpha-\beta$, then $H_{f} \in S_{p}^{\beta a}$ iff $f \in B_{p}^{n / p+(\beta-\alpha) / 2}$.
(ii) If $2 n / p \geqq 1+\alpha-\beta$, except in the case $p=\infty$ and $\beta=\alpha+1$, then $H_{f} \in S_{p}^{\beta \alpha}$ only if $H_{f}=0$.
Let b_{∞}^{s} be the closure of the polynomials in B_{∞}^{s}.
Theorem 2. Let $\alpha, \beta>-1$ and $n \geqq 2$.
(i) If $\beta<\alpha+1$, then $H_{f}: A^{\beta} \rightarrow L^{2}\left(d \mu_{\alpha}\right)$ is compact iff $f \in b_{\infty}^{(\beta-\alpha) / 2}$.
(ii) If $\beta \geqq \alpha+1$, then $H_{f}: A^{\beta} \rightarrow L^{2}\left(d \mu_{\alpha}\right)$ is compact only if $H_{f}=0$.

For the small operators we have
Theorem 3. Let $\alpha, \beta>-1$ and $0<p \leqq \infty$. Then $\tilde{H}_{f} \in S_{p}^{\beta \alpha}$ iff $f \in B_{p}^{n / p+(\beta-\alpha) / 2}$.
Theorem 4. Let $\alpha, \beta>-1$. Then $\tilde{H}_{f}: A^{\beta} \rightarrow \bar{A}^{\alpha}$ is compact iff $f \in b_{\infty}^{(\beta-\alpha) / 2}$.
The last two theorems are well-known (cf. Sec. 3) and included here because they are used in the proofs of Theorems 1 and 2.

1. Besov spaces in the ball

The purpose of this section is to state the facts about Besov spaces that we will use. For details and proofs, see e.g. [BB], [CR], [P] and [T].

To begin with, our definition of B_{p}^{s} is independent of the integer m. Indeed, we get an equivalent norm using the differential operators $D^{k}=\partial^{|k|} / \partial z_{1}^{k_{1}} \partial z_{2}^{k_{2}} \ldots \partial z_{n}^{k_{n}}$, k a multi-index:

$$
\begin{equation*}
B_{p}^{s}=\left\{f:\left(1-|z|^{2}\right)^{m-s} D^{k} f(z) \in L^{p}\left(\left(1-|z|^{2}\right)^{-1} d m\right),|k| \leqq m\right\} \tag{1.1}
\end{equation*}
$$

It is immediate that $\mathscr{R}^{u}, u \in \mathbf{R}$, defined by $\mathscr{R}^{u} z^{k}=|k|^{u} z^{k}, k$ a multi-index, and D^{k} define continuous mapping between Besov spaces

$$
\begin{aligned}
& \mathscr{R}^{u}: B_{p}^{s} \rightarrow B_{p}^{s-u} \\
& D^{k}: B_{p}^{s} \rightarrow B_{p}^{s-|k|}
\end{aligned}
$$

and that the Besov spaces are decreasing in s

$$
B_{p}^{s_{1}} \cong B_{p}^{s_{2}}, \quad s_{1} \geqq s_{2}
$$

The property of Besov spaces that will be especially useful to us is decomposition into "atoms":

Lemma 0. Let $0<p \leqq 1,-\infty<s<\infty$ and suppose that $N>n / p-s$. Then there exists a sequence $\left\{\xi_{i}\right\} \subset B$ such that every $f \in B_{p}^{s}$ can be written

$$
f(z)=\sum_{i} \lambda_{i}\left(1-\left|\xi_{i}\right|^{2}\right)^{N+s-n / p}\left(1-\left\langle z, \xi_{i}\right\rangle\right)^{-N}
$$

with

$$
\sum_{i}\left|\lambda_{i}\right|^{p} \leqq C\|f\|_{B_{p}^{z}}^{p}
$$

Proof. For $s<0$ this is Theorem 2 in [CR]. If $0 \leqq s<1$, then $T: B_{p}^{s} \rightarrow B_{p}^{s-1,}$ defined by $T=I d+(N-1)^{-1} \mathscr{R}$, is continuous and injective. T is also surjective, since

$$
\sum_{i} \lambda_{i}\left(1-\left|\xi_{i}\right|^{2}\right)^{N+s-1-n / p}\left(1-\left\langle z, \xi_{i}\right\rangle\right)^{-N}
$$

is the image under T of

$$
\sum_{i} \lambda_{i}\left(1-\left|\xi_{i}\right|^{2}\right)^{N-1+s-n / p}\left(1-\left\langle z, \xi_{i}\right\rangle\right)^{-N+1}
$$

By the Open Mapping Theorem, T is an isomorphism. The lemma follows by induction.

The converse of the Lemma is also true, because the B_{p}^{s}-norm to the power p is a metric.

2. The cut-off

Proposition 1. Let $\alpha, \beta>-1,0<p<\infty, n \geqq 2$ and let f be a homogeneous polynomial of degree 1. Then
(i) $H_{f} \in S_{p}^{\beta \alpha}$ iff $2 n / p<1+\alpha-\beta$.
(ii) $H_{f} \in S_{\infty}^{\beta \alpha}$ iff $0 \leqq 1+\alpha-\beta$.
(iii) $H_{f}: A^{\beta} \rightarrow L^{2}\left(d \mu_{\alpha}\right)$ is compact iff $0<1+\alpha-\beta$.

Proof. Since the properties in question are invariant under a linear change of variables and $H_{f} L=L H_{L^{-1} f}$, where L is composition with such a change of variables, we may assume that $f(z)=z_{1}$. Let $k=\left(k_{1}, \ldots, k_{n}\right)$ be a multi-index and let $\gamma_{k, \alpha}$ denote the norm of z^{k} in A^{α}. Then, for $k_{1} \geqq 1$,
and

$$
P_{a}\left(\bar{z}_{1} z^{k}\right)=\frac{\left\langle\bar{z}_{1} z^{k}, z^{\left(k_{1}-1, k_{2}, \ldots, k_{n}\right)}\right\rangle}{\gamma_{\left(k_{1}-1, k_{2}, \ldots, k_{n}\right), \alpha}^{2}} z^{\left(k_{1}-1, k_{2}, \ldots, k_{n}\right)}
$$

$\left\|H_{z_{1}}\left(z^{k}\right)\right\|_{\alpha}^{2}=\left\|\bar{z}_{1} z^{k}\right\|_{\alpha}^{2}-\left\|P_{\alpha}\left(\bar{z}_{1} z^{k}\right)\right\|_{\alpha}^{2}= \begin{cases}\gamma_{\left(1, k_{2}, \ldots, k_{n}\right), \alpha}^{2} & \text { if } k_{1}=0 \\ \gamma_{\left(k_{1}+1, k_{2}, \ldots, k_{n}\right), \alpha}^{2}-\frac{\gamma_{k, \alpha}^{4}}{\gamma_{\left(k_{1}-1, k_{2}, \ldots, k_{n}\right), \alpha}^{2}} & \text { if } k_{1} \geqq 1 .\end{cases}$

Further $\gamma_{k, a}^{2}=\frac{k!\Gamma(n+\alpha+1)}{\Gamma(|k|+n+\alpha+1)}$, and a calculation yields

$$
\begin{equation*}
\left\|H_{z_{1}}\left(\frac{z^{k}}{\gamma_{k, \beta}}\right)\right\|_{a}^{2} \asymp\left(1-\frac{k_{1}}{|k|+n+\alpha}\right)(|k|+1)^{\beta-\alpha-1} . \tag{2.1}
\end{equation*}
$$

It is easily seen that $\left\{H_{z_{1}}\left(z^{k}\right)\right\}$ are orthogonal, and since $\frac{z^{k}}{\gamma_{k, \beta}}$ is an ON-basis in A^{β}, it follows that $\left\|H_{z_{1}}\left(\frac{z^{k}}{\gamma_{k, \beta}}\right)\right\|_{\alpha}$ are the singular numbers of $H_{z_{1}}$. Hence (2.1) proves (ii) and (iii).

As to (i) we have

$$
\begin{gathered}
\left\|H_{z_{1}}\right\|_{S_{p}^{\beta}}^{p} \asymp \sum_{k}\left(1-\frac{k_{1}}{|k|+n+\alpha}\right)^{p / 2}(|k|+1)^{p / 2(\beta-\alpha-1)} \\
=\sum_{l=0}^{\infty}(l+1)^{p / 2(\beta-\alpha-1)} \sum_{m=0}^{l}\binom{m+n-2}{m}\left(\frac{m+n+\alpha}{l+n+\alpha}\right)^{p / 2} \\
\asymp \sum_{l=0}^{\infty}(l+1)^{p / 2(\beta-\alpha-1)} \sum_{m=0}^{l}(m+1)^{n-2}\left(\frac{m+1}{l+1}\right)^{p / 2} \asymp \sum_{l=0}^{\infty}(l+1)^{p / 2(\beta-\alpha-1)+n-1}
\end{gathered}
$$

Now the second parts of Theorems 1 and 2 follow as in [J].

3. The small operator

Theorems 3 and 4 are, as stated earlier, well known, at least in the case $1 \leqq p \leqq \infty$ and $\alpha=\beta$, see [A] or [JPR], where the results are stated for the associated bilinear form $\tilde{H}_{f}\left(g_{1}, g_{2}\right)=\int \tilde{f} g_{1} g_{2} d \mu_{2}$. A proof in the general case can be obtained following e.g. [A]. When $0<p \leqq 1$ the sufficiency part is a simple consequence of Lemma 0 . For the necessity part one picks an even integer $l>n / p+(\beta-\alpha) / 2$ and considers the bilinear forms $\left(g_{1}, g_{2}\right) \mapsto \tilde{H}_{f}\left(D^{k_{1}} g_{1}, D^{k_{2}} g_{2}\right),\left|k_{i}\right| \leqq l / 2$, which are S_{p} forms on $B_{2}^{(1 / 2)-(1+\beta) / 2} \times B_{2}^{(1 / 2)-(1+\alpha) / 2}$. Then Semmes' method [S] yields $f \in B_{p}^{(n / p)+(\beta-\alpha) / 2}$.

4. The case $p \leqq 1$

Lemma 0 reduces the sufficiency proof to an estimate of the S_{p}-norms for symbols of the type $(1-\langle z, \xi\rangle)^{N}$, which will be done in this section. Let $M_{\zeta}^{s} f(z)=$ $(1-\langle z, \zeta\rangle)^{-s} f(z), s \in \mathbf{R}$. We then have

Lemma 1. If $0<p \leqq 2, \alpha-\beta>2 n / p, s<n / 2[(\alpha-\beta) / n]$ and $(\alpha-\beta) / n \notin \mathbf{Z}$, then

$$
\left\|M_{\zeta}^{s}\right\|_{p_{p}\left(A^{\beta}, A^{x}\right)} \leqq C .
$$

Proof. By unitary invariance we may assume that $\zeta=(t, 0, \ldots, 0), t>0$. If $s<1 / 2$, then

$$
\left\|M_{\zeta}^{s}\left(z^{k}\right)\right\|_{\alpha}^{2}=c \int_{B_{n}}\left|1-t z_{1}\right|^{-2 s}\left|z^{k}\right|^{2}\left(1-|z|^{2}\right)^{\alpha} d m(z)
$$

does not change if t is replaced by $e^{i \theta} t, e^{i \theta} \in \mathbf{T}$. Then integrate over \mathbf{T} with respect to $d \theta / 2 \pi$ to get

$$
\left\|M_{\zeta}^{s}\left(z^{k}\right)\right\|_{\alpha}^{2} \leqq C\left\|z^{k}\right\|_{\alpha}^{2}
$$

and the S_{p}-estimate follows by the inequality $\|T\|_{S_{p}}^{p_{1}} \leqq \sum_{i}\left\|T e_{i}\right\|^{p},\left\{e_{i}\right\}$ any ONbasis.

If $1 / 2 \leqq s<n / 2$, we have

$$
\begin{gathered}
\left\|M_{\zeta}^{s}\left(z^{k}\right)\right\|_{\alpha}^{2}=c_{\alpha} \int_{B_{n}}\left|1-t z_{1}\right|^{-2 s}\left|z^{k}\right|^{2}\left(1-|z|^{2}\right)^{\alpha} d m(z) \\
=C \int_{0}^{1} r_{1}^{2|k|+2 n-1}\left(1-r_{1}^{2}\right)^{\alpha} d r_{1} \int_{S_{n-1}}\left|1-t r_{1} \eta_{1}\right|^{-2 s}\left|\eta^{k}\right| d \sigma(\eta) \\
=C \int_{0}^{1} r_{1}^{2|k|+2 n-1}\left(1-r_{1}^{2}\right)^{\alpha} d r_{1} \int_{B_{n-1}}\left|1-t r_{1} z_{1}\right|^{-2 s}\left|z_{1}\right|^{2 k_{1}} \ldots\left|z_{n-1}\right|^{2 k_{n-1}\left(1-|z|^{2}\right)^{k_{n}} d m(z)} \\
=C \int_{0}^{1} r_{1}^{2|k|+2 n-1}\left(1-r_{1}^{2}\right)^{\alpha} d r_{1} \int_{0}^{1} r_{2}^{2\left(k_{1}+\ldots+k_{n-1}\right)+2 n-3}\left(1-r_{2}^{2}\right)^{k_{n}} \\
\int_{S_{n-2}}\left|1-t r_{1} r_{2} \eta_{1}\right|^{-2 s}\left|\eta_{1}\right|^{2 k_{1}} \ldots\left|\eta_{n-1}\right|^{2 k_{n-1}} d \sigma(\eta)=\ldots \\
=C \int_{0}^{1} r_{1}^{2|k|+2 n-1}\left(1-r_{1}^{2}\right)^{\alpha} d r_{1} \ldots \int_{0}^{1} r_{n-1}^{2\left(n+k_{2}\right)+2 n-1-2(n-1-1)}\left(1-r_{n-1}^{2}\right)^{k_{3}} \\
\qquad \int_{U}\left|1-t r_{1} r_{2} \ldots r_{n-1} z\right|^{-2 s}|z|^{2 k_{1}}\left(1-|z|^{2}\right)^{k_{2}} d m(z) \\
\leqq C \int_{0}^{1}\left(1-r_{1} r_{2} \ldots r_{n}\right)^{1-2 s} r_{n}^{2 k_{1}+1}\left(1-r_{n}^{2}\right)^{k_{2}} r_{n-1}^{2\left(k_{1}+k_{2}\right)+3} \\
\left(1-r_{n-1}^{2}\right)^{k_{3}} \ldots r_{1}^{2|k|+2 n-1}\left(1-r_{1}^{2}\right)^{\alpha} d r_{1} d r_{2} \ldots d r_{n} \\
\asymp \int_{0}^{1}\left(1-r_{1}^{2} r_{2}^{2} \ldots r_{n}^{2}\right)^{1-2 s}\left(r_{n}^{2}\right)^{k_{1}}\left(1-r_{n}^{2}\right)^{k_{2}}\left(r_{n-1}^{2}\right)^{k_{1}+k_{2}+1}\left(1-r_{n-1}^{2}\right)^{k_{3}} \ldots\left(r_{1}^{2}\right)^{|k|+n-1}\left(1-r_{1}^{2}\right)^{\alpha} \\
r_{1} r_{2} \ldots r_{n} d r_{1} d r_{2} \ldots d r_{n} \asymp \int_{0}^{1}\left(1-r_{1} r_{2} \ldots r_{n}\right)^{1-2 s} r_{n}^{k_{1}}\left(1-r_{n}\right)^{k_{2}} r_{n-1}^{k_{1}+k_{2}+1}\left(1-r_{n-1}\right)^{k_{3}} \\
\ldots r_{3}^{|k|+n-1}\left(1-r_{1}\right)^{\alpha} d r_{1} d r_{2} \ldots d r_{n}=\sum_{j=0}^{\infty} \frac{\Gamma(j+2 s-1)}{\Gamma(j+1) \Gamma(2 s-1)} \int_{0}^{1} r_{n}^{k_{1}+j}\left(1-r_{n}\right)^{k_{2}} d r_{n} \\
\times \int_{0}^{1} r_{n-1}^{k_{1}+k_{2}+1+j}\left(1-r_{n-1}\right)^{k_{3}} d r_{n-1} \ldots \int_{0}^{1} r_{1}^{|k|+n-1}\left(1-r_{1}\right)^{\alpha} d r_{1} \\
\\
=\sum_{j=0}^{\infty} \frac{\Gamma(j+2 s-1)}{\Gamma(j+1) \Gamma(2 s-1)} \frac{\Gamma\left(k_{1}+j+1\right) \Gamma\left(k_{2}+1\right)}{\Gamma\left(k_{1}+k_{2}+2+j\right)} \\
\times \frac{\Gamma\left(k_{1}+k_{2}+2+j\right) \Gamma\left(k_{3}+1\right)}{\Gamma\left(k_{1}+k_{2}+k_{3}+3+j\right)} \ldots \frac{\Gamma(|k|+n+j) \Gamma(\alpha+1)}{\Gamma(|k|+n+\alpha+1+j)}
\end{gathered}
$$

$$
\begin{gathered}
=\Gamma(\alpha+1) k_{2}!k_{3}!\ldots k_{n}!\sum_{j=0}^{\infty} \frac{\Gamma(j+2 s-1)}{\Gamma(2 s-1) \Gamma(j+1)} \frac{\Gamma\left(k_{1}+j+1\right)}{\Gamma(|k|+n+\alpha+1+j)} \\
=\frac{\Gamma(\alpha+1) k!}{\Gamma(|k|+n+\alpha+1)} \sum_{j=0}^{\infty} \frac{(2 s-1)_{j}\left(k_{1}+1\right)_{j}}{(|k|+n+\alpha+1)_{j} j!} \\
=\frac{\Gamma(\alpha+1) k!}{\Gamma(|k|+n+\alpha+1)} \frac{\Gamma(|k|+n+\alpha+1) \Gamma\left(|k|+n+\alpha+1-k_{1}-1-2 s+j\right)}{\Gamma(|k|+n+\alpha+1-2 s+1) \Gamma\left(|k|+n+\alpha+1-k_{1}-1\right)} \\
\quad \prec \gamma_{k, \alpha}^{2}(|k|+1)^{2 a-1}\left(|k|-k_{1}+1\right)^{1-2 s}=\gamma_{k, \alpha}^{2}\left(1-\frac{k_{1}}{|k|+1}\right)^{1-2 s},
\end{gathered}
$$

whence

$$
\left\|M_{\zeta}^{s}\left(\frac{2^{k}}{\gamma_{k, \beta}}\right)\right\|_{\alpha} \leqq c\left(1-\frac{k_{1}}{|k|+1}\right)^{1 / 2-s}(|k|+1)^{(\beta-\alpha) / 2}
$$

and

$$
\begin{gathered}
\left\|M_{\zeta}^{s}\right\|_{S_{p}\left(A^{\beta}, A^{\alpha}\right)}^{p} \leqq c \sum_{k}\left(1-\frac{k_{1}}{|k|+1}\right)^{p(1 / 2-s)}(|k|+1)^{p((\beta-\alpha) / 2)} \\
=\sum_{l=0}^{\infty}(l+1)^{p((\beta-\alpha) / 2)} \sum_{m=0}^{l}\binom{m+n-2}{m}\left(\frac{m+1}{l+1}\right)^{p(1 / 2-s)} \\
\asymp \sum_{l=0}^{\infty}(l+1)^{p((\beta-\alpha) / 2)} \sum_{m=0}^{l}(m+1)^{n-2}\left(\frac{m+1}{l+1}\right)^{p(1 / 2-s)} \\
\asymp \sum_{l=0}^{\infty}(l+1)^{p((\beta-\alpha) / 2)+n-1}<\infty
\end{gathered}
$$

if $\alpha-\beta>2 n / p$. If $s<n / 2[(\alpha-\beta) / n]=n / 2 \cdot m$ and $(\alpha-\beta) / n \notin \mathbf{Z}$, we pick p_{0} such that $2 n /(\alpha-\beta)<p_{0} \leqq \min (p, 2 / m)$ and put $\alpha(i)=\beta+i / m(\alpha-\beta)$. Then

$$
\left\|M_{\zeta}^{s / m}\right\|_{s_{m p_{0}}\left(A^{\alpha(i)}, A^{\alpha(i+1)}\right)} \leqq C, \quad 0 \leqq i \leqq m-1
$$

The lemma follows by the Schatten-Hölder inequality and the inclusion $S_{p_{0}} \subseteq S_{p}$.

Lemma 2. If $\alpha-\beta>n-1$ and $N \geqq s+1$, then

$$
\left\|H_{\left(1-\langle z, \zeta)^{N}\right.} M_{\xi}^{\xi}\right\|_{s_{2}^{\beta \alpha}} \leqq C .
$$

Proof. Let $\left.b(z)=(1-\langle z, \zeta\rangle)^{N} \overline{(1-\langle z, \zeta\rangle}\right)^{-s}$. Then $H_{(1-\langle z, \zeta\rangle)^{N}} M_{\zeta}^{s}=H_{b}$. The first derivatives of b are bounded on B by a constant independent of ζ. Hence we have

$$
\begin{aligned}
& \left\|H_{(1-\langle z, \zeta\rangle)^{N}} M_{\zeta}^{s}\right\|_{S_{2}^{\beta \alpha}}=\left\|H_{b}\right\|_{S_{2}^{\beta \alpha}} \leqq \iint\left|\frac{b(z)-b(w)}{(1-\langle z, w\rangle)^{n+\alpha+1}}\left(1-|w|^{2}\right)^{\alpha-\beta}\right|^{2} d \mu_{\beta}(w) d \mu_{\alpha}(z) \\
& \leqq C \iint \frac{\left(1-|w|^{2}\right)^{2 \alpha-\beta}}{|1-\langle z, w\rangle|^{2 n+2 \alpha+1}} d m(w) d \mu_{\alpha}(z) \leqq C \int\left(1-|w|^{2}\right)^{\alpha-\beta-n} d m(w)=C
\end{aligned}
$$

Lemma 3. If $0<p \leqq 1, \alpha-\beta>2 n / p-1$ and $N \geqq \alpha-\beta-n / p+n+1$, then

$$
\left\|H_{\left(1-\langle z, \zeta)^{N}\right.} M_{\zeta}^{\alpha-\beta}\right\|_{S_{p}^{\beta \alpha}} \leqq C .
$$

Proof. Define q by $1 / q=1 / p-1 / 2$. Choose γ such that $\alpha-n+1>\gamma>\beta+2 n / q$ and $(\gamma-\beta) / n \notin \mathbf{Z}$. Let $s=1 / 2(\gamma-\beta)-n / 2<n / 2[(\gamma-\beta) / n]$. Then, by Lemma 1,

$$
\left\|M_{\xi}^{3}\right\|_{S_{q}\left(A^{\beta}, A^{\gamma}\right)} \leqq C .
$$

Since $\alpha-\gamma>n-1$ and $2(\alpha-\beta-s)=2 \alpha-\beta-\gamma+n$ we have by Lemma 2 also

$$
\left\|H_{\left(1-\langle z, \zeta)^{N}\right.} M_{\xi}^{\alpha-\beta-s}\right\|_{S_{z}\left(A^{\gamma}, L^{2}\left(d \mu_{\alpha}\right)\right)} \leqq C
$$

The lemma follows by the Schatten-Hölder inequality.
Lemma 4. If $0<p \leqq 1, \alpha-\beta>2 n / p-1$ and $N \geqq \alpha-\beta-n / p+n+1$, then

$$
\| H_{(1-\langle z, \zeta\rangle)-N \|_{S_{p}^{\beta \alpha}} \equiv C\left(1-|\zeta|^{2}\right)^{((\alpha-\beta) / 2)-N} .}
$$

Proof. Let φ_{ζ} be the involution that takes 0 to ζ and define

$$
V_{\zeta}^{\alpha} f(z)=f \circ \varphi_{\zeta}(z)\left(\frac{1-|\zeta|^{2}}{(1-\langle z, \zeta\rangle)^{2}}\right)^{(n+\alpha+1) / 2}
$$

Then V_{ζ}^{α} is an isometry of $L^{2}\left(d \mu_{\alpha}\right)$ onto itself which maps A^{α} onto itself, and we have

$$
\begin{gathered}
V_{\zeta}^{\alpha} H_{(1-\langle z, \zeta\rangle)^{-N}}=H_{\left(1-\left\langle\varphi_{\zeta}(z), \zeta\right\rangle\right)^{-N}} V_{\zeta}^{\alpha}=\left(I-P_{\alpha}\right) \overline{\left(1-\left\langle\varphi_{\zeta}(z), \zeta\right\rangle\right)}{ }^{-N} V_{\zeta}^{\alpha} \\
=\left(I-P_{\alpha}\right)\left(\frac{1-|\zeta|^{2}}{1-\langle z, \zeta\rangle}\right)^{-N}\left(\frac{1-|\zeta|^{2}}{(1-\langle z, \zeta\rangle)^{2}}\right)^{(\beta-\alpha) / 2} V_{\zeta}^{\beta} \\
=\left(1-|\zeta|^{2}\right)^{((\alpha-\beta) / 2)-N} H_{(1-\langle z, \zeta\rangle)^{N} M_{\zeta}^{\alpha-\beta} V_{\zeta}^{\beta}}
\end{gathered}
$$

and Lemma 3 yields the required estimate.
The sufficiency part of Theorem 1 for $p \leqq 1$ now follows by Lemmas 0 and 4 .

5. The case $p=\infty$

Lemma 5. Suppose that $\alpha>-1, s<1 / 2,-1<\gamma<\alpha$ and $-1<\gamma+s<\alpha$. Then

$$
\int_{B} \frac{|f(z)-f(w)|}{|1-\langle z, w\rangle|^{n+\alpha+1}}\left(1-|z|^{2}\right)^{y} d m(z) \leqq C\left(1-|w|^{2}\right)^{y-\alpha+s}\|f\|_{B_{\infty}^{s}}
$$

Note that we get cut-off $s<1 / 2$ when $n>1$ in contrast to $s<1$ when $n=1$. This is connected with the boundary behaviour of holomorphic Lipschitz functions ($B_{\infty}^{s}=H(B) \cap \Lambda_{s}$ when $0<s<1$). See Ch. 6 in [R].

Proof. If we can prove the inequality

$$
\begin{equation*}
|f(z)-f(w)| \leqq C\|f\|_{B_{\infty}^{s}}|1-\langle z, w\rangle|^{s}, \quad 0<s<\frac{1}{2} \tag{5.1}
\end{equation*}
$$

then the lemma follows as in [J].
To prove (5.1) we assume, for simplicity, that $n=2$. By unitary invariance, we may also assume that $w=(\varrho, 0), \varrho>0$. Write $z=\left(r_{1} e^{i \varphi_{1}}, r_{2} e^{i \varphi_{2}}\right),\left|\varphi_{i}\right| \leqq \pi$, and put $\mu=\left(r_{1}^{2} \varphi_{1}+r_{2}^{2} \varphi_{2}\right) /\left(r_{1}^{2}+r_{2}^{2}\right)$. We have

$$
\begin{gathered}
|f(z)-f(w)| \leqq\left|f(z)-f\left(\varrho \frac{z}{|z|}\right)\right|+\left|f\left(\varrho \frac{z}{|z|}\right)-f\left(\frac{\varrho}{|z|} e^{i \mu}\left(r_{1}, r_{2}\right)\right)\right| \\
+\left|f\left(\frac{\varrho}{|z|} e^{i \mu}\left(r_{1}, r_{2}\right)\right)-f\left(\frac{\varrho}{|z|}\left(r_{1}, r_{2}\right)\right)\right|+\left|f\left(\frac{\varrho}{|z|}\left(r_{1}, r_{2}\right)\right)-f(w)\right|=\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4} .
\end{gathered}
$$

Note that when z and w lie on the same complex line through the origin (5.1) is trivial, since then $|z-w| \leqq|1-\langle z, w\rangle|$. This argument takes care of Δ_{1} and $\Delta_{\mathbf{3}}$.

To deal with Δ_{2} and Δ_{4}, recall that f is $\Lambda_{2 s}$ along complex-tangential curves, Th. 6.4.10 in [R]. To finish the proof we need only find the appropriate curves. These are suitable portions of $t \rightarrow\left(\varrho /|z| r_{1} e^{i\left(\mu+t \theta_{1}\right)}, \varrho /|z| r_{2} e^{i\left(\mu+t \theta_{2}\right)}\right)$, where $\theta_{1}=r_{2}^{2}\left(\varphi_{1}-\varphi_{2}\right) /\left(r_{1}^{2}+r_{2}^{2}\right)$ and $\theta_{2}=r_{1}^{2}\left(\varphi_{2}-\varphi_{1}\right) /\left(r_{1}^{2}+r_{2}^{2}\right)$, and $t \mapsto(\varrho /|z| \cos t, \varrho /|z| \sin t)$. The lengths of these curves are clearly less than $c|z-w|$, whence

$$
\left|\Delta_{i}\right| \leqq C\|f\|_{B_{\infty}^{s}}|z-w|^{2 s} \leqq C\|f\|_{B_{\infty}^{s}}|1-\langle z, w\rangle|^{s}, \quad i=2,4 .
$$

Define $L_{q}^{s}=\left\{f\right.$ measurable: $\left.\left(1-|z|^{2}\right)^{-s} f(z) \in L_{q}\right\}$. Then we have
Lemma 6. Suppose that $-1<\alpha<\infty$ and $s<1 / 2$. Let $f \in B_{\infty}^{s}$ and define

$$
K(z, w)=\frac{\overline{f(z)}-\overline{f(w)}}{(1-\langle z, w\rangle)^{n+\alpha+1}}
$$

If $0<t<\alpha+1,0<s+t<\alpha+1$ and $1 \leqq q \leqq \infty$, then the mappings

$$
u(z) \mapsto \int|K(z, w)| u(w) d \mu(w)
$$

and $u(z) \mapsto \int K(z, w) u(w) d \mu_{\alpha}(w)$ map L_{q}^{-s-t} into L_{q}^{-t}. In particular H_{f} then maps B_{q}^{-s-t} into L_{q}^{-t}.

Proof. For $q=1$ and $q=\infty$ this follows from Lemma 5 with $\gamma=t-1$ and $\gamma=\alpha-s-t$. The case $1<q<\infty$ follows by interpolation.

Taking $q=2, t=(\alpha+1) / 2$ and $s=(\beta-\alpha) / 2$ we obtain $H_{f} \in S_{p}^{\beta \alpha}$, provided $s<1 / 2$ and $s+t<\alpha+1$, i.e. $\beta-\alpha<1$ and $\beta-\alpha<\alpha+1$. The restriction $\beta-\alpha<\alpha+1$ can be avoided if we, as in [J], use the integral representation of $H_{f} P_{\alpha+1}$, given by the kernel K of Lemma 7.

Lemma 7. Suppose that $\alpha>-1$ and $s<1 / 2$. Let $f \in B_{\infty}^{s}$ and define

$$
K(z, w)=\frac{\overline{f(z)}-\overline{f(w)}}{(1-\langle z, w\rangle)^{n+\alpha+2}}-(n+\alpha+1)^{-1} \frac{\overline{R f(w)}}{(1-\langle z, w\rangle)^{n+\alpha+1}}
$$

If $-1<\gamma<\alpha$ and $-1<\gamma+s<\alpha+1$, then

$$
\int K(z, w) \mid\left(1-|z|^{2}\right)^{\gamma} d m(z) \leqq c\left(1-|w|^{2}\right)^{\gamma-\alpha-1+s}\|f\|_{B_{\infty}^{s}}
$$

If $-1<\gamma<\alpha+1$ and $0<\gamma+s<\alpha+1$, then $\int|K(z, w)|\left(1-|w|^{2}\right)^{\gamma} d m(w) \leqq$ $c\left(1-|z|^{2}\right)^{\gamma-\alpha-1+s}\|f\|_{B_{\infty}^{s}}$.

Consequently, if $0<t<\alpha+1,0<s+t$ and $1 \leqq q \leqq \infty$, then the mappings $u(z) \mapsto$ $\int|K(z, w)| u(w) d \mu_{z+1}(w)$ and $u(z) \mapsto \int K(z, w) u(w) d \mu_{\alpha+1}(w)$ map L_{q}^{-s-t} into L_{q}^{-t}. In particular, H_{f} then maps B_{q}^{-s-t} into L_{q}^{-t}.

Proof. As in [J].

6. The case $1<p<\infty$ and compactness

This far we have proved Theorem 1 for $p \leqq 1$ and $p=\infty$. To settle the case $1<p<\infty$ we use, as in [J], interpolation.

Suppose that $\alpha, \beta>-1$ and $1<p<\infty$. If $2 n<1+\alpha-\beta$, then the cut-off causes no trouble. Otherwise let $\gamma=\beta+2 n / p$. Then $-1<\gamma<\alpha+1$ and $\gamma-2 n<$ $\alpha+1-2 n$. Defines the fractional integration I^{s}, for complex s, by

$$
I^{s} g(z)=\sum_{k} \hat{g}(k)(|k|+1)^{-s} z^{k}
$$

and define $T_{z}(f)$ to be $H_{f} I^{n z}$. Then I^{s} is an isomorphism of A^{y} onto $B_{2}^{-(1+y-2 R e s) / 2}$. As in $\S 5$ the norm in $S_{1}\left(B_{2}^{-(1+\gamma-2 n) / 2}, L^{2}\left(d \mu_{\alpha}\right)\right)$ of H_{f} can be shown to be bounded by a constant times the norm of f in $B_{1}^{(\gamma-2 n-\alpha) / 2}$. It follows that $\left\{T_{z}\right\}$ map $B_{\infty}^{(\gamma-\alpha) / 2}$ into $S_{\infty}^{\gamma \alpha}$ when $\operatorname{Re} z=0$, and $B_{1}^{(\gamma-\alpha) / 2}$ into $S_{1}^{\gamma \alpha}$ when $\operatorname{Re} z=1$. By the abstract Stein interpolation theorem [CJ], $T_{1 / p}$ maps $B_{p}^{(\gamma-\alpha) / 2}$ into $S_{p}^{\gamma \alpha}$. Therefore $H_{f}=$ $T_{1 / p} I^{n / p} \in S_{p}^{\beta \alpha}$ if $f \in B_{p}^{(n / p)+(\beta-\alpha) / 2}$, and the proof of Theorem 1 is complete.

The proof of Theorem 2 is the same as for $n=1$.

References

[A] Ahlmann, M., The trace ideal criterion for Hankel operators on the weighted Bergman space $A^{2, \alpha}$ in the unit ball of \mathbf{C}^{n}, Technical report, Lund, 1984.
[BB] Beatrous, F. and Burbea, J., Sobolev spaces of holomorphic functions in the ball, Pitman Research Notes in Math, Pitman, London, to appear.
[CR] Coifman, R. R. and Rochberg, R., Representation theorems for holomorphic and harmonic functions in L^{p}, Asterisque 77, 11-66.
[E] Erdélyi, A. et al., Higher transcendental functions, Vol. 1, Mc-Graw-Hill, New York-Toronto-London, 1955
[J] Janson, S., Hankel operators between weighted Bergman spaces, Ark. Mat. 26 (1988), 205-219.
[JPR] Janson, S., Peetre, J. and Rochberg, R., Hankel forms and the Fock space, Revista Mat. Ibero-Amer. 3 (1987), 61-138.
[P] Peetre, J., New thoughts on Besov spaces, Duke Univ. Math. Ser. 1, Durham, 1976.
[R] Rudin, W., Function theory in the unit ball of \mathbf{C}^{n}, Springer, New York-Heidelberg-Berlin, 1980.
[S] Semmes, S., Trace idea criteria for Hankel operators, and applications to Besov spaces, Integral Equations Operator Theory 7 (1984), 241-281.
[T] Triebel, H., Theory of function spaces, Birkhäuser, Basel—Boston-Stuttgart, 1983.

Robert Wallstén Uppsala University Department of Mathematics Thunbergsvãgen 3 S-752 38 Uppsala Sweden

