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Abstract. We prove that, if 7 is a simple smooth curve in the unit sphere in C n, the space o 
pluriharmonic functions in the unit ball, continuous up to the boundary, has a trace of finite cof 
dimension in the space of all continuous functions on the curve. 

1. Introduction 

Let B, be the unit ball in C", S its boundary and consider a simple smooth 
curve, 2) in S. I t  has been known for some time that 7 is an interpolating set for 
the ball algebra if and only if ~ is complex tangential (see [2], [3], [5], [6] and [9]). In 
other words, ~ has the proper ty  that any continuous function on 7 extends to a con- 
tinuous function on B,, holomorphic in B,, if  and only if at each point of  ~ its tan- 
gent vector lies in the complex tangent space of  S at that point. In this paper we 
will treat the corresponding extension problem for pluriharmonic functions. We 
say that  E c S  is a set ofpluriharmonic interpolation if  any continuous function 
On E can b e  extended to a continuous function on B,, which is pluriharmonic in 
B,. E is said to be a set o f  almost pluriharmonic interpolation i f  the space of  Con- 
t inuous functions on E with this property has finite codimension in t he  space of  all 
continuous functions. The first paper to t r e a t  the pluriharmonic interpolation 
problem was [1]. There it is proved that ~ is a set of  almost pluriharmonic interpola- 
tion if ~ is transversal to the complex structure. This means that at no point o f  
its tangent vector should lie in the complex tangent plane o f  S. One instance when 
this condition is satisfied is when ~ is the boundary of  a complex variety in B,, 
which intersects S transversally, and the result can perhaps be thought of  as a gen- 
eralization of  the solvability of  the Dirichlet problem on such varieties. Indeed, 
the proof  in [1] is similar to the way one solves the Dirichlet problem by double 
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layer potentials. Thus, one constructs an approximative extension operator, L, which 
associates to every q~C(7) a pluriharmonic and continuous function L(t#), so 
that on y one has 

L(~)  = tp +K(~o) 

where the error term K defines a compact operator. This immediately implies the 
result by Fredholm theory. One should also note that positive codimension actually 
can occur if e.g. the variety has many singularities, or a complicated topological 
structure, see Ill. By the aforementioned result on holomorphic interpolation it is 
natural to conjecture that any smooth curve should be a set of  almost pluriharmonic 
interpolation, since on the set where transversality fails one can even extend holo- 
morphically. In this paper we will prove that this is indeed so. 

Theorem 1. Let y be a smooth and simple curve in S=tgB,.  Then the space o f  
functions on 7 that can be extended to continuous functions on Bn, which are pluri- 
harmonic in B~, is a closed subspace o f  finite codimension in C ( J .  

The proof  of  theorem 1 is along the same lines as in [1], but the points where 
changes from transversal to tangential cause additional problems. In fact, if  one 

uses the same approximate extension operator as in [1] the error term is no 
longer compact. The main idea of  our proof  is that we use a different extension 
operator and combine the technique of  [1] with the techniques of  holomorphic 
interpolation. 

It is worth mentioning that if  ~ is polynomially convex, then holomorphic 
polynomials are dense in C ( J  (see the survey [3]). Since our subspace of  finite co- 
dimension is dosed we conclude 

Corollary 2. Suppose that ~ is a smooth and simple curve in S which is poly- 
nomially convex. Then ~ is a set o f  pluriharmonic interpolation. 

One case when we know that a smooth curve is polynomially convex is when 
it is an arc. Another case is provided by a result of  Forstneri6 [4], which says that 
i f  a smooth curve in S has a nontrivial hull, then this hull must be an analytic vari- 
ety with at most a finite number of  singularities. Moreover this variety intersects 
S transversally, so in particular ~ is complex transversal in this case. 

Corollary 3. Suppose ~ is an arc, or is complex tangential at at least one point. 
Then ~ is a set o f  pluriharmonic interpolation. 

Recently, J.-P.Rosay has shown us a short direct proof  that a curve which is 
complex-tangential at at least one point is polynomially convex. (See [7].) 

An interesting problem which remains is to compute the codimension in case 
it is positive. Finally, we mention the result in [8], which says that a manifold in S 
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of  dimension at least two can be a set of  almost pluriharmonic interpolation only 
if it is complex-tangential. Thus results like theorem 1 hold only for curves. 

We have made no attempt to optimize the regularity assumption on 7 (but C 8 
is surely enough). The proof  below is written out for the case o f  a dosed simple 
curve, which obviously implies the general case. 

Acknowledgements. Part of  this paper was done while the second author visited 
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versitat Autbnoma de Barcelona. Both authors wish to thank the host institutions 
for their hospitality and support. 

2. Pseudodistances 

Our curve ? will always be parametrized by arc length so that 191=1. Since 
Re ?.  ~ = 0  we can define a realvalued function T by 

i t ( 0  = 

Evidently T ( t ) = 0  if and only if V(t) is a complex-tangential point on the curve, 
and in general T can be said to measure the transversality of  V. We have 

r ( t ) .~ (0  = i~r(t)-  1, 
and by Taylor's formula 

(1) 1-~(x)~( t )  = l - ( 4 ( t ) + ~ ( t ) ( x - t ) + - ~ ( t ) ( x - t ) z + . . . ) . 7 ( t )  

= - i T ( t ) ( x -  0 + -~ (1 - rP( t ) ) (x-  05+ .. . .  
This implies 

(2) I I - ~ ( t ) .  r(x)l ~ IT(x)l [ t - x l + l t - x [  ~. 

For zCB let s=s(z)  be such that 

[1 -4 ( s ) .  zl = min 1 1 - 4 ( 0 .  z[ over all t. 

Since the triangle inequality is satisfied by the expression I1 - ~. zl 1/2 it follows that 

(3) 11-4(0"  zl ~ 11--4(s). z l + l l - 4 ( 0 "  r(s)l ~ 11-4(s) .  zl+lT(s)l  I t - s l + l t - s l  ~. 

3. The kernel 

The kernel used in [1] was essentially 

~(t).~(t) 
Ko(t, z) = l l m  

z -  ~( t ) - -  1 " 
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The proof  was based on the fact that when z approaches a point ~, (x) on the curve 
the measures Ko (t, z)dt converge weakly to 

6x+ Lo(t, x)dt 

where 3x is the Dirac measure at x and 

1 
Lo(t, x):= Ko(t, ~(x)) = -~ T(t) 

is a bounded kernel for x # t. 

Re ~(x). 7(t)-- 1 
J l - -  ~ (x )  �9 ~(t)[  2 

To see that L0 is bounded one uses that by (1) and (2) 

IT(t)] f x -  tJ 2 
[Lo(t, x)[ ~ (IT(x)[ Ix- t l+lx- t[~)  2 

which is bounded provided that T is bounded from below. In general however, 
this is not so, and hence we will modify the definition of  the kernel. In order not  
to loose the delta-mass we will look for a modified kernel of  the form 

K t, z) = Z Im 
z.  p ( t ) -  1 

In this section we will look for the simplest vector-valued function 0 such 
that the corresponding 

L (t, x) := K(t, ~ (x)) 

is bounded for t #x .  First note that since l l -7(x) .~7(t)]  dominates ( x - t )  2 we 
can disregard all quadratic terms in the numerator. Denoting A(t)=~(t ) .  O(t) it 
i s enough to estimate 

Im Hn(t)+(x- OA(t) = Im [ iT( t )+(x-  t)A(t)] [~7(x). ~ ( t ) -  1] 
y(x) .  ~(0 -~ 1 I1 - y ( x ) .  ~,(012 

Using the Taylor  development (1), we find that the numerator above is 

- T(t) -~ ( x -  02 + T(t) R e  d ( t ) ( x -  02 

- -~ (x - 03 Im [A (t) (1 -- i2P(t))] + T (t) O ((x - 03) + O ((x - t)*). 

Here, the last two terms, when divided by [1-V(x) .7( t ) ]  2, are bounded because 
o f  (2). Thus, we need only choose A in such a way that the other terms vanish, which 
means that we require 

1 Re A(t) =-~ 
and 

Im [A (t) (1 - ii"(t))] = 0. 
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This gives A( t )=-~  (1 +ii"(t)), which will hold e.g. if  we take 

, p ( t )  = 

Writing out  the resulting kernel we obtain 

1 Im (1 + fi'(t)) z. ~ (t) + (1 - iT"(t)) 7 (t). ~ (t) (4) K(t, Z) 
z. ~(t)-- 1 

Thus by construction we have: 

Lennna 1. l f  K is defined by (4), K is bounded for z=T(x)  when x~ t .  

When the curve ~, is a slice, ~( t )=ei t ( ,  one gets 

1 1-[z~(t)[  2 
K =  

2n Izg( t ) -  11 ~ 

i.e. the usual Poisson kernel for the slice. 
In the next section we will need: 

Lemma 2. 
f IK(t, z)l dt <= C, zEB. 

Proof Let 7(s) be the point  on the curve closest to z as in Section 2. 

2zcK(t, z) = Im 7(0 .~( t )+(z-7(O).  ~,(t) 
z.  ~(t)-- 1 

: Im (y (t)" if(t) +. (7 (s) -- 7 (t)) .~b (t)) (~ (s). 7 (t)-- 1) 
I1 --~(t) - zl 2 

+ I r a  (~(t)~'(O+(7(s)--7(t))~(O)(~--Y(s))" 7(O + I m  (z--~,(s)). ~(t) 
l1 --y(t) �9 zl 2 z .  ~ ( t ) - -  1 

=: FI+F2+F3. 

Using [1-~(t).7(s)l<~[1-~(t).z[, we see that  F1 is bounded by a constant  
times K(t, V(s)), hence uniformly bounded by Lemma 1. 

Let  o--d(z, 7)=l l -z .~(s )]  and re=IT(s)[. Then 

Iz-7(s] l  2 ~ Re (1-- z . ~ (s)) ~ 
and 

I(~-Y(s)) �9 7(01 <= o +  Iz-v(s)117(/)-7(s)1 ~< ~o + o a/z It-sl.  
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This gives 

levi 
(IT(t)[ + Is-t l)(o+o ~/2 I t - s l )  

if  we use (3). Finally 

IF31 ~< 

[ 1 - ~ ( t ) .  s z 
(IT(s)l + I s -  tl)(o + O ~/~ I t - s [ )  

(o+lT(s)l I s - t l+ l s - t l 2 f  " 

( m +  I s -  t[)(O + O vz I t - s [ )  
(0 + m I s -  t[ + Is-- tl2) 2 

Iz-y(s) t  Q1/~ 
II-z.~7(Ol" ~ o + m l s - t l + l s - t [  ~ " 

Putting x = s - t  we see that it suffices to estimate the integrals 

Q~12 dx and f ?  (Q+Ol/2x)(m+x)dx 
f ?  O+x ~ (o+mx+x~) 2 

For the first one we need only substitute x=oX/2u. The second one is estimated by 

Qv~ (m + x) dx 
fo (o+mx+x2) 3/~' 

which, with the change of  variable u = m x + x  2, is like 

0 a12 du i . o o  
2. Jo (o+ u) a/-----~ 

This proves the lemma. 

4. Almost pluriharmonic interpolation 

In the previous section we have seen that the limit o f  K(t, z) as z approaches 
a point V(x) on the curve is bounded as long as x~ t .  Now we shall see that the 
contribution from x = t  is a Dirac measure if V(x) is a transverse point on the 
curve. 

Given a continuous function ~b On the curve, we define a pluriharmonic function 

K~(z) = f cb(t)K(t, z)dt, zEB, 

which clearly extends continuously to B off the curve. We shall now study the behav- 
iour of  K~b (z) as z approaches a point ~ (x) on the curve. 

I.emma 3. I f  T(x)#O, then with s ( x ) = - s i g n  T(x) and L(t, x)=K(t, ~(x)) 

lira K(a(z) = s(x)c~(x)+ f 4~(t)L(t, x)dt. 
z ~ ~,(x), z s B 

Proof. With a fixed 6, we estimate the difference between the right-hand side 
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and the left-hand side by 

f ,x_,j~,16ft)-6(x)l IK(t, z)l at+l,(x)l If  , x_,,._, K(t, z )at -  s(x) I 

+f lx - , l> ,  [~b(t)l IK(t, z ) -L( t ,  x)l dt+fl,,_,l~_, 16(011L(t, x)l dt. 

1 z . ~ ( t )  
The principal part of  K(t, z) is - - -  Im - - ,  i.e. 

rc 1 - z. ~7(t) 

K(t, z) = - l i r a  1 - - ~ " ( t )  4- 
I 1 ,  z. ~(t)l 

The last term is O(ll-z .9(t)[  -1/2) which is bounded by C(x)ls-t1-1'~ for z 
close to V(x) and s=s(z). The integral of  this term over Ix-tl~_6 is maximal 
when x=s and is thus dominated by C(x)6 v~ for z close to V(x). Using lemma 2 
for the first integral above, lemma 1 for the last one and dominated convergence 
in the third one, we get with co(~b, 6) the modulus of  continuity of  ~b 

lim sup K~,(z)-(sfx)~(x)+fr x) gill 

-< Cco(~, 6)+C61/2+Climsup f~'+'lIm z.~(t) [ ~- ,~ ~-~ ~ z ~ 9-~-- I d t -  s(x) +C6 

<= C~o(?p, 6)+C6a/'+C [ 1  {arg (1-~(x) -  y(x + 6 ) ) - a r g  (1--V(x). 9(x-6))}-s(x)J .  

Now we let 6-*0. Since 

1 -- 7 ( x ) .  ~ (x  + 6) = -- i T ( x )  6 + 0 (6~) 
and 

1 - ~ (x ) .  ~ (x - ~) = ~7"(x) 6 + 0 (6 ~) 

the difference between the arguments is --n if 0<T(x )  and r~ if  T(x)<0,  So the 
lemma follows. 

At points where T(x)=0,  Kr generally fails to have a limit, but the same 
proof shows : 

I.emma 4. I f  T(x)-~O and qb(x)=0 then 

lim K~b(z) = f c~(t)L(t, x)tit. 
z ~ y ( x ) , z  E B 

As a consequence of  lemmas 3 and 4 it follows that if  ~ is continuous and 
~ = 0  whenever T = 0  then the pluriharmonic function 

P[qb](z) := f s(t)q~(t)K(t, z) dt 

is continuous on the closed ball and its value at the point 7(x) is 

c~(x)+ f s(t)gp(t)L(t, x) dt. 
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5. H o l o m o r p h l c  interpolat ion at the  complex- tangent ia l  points  

The set E={~(x);  T(x)=0} is known to be an interpolation set for the ball 
algebra, because it is locally contained in complex-tangential curves (see [10], p. 
230). Actually, using the methods of [5], it is quite easy to show this directly, and 

1 moreover exhibit a linear interpolation operator. If  ~ - < q < l  and 

dt 
hq(z) = f(1_,727). ) , 

then an elementary calculation using (3) shows that 

(5) Ihq(z)l ~f]l-~7(t).dt z] q ~ (o~ + TZ(s))Cl/2)_ ~ 

where, as in section 3, y (s ) i s  the point on y closest to z and Q=[1-~7(s).z]. We 
7rq 

have also used the fact that since larg (1-~j(t).z)-~]<-5-, we can put the absolute 

value sign inside the integral. Now we let 

1 1 
M ( t ,  z) = - -  

he(z ) (1 --~(t)-z) q" 

Then M(t ,  z) is holomorphic in z and satisfies 

(6) f M(t, z)dt = 1 and f lM(t, z)l dt -- 0(1). 

The kernel M defines an operator for holomorphic interpolation in the following 
way: if OEC(y) we consider ~b as a function of t and put 

r (z) : f M(t, z) dt. 

If  now z approaches a point ~(x) o n t h e  curve where T(x)=O, then lira Ihq(z)l =co 
by (5). Therefore 

lim sup ]M(t,z)l = O. 
z-~(x) It-x[~-,~ 

So M(t ,  z) has all the properties of  an approximate identity, and we get 

lira Iq~ (z) = ~b (x). 
z ~ ~(x) 

If  on the other hand z approaches a point ~(x) where T(x)SO,  then (5) shows 
that limz-.vc~)h~(z)=h~(~(x))~ ~o, so by dominated convergence 

lira lck(z) = 1 f ck(t)M(t, ~,(x)) dt. 
z-v(~) hu(7(x)) 
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In particular, I~) has limits at any point in S, hence has a cont inuous extension tO 
Bn. Moreover, I~b is holomorphic in B, and so defines a linear operator for holo- 
morphic interpolation on E. 

6. Conclusion of the proof of the main result 

Given ~b continuous we apply P to the function s ( .  )(qg-I~b), where s - s i g n  T. 
Since this function vanishes on E, the result is a phiriharmonic function, continuous 
on B. Its values on the curve are 

(~(x)- Ick(x)+ f s ( t ) ( r  I$(t))L(t, x) dt. 

Thus the pluriharmonic function P [$ - I ( a ]+Iq~  has boundary values 

$(x)+ f s(O(r x) dt. 

Now note that the last integral defines a compact linear operator on C(?). Namely, 
the operator that sends q~ to s(q~-I(9) is continuous on C(?), and integration 
against L defines a compact operator since L is bounded. Call this operator F. 
By Fredholm theory 

R := range ( I +  F)  

is a closed subspace of  finite codimension in C(7). Let Q be the space of  all func= 
tions in C(7) that can be extended to functions in C(B,) which are pluriharmonic 
in B,. By the construction we have made R is a subspace of  Q, so Q must also be 
o f  finite codimension. Moreover Q/R is dosed in C(~))/R since the latter space 
is of  finite dimension. Since R is dosed the projection from C(7) to its quotient 
with R is continuous. Hence Q must also be dosed in C(?). This proves theorem 1. 
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