A multi-dimensional renewal theorem for finite Markov chains

Thomas Höglund

1. Introduction and results

Let U, L and F be functions from \mathbf{Z}^{d} into the set of real square matrices of finite dimension N, and let in addition $L(t)$ be positive for each t. Define the convolution $L * U$ by the formula

$$
\begin{equation*}
L * U(t)=\sum_{t_{1}+t_{2}=t} L\left(t_{1}\right) U\left(t_{2}\right), \tag{1.1}
\end{equation*}
$$

and put

$$
\begin{equation*}
R=\sum_{n=0}^{\infty} L^{n *} \tag{1.2}
\end{equation*}
$$

provided the sum converges. Here $L^{0 *}=\delta$, where $\delta(0)=1$ (the identity matrix) and $\delta(t)=0$ for $t \neq 0$, and $L^{n *}=L * L^{(n-1) *}$ for $n \geqq 1$.

A solution U of the renewal equation $U-L * U=F$ is then given by $U=R * F$, provided the latter expression converges. The object of the present paper is to study the asymptotic behaviour of $R * F(t)$, as $|t| \rightarrow \infty$.

The result can be applied to first passage problems for sums of Markov dependent random variables. See Höglund 1989.

Instead of a function L defined on \mathbf{Z}^{d} we could equally well have considered a matrix valued measure on \mathbf{R}^{d}, but our restriction will save us some labour because it makes smoothing unnecessary.

The approximation will be expressed in terms of quantities related to the matrices $\Lambda(\theta), \theta \in \Theta$, where

$$
\begin{equation*}
\Lambda(\theta)=\sum_{t} e^{\theta \cdot t} L(t) \tag{1.3}
\end{equation*}
$$

and where Θ denotes the interior of the set of $\theta \in \mathbf{R}^{d}$ for which this sum converges. Here $\theta \cdot t$ stands for the inner product of θ and t. We shall assume that the function L is irreducible, by which we mean that for every i and j in $\{1, \ldots, N\}$ there is a positive integer n and a $t \in \mathbf{Z}^{d}$ such that $L_{i j}^{n *}(t)>0$. We shall assume that $\Theta \neq \emptyset$
and then irreducibility is equivalent to that the matrix $\Lambda(\theta)$ is irreducible for some (and hence for all) $\theta \in \Theta$.

The Laplace transform $\Lambda(\theta)$ is thus a positive and irreducible matrix whose coefficients are analytic in Θ, and hence $\Lambda(\theta)$ has a maximal positive eigenvalue $\lambda(\theta)$ corresponding to strictly positive left and right eigenvectors $e^{*}(\theta)=\left\{e_{i}^{*}(\theta)\right\}$ and $e(\theta)=\left\{e_{i}(\theta)\right\}$. This eigenvalue is simple and analytic in Θ, and $e_{i}^{*}(\theta)$, and $e_{i}(\theta)$ can be chosen to be analytic in Θ. Let $E(\theta)=\left(E_{i j}(\theta)\right)$ stand for the eigenprojection corresponding to $\lambda(\theta)$, where

$$
\begin{equation*}
E_{i j}(\theta)=\frac{e_{i}(\theta) e_{j}^{*}(\theta)}{e(\theta) \cdot e^{*}(\theta)} \tag{1.4}
\end{equation*}
$$

and put

$$
\begin{equation*}
\lambda^{\prime}(\theta)=\operatorname{grad} \lambda(\theta), \quad \lambda^{\prime \prime}(\theta)=\left(\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \lambda(\theta)\right), \quad \Delta=\{\theta \in \Theta ; \lambda(\theta)=1\} \tag{1.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
S_{i j}=\bigcup_{n=1}^{\infty}\left\{t ; L_{i j}^{n *}(t)>0\right\} \tag{1.6}
\end{equation*}
$$

let $G_{i j}$ denote the smallest subgroup of \mathbf{Z}^{d} that contains

$$
\begin{equation*}
S_{i j}-S_{i j}=\left\{t_{1}-t_{2} ; t_{1} \in S_{i j}, t_{2} \in S_{i j}\right\} \tag{1.7}
\end{equation*}
$$

and define the group G by $G=\bigcap_{i} \bigcap_{j} G_{i j}$.
The role played by G is illustrated by the following lemmas.
Note that $S_{i j} \neq \emptyset$ for all i and j if and only if L is irreducible.
Lemma 1.1. Assume that L is irreducible. Choose for each $j \in\{1, \ldots, N\}$ a $v(j) \in S_{1 j}$. Then $S_{i j} \subset v(i)-v(j)+G . G$ is minimal in the sense that if $w(1), \ldots, w(N)$ are real numbers and H a group and $S_{i j} \subset w(i)-w(j)+H$ for some i, j, then $H \supset G$.

Proof. The inequality

$$
L_{i k}^{n_{1} *}\left(t_{1}\right) L_{k j}^{n_{3} *}\left(t_{2}\right) \leqq L_{i j}^{\left(n_{1}+n_{2}\right) *}\left(t_{1}+t_{2}\right)
$$

implies $S_{i k}+S_{k j} \subset S_{i j}$. Therefore $G_{i k}+G_{k j} \subset G_{i j}$ and hence also $G_{i k} \subset G_{i j}, G_{k j} \subset G_{i j}$ for all i, k and j. This cannot be true unless $G_{i j}=G_{11}$ for all i and j. Let $c_{i j}$ be an element in the coset of G that contains $S_{i j}$. Then $S_{i k}+S_{k j}$ is contained in the coset $c_{i k}+c_{k j}+G$, and hence $c_{i k}+c_{k j} \equiv c_{i j} \bmod G$. Define $v(i)=c_{i 1}$, then $c_{i k} \equiv v(i)-$ $v(k) \bmod G$.

The group H contains the set (1.7) and hence also G.
Lemma 1.2. Assume that $\Theta \neq \emptyset$. The matrix $\lambda^{\prime \prime}(\theta)$ is strictly positive definite (for all, or for some θ) if and only if $\operatorname{dim} G=d$.

Proof. Theorem 1.2 of Keilson and Wishart 1964 says that if $d=1$ (and $0 \in \Theta$), then $\lambda^{\prime \prime}(0) / \lambda(0)-\left(\lambda^{\prime}(0) / \lambda(0)\right)^{2} \geqq 0$ with equality if and only if there is a real α and
a real sequence $\omega(1), \omega(2), \ldots$ such that $L_{i j}(t)>0$ only when $t=\alpha+\omega(i)-\omega(j)$. Note that $\lambda^{\prime \prime}(0)=0$ if and only if $\lambda^{\prime \prime}(0) / \lambda(0)-\left(\lambda^{\prime}(0) / \lambda(0)\right)^{2}=0$ and $\lambda^{\prime}(0)=0$, that is $L_{i j}(t)>0$ only when $t=\omega(i)-\omega(j)$.

Fix $\theta \in \Theta, 0 \neq \eta \in \mathbf{R}^{d}$, and let ξ be real and so small that $\theta+\xi \eta \in \Theta$. Apply the above result to the matrix $\bar{\Lambda}(\xi)=\Lambda(\theta+\xi \eta)$. The result is that $\eta \cdot \Lambda(\theta) \eta=0$ if and only if $e^{\theta \cdot t} L_{i j}(t)>0$ only when $\eta \cdot t=\omega(i)-\omega(j)$. Choose a sequence $w(1), w(2), \ldots$ in \mathbf{R}^{d} such that $\omega(i)=\eta \cdot w(i)$. Then $\eta \cdot \Lambda(\theta) \eta=0$ if and only if $L_{i j}(t)>0$ only when $\eta \cdot(t-w(i)+w(j))=0$. It follows from Lemma 1.1 that this is equivalent to G beeing orthogonal to η.

Lemma 1.3. Assume that $\operatorname{dim} G=d$. Either $\lambda^{\prime}(\theta) \neq 0$ for all $\theta \in \Delta$, or else Δ is a one-point set.

The proof is the same as the proof of Lemma 1.1 in Höglund 1988.
We shall first consider the case when $\lambda^{\prime}(\theta) \neq 0$ on Δ. In this case we are able to determine the asymptotic behaviour as t tends to infinity in the cone

$$
\begin{equation*}
\left\{\tau \lambda^{\prime}(\theta) ; \tau>0, \theta \in \Delta\right\} \tag{1.8}
\end{equation*}
$$

provided F is sufficiently regular.
Lemma 1.4. Assume that $\operatorname{dim} G=d$ and that $\lambda^{\prime}(\theta) \neq 0$ on Δ. Then the function $\Delta \ni \theta \rightarrow \lambda^{\prime}(\theta) /\left|\lambda^{\prime}(\theta)\right|$ is one to one.

The proof is the same as the proof of Lemma 1.3 in Höglund 1988.
We shall write $\tilde{\theta}(t)$ for the solution $\theta=\tilde{\theta}(t) \in \Delta$ of the equation $\lambda^{\prime}(\theta) /\left|\lambda^{\prime}(\theta)\right|=$ $t /|t|$ when t belongs to the cone (1.8).

Theorem 1.5. Assume that L is irreducible, that $G=\mathbf{Z}^{d}$, and $\lambda^{\prime}(\theta) \neq 0$ on Δ. Let Θ_{F} denote the interior of the set of θ for which.

$$
\begin{equation*}
\sum_{s} e^{\theta \cdot s}\|F(s)\|<\infty \tag{1.9}
\end{equation*}
$$

If $|t| \rightarrow \infty$ in the cone (1.8) in such a way that $\tilde{\theta}(t) \in \Theta_{F}$, then

$$
\begin{equation*}
R * F(t)=e^{-\theta \cdot t}\left(2 \pi|t| /\left|\lambda^{\prime}(\theta)\right|\right)^{-(d-1) / 2} C(\theta)^{-1 / 2}\left(E(\theta) \sum_{s} e^{\theta \cdot s} F(s)+o(1)\right) \tag{1.10}
\end{equation*}
$$

Here $\theta=\tilde{\theta}(t)$, and $C(\theta)=\lambda^{\prime}(\theta) \cdot \lambda^{\prime \prime}(\theta)^{-1} \lambda^{\prime}(\theta) \operatorname{det} \lambda^{\prime \prime}(\theta)$. The convergence is uniform in $t /|t|$ as $\tilde{\theta}(t)$ stays within compact subsets of $\Delta \cap \Theta_{F}$.

If we write $E(\theta)$ to the right of $F(s)$ in formula (1.10), we get the corresponding approximation for $V(t)=F * R(t)$, which is a solution of $V-V * L=F$.

The moment conditions on F and L are not optimal, but chosen to facilitate the proof.

An alternative to (1.10) is the approximation

$$
\begin{equation*}
R(t)=e^{-\theta \cdot t}(2 \pi T)^{-(d-1) / 2} C(\theta)^{-1 / 2}\left(e^{-(1 / 2) t \cdot \Sigma t / T} E(\theta)+\mathrm{o}(1)\right) \tag{1.11}
\end{equation*}
$$

as $T \rightarrow \infty$, which holds uniformly in θ as θ stays within compact subsets of Δ. Here

$$
\begin{equation*}
T=\frac{t \cdot \lambda^{\prime \prime}(\theta)^{-1} \lambda^{\prime}(\theta)}{\lambda^{\prime}(\theta) \cdot \lambda^{\prime \prime}(\theta)^{-1} \lambda^{\prime}(\theta)}, \quad t \cdot \Sigma t=\left(t-T \lambda^{\prime}(\theta)\right) \cdot \lambda^{\prime \prime}(\theta)^{-1}\left(t-T \lambda^{\prime}(\theta)\right) \tag{1.12}
\end{equation*}
$$

The two approximations are roughly equivalent.
Note that the relative error in the approximation (1.11) equals

$$
\begin{equation*}
\circ\left(\exp \left(\frac{1}{2}\left(t-T \lambda^{\prime}(\theta)\right) \cdot \lambda^{\prime \prime}(\theta)^{-1}\left(t-T \lambda^{\prime}(\theta)\right)\right)\right) \tag{1.13}
\end{equation*}
$$

and that the expression between the main brackets is minimized and equals 1 if θ is such that $\lambda^{\prime}(\theta)$ and t have the same direction. This is why we let $\theta=\tilde{\theta}(t)$ in the theorem.

The condition $G=\mathbf{Z}^{d}$ is just a normalization. To see this, let $b_{1}, \ldots, b_{d^{\prime}}$, $d^{\prime} \leqq d$, be a basis for G, and define for $\left(t_{1}, \ldots, t_{d^{\prime}}\right) \in \mathbf{Z}^{d^{\prime}}$

$$
\begin{equation*}
L_{i j}(\bar{z})=L_{i j}\left(v(i)-v(j)+\sum_{k=1}^{d^{\prime}} t_{k} b_{k}\right) \tag{1.14}
\end{equation*}
$$

Then $\bar{G}=\mathbf{Z}^{d^{\prime}}$, and $R_{i j}(t)=\bar{R}_{i j}(\bar{i})$ when $t=v(i)-v(j)+\sum_{k=1}^{d^{\prime}} \bar{t}_{k} b_{k}$, and $R_{i j}(t)=0$ when $t \notin v(i)-v(j)+G$.

Furthermore if B is the $d \times d^{\prime}$ matrix whose columns are $b_{1}, \ldots, b_{d^{\prime}}$, then $B^{T} B$ is non-singular and $\Lambda_{i j}(\theta)=e^{\theta \cdot v(i)} \bar{\Lambda}_{i j}(\bar{\theta}) e^{-\theta \cdot v(j)}$, where $\bar{\theta}=B^{T} \theta$. Therefore $\lambda^{\prime}(\theta)=B \bar{\lambda}^{\prime}(\bar{\theta}), \lambda^{\prime \prime}(\theta)=B \bar{\lambda}^{\prime \prime}(\bar{\theta}) B^{T}$, and $\bar{E}(\bar{\theta})=D(\theta)^{-1} E(\theta) D(\theta)$, where $D(\theta)$ is the diagonal matrix with $D_{i i}(\theta)=e^{\theta \cdot v(i)}$. The general case follows from these identities.

The next theorem is the result that corresponds to Theorem 1.5 when $\lambda^{\prime}(\theta)=0$.
Theorem 1.6. Assume that $G=\mathbf{Z}^{d}$, that L is irreducible, and $\lambda^{\prime}(\theta)=0$. If

$$
\begin{equation*}
\sum_{s}|s|^{d-2} e^{\theta \cdot s}\|\dot{F}(s)\|<\infty \tag{1.15}
\end{equation*}
$$

then

$$
\begin{equation*}
R * F(t)=e^{-\theta \cdot t}\left(t \cdot \lambda^{\prime \prime}(\theta)^{-1} t\right)^{-(d-2) / 2} K(\theta)\left(E(\theta) \sum_{s} e^{\theta \cdot s} F(s)+o(1)\right) \tag{1.16}
\end{equation*}
$$

as $|t|=\rightarrow \infty$, provided $d \geqq 3$. Here $K(\theta)=\left(\operatorname{det} \lambda^{\prime \prime}(\theta)\right)^{-1 / 2} \pi^{-1 / 2} \Gamma(d / 2) /(d-2)$.
The counterpart to these theorems for independent random variables were given by Ney and Spitzer 1966 (Thm. 1.5), and by Spitzer 1964 (Thm. 1.6).

Concerning one-dimensional markovian renewal theory we refer to Runnenburg 1960, Orey 1961, Pyke 1961, Cinlar 1969, Jacod 1971, Iosifescu 1972, and Kesten 1974. Further one-dimensional renewal results can be found in Berbee 1979 (process with stationary increments) and Janson 1983 (m-dependent variables).

2. Proofs

We shall first show that the theorems hold under the additional assumptions that $\Lambda(\theta)$ is aperiodic and $F=\delta$ (theorems 2.1 and 2.2). In proposition 2.7 we remove the assumption $F=\delta$, and in proposition 2.8 the assumption that $\Lambda(\theta)$ is aperiodic.

Theorem 2.1. Assume that $G=\mathbf{Z}^{d}$, that $\Lambda(\theta)$ is irreducible and aperiodic, and that $\lambda^{\prime}(\theta) \neq 0$ on 4 . Then

$$
\begin{equation*}
\sup _{\tau}\left(e^{\theta \cdot t}\|R(t)\|\right)<\infty \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
R(t)=e^{-\theta \cdot \tau}(2 \pi T)^{-(d-1) / 2} C(\theta)^{-1 / 2}\left(e^{-(1 / 2) t \cdot \Sigma t / T}+\mathrm{O}\left(T^{-1 / 2}\right)\right) \tag{2.2}
\end{equation*}
$$

as $T \rightarrow \infty, \theta \in \Delta$. The error in (2.2) is uniformly small and (2.1) is uniformly bounded as θ stays within compact subsets of Δ. Here T and Σ are as in (1.12).

Theorem 2.2. Assume that $G=\mathbf{Z}^{d}, d \geqq 3$, that L is irreducible and aperiodic, and that $\lambda^{\prime}(\theta)=0, \theta \in \Delta$. Then

$$
\begin{equation*}
\sup _{t}\left(e^{\theta \cdot t}\|R(t)\|\right)<\infty \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
R(t)=e^{-\theta \cdot t}\left(t \cdot \lambda^{\prime \prime}(\theta)^{-1} t\right)^{-(d-2) / 2} K(\theta)\left(E(\theta)+O\left(|t|^{-1}\right)\right) \tag{2.4}
\end{equation*}
$$

as $|t| \rightarrow \infty$.
Proof. Define $L_{\theta}(t)=e^{\theta \cdot t} L(t)$ and $R_{\theta}(t)=e^{\theta \cdot t} R(t)$ then

$$
\begin{equation*}
R_{\theta}(t)=\sum_{n=0}^{\infty} L_{\theta}^{n *}(t)=\int_{0}^{\infty} P_{\theta}^{s}(t) d s \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{\theta}^{s}(t)=\sum_{n=0}^{\infty} e^{-s} \frac{s^{n}}{n!} L_{\theta}^{n *}(t) \tag{2.6}
\end{equation*}
$$

The Fourier transform of P_{θ}^{s} equals

$$
\begin{equation*}
\hat{P}_{\theta}^{s}(\eta)=\exp (s \Lambda(\theta+i \eta)-s)=\sum_{n=0}^{\infty} e^{-s} \frac{s^{n}}{n!} \Lambda(\theta+i \eta)^{n} \tag{2.7}
\end{equation*}
$$

We shall approximate $\Lambda(\theta+i \eta)$ by $\lambda(\theta+i \eta) E(\theta+i \eta), E(\theta+i \eta)$ by $E(\theta)$, and $\lambda(\theta+i \eta)$ by $1+i \eta \cdot \lambda^{\prime}(\theta)-\frac{1}{2} \eta \cdot \lambda^{\prime \prime}(\theta) \eta$. (Recall that $\lambda(\theta)=1$ when $\theta \in \Delta$.) Thus

$$
\begin{equation*}
\hat{P}_{\theta}^{s}(\eta) \approx \exp (s \lambda(\theta+i \eta)-s) E(\theta+i \eta) \approx \exp \left(i s \eta \cdot \lambda^{\prime}(\theta)-\frac{s}{2} \eta \cdot \lambda^{\prime \prime}(\theta) \eta\right) E(\theta) \tag{2.8}
\end{equation*}
$$

The expression to the right is the Fourier transform of the function $\mathbf{R}^{d} \ni t \rightarrow Q_{\theta}^{\prime}(t)$,
where

$$
\begin{equation*}
Q_{\theta}^{s}(t)=q_{\theta}^{s}(t) E(\theta), \quad q_{\theta}^{s}(t)=\frac{\exp \left(-\frac{1}{2}\left(t-s \lambda^{\prime}(\theta)\right) \cdot \lambda^{\prime \prime}(\theta)^{-1}\left(t-s \lambda^{\prime}(\theta)\right) / s\right)}{\sqrt{2 \pi s} \sqrt{\operatorname{det} \lambda^{\prime \prime}(\theta)}} \tag{2.9}
\end{equation*}
$$

We shall therefore approximate $R_{\theta}(t)$ by $\int_{0}^{\infty} Q_{\theta}^{s}(t) d s$. This approximation is made precise in proposition 2.5. Proposition 2.3 describes the asymptotic behaviour of $Q_{\theta}^{S}(t)$.

Given these propositions, theorems 2.1 and 2.2 follow if we show that $R_{\theta}(t)$ is bounded, but this follows from, for example, the local central limit theorem for $L_{\theta}^{n *}$.

Proposition 2.3. If $\lambda^{\prime}(\theta) \neq 0$ on Δ, then

$$
\begin{equation*}
\int_{0}^{\infty} q_{\theta}^{s}(t) d s=(2 \pi T)^{-(d-1) / 2} C(\theta)^{-1 / 2}\left(e^{-(1 / 2) t \cdot \Sigma \ell / T}+\mathbf{O}\left(T^{-1}\right)\right) \tag{2.10}
\end{equation*}
$$

as $T \rightarrow \infty, \theta \in \Delta$. The error is uniformly small as θ stays within compact subsets of Δ. If $\lambda^{\prime}(\theta)=0$, then

$$
\begin{equation*}
\int_{0}^{\infty} q_{\theta}^{s}(t) d s=\left(t \cdot \lambda^{\prime \prime}(\theta)^{-1} t\right)^{-(d-1) / 2} K(\theta) \tag{2.11}
\end{equation*}
$$

for all $t \neq 0$.
The function

$$
\begin{equation*}
G_{\alpha}(x)=\int_{0}^{\infty} s^{-\alpha} \exp \left[-\frac{x}{2}(s+1 / s-2)\right] \frac{d s}{s}, \quad x>0 \tag{2.12}
\end{equation*}
$$

will appear in the proof.
Lemma 2.4. $G_{\alpha}(x)=\sqrt{2 \pi / x}(1+0(1 / x))$, as $x \rightarrow \infty$.
Proof of Lemma 2.4. Define $G_{\alpha}^{+}(x)$ as $G_{\alpha}(x)$ but with the domain of integration $1<s<\infty$ instead of $0<s<\infty$. Then $G_{\alpha}(x)=G_{\alpha}^{+}(x)+G_{-\alpha}^{+}(x)$, and

$$
\begin{equation*}
G_{a}^{+}(x)=\int_{0}^{\infty} e^{-x u} H_{a}(d u) \tag{2.13}
\end{equation*}
$$

Here

$$
\begin{equation*}
H_{\alpha}(u)=\int_{\Omega} s^{-\alpha} \frac{d s}{s}=\int_{1}^{\tau(u)} s^{-\alpha} \frac{d s}{s} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega=\left\{s>1 ; \frac{1}{2}\left(s+\frac{1}{s}-2\right)<u\right\}=(1, \tau(u)), \quad \tau(u)=1+u+\sqrt{2 u+u^{2}} \tag{2.15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
H_{a}^{\prime}(u)=\tau(u)^{-\alpha}\left(2 u+u^{2}\right)^{-1 / 2}=(2 u)^{-1 / 2}-\alpha+\mathrm{O}\left(u^{1 / 2}\right), \tag{2.16}
\end{equation*}
$$

as $u \rightarrow 0$, and hence

$$
\begin{equation*}
G_{\alpha}^{+}(x)=\Gamma\left(\frac{1}{2}\right)(2 x)^{-1 / 2}-\alpha / x+O\left(x^{-3 / 2}\right) \tag{2.17}
\end{equation*}
$$

as $x \rightarrow \infty$.
Proof of Proposition 2.3. Put $m=\lambda^{\prime \prime}(\theta)^{-1 / 2} \lambda^{\prime}(\theta), \tau=\lambda^{\prime \prime}(\theta)^{-1 / 2} t, \quad \alpha=\frac{d}{2}-1, \quad$ and $\varkappa=(2 \pi)^{-d / 2}\left(\operatorname{det} \lambda^{\prime \prime}(\theta)\right)^{-1 / 2}$. Then

$$
\begin{equation*}
\int_{0}^{\infty} q_{\theta}^{s}(t) d s=x \int_{0}^{\infty} s^{-\alpha} \exp \left(-\frac{1}{2}\left(\frac{|\tau|^{2}}{s}+|m|^{2} s-2 \tau \cdot m\right)\right) \frac{d s}{s} \tag{2.18}
\end{equation*}
$$

$$
= \begin{cases}\varkappa(|m| /|\tau|)^{\alpha} \exp [-|m||\tau|+m \cdot \tau] G_{x}(|m||\tau|) & \text { when } m \neq 0, \quad \tau \neq 0 \\ \chi\left(2 /|\tau|^{2}\right)^{\alpha} \Gamma(\alpha) & \text { when } \quad m=0, \quad \tau \neq 0, \quad \alpha>0\end{cases}
$$

Here we made the substitutions $\frac{|\tau|^{2}}{2 s} \rightarrow s$ respectively $\frac{s|m|}{|\tau|} \rightarrow s$.
The proposition now follows from the lemma and the fact that if we define τ by $\tau=T m+\check{\tau}$, then $m \cdot \check{\tau}=0$ and

$$
\begin{equation*}
|\tau|^{2}=T^{2}|m|^{2}+|\check{\tau}|^{2}, \quad|m||\tau|-m \cdot \tau=\frac{|\check{\tau}|^{2}}{\sqrt{T^{2}+|\check{\tau}|^{2} /|\dot{m}|^{2}}+T}, \quad|\check{\tau}|^{2}=t \cdot \Sigma t . \tag{2.19}
\end{equation*}
$$

Proposition 2.5. If $\lambda^{\prime}(\theta) \neq 0$ on Δ, then

$$
\begin{equation*}
\left\|R_{\theta}(t)-\int_{0}^{\infty} Q_{\theta}^{s}(t) d s\right\|=\mathbf{O}\left(T^{-d / 2}\right) \tag{2.20}
\end{equation*}
$$

as $T \rightarrow \infty, \theta \in A$. The bound is uniform as θ stays within compact subsets of Δ. If $\lambda^{\prime}(\theta)=0, \theta \in \Delta$, then

$$
\begin{equation*}
\left\|R_{\theta}(t)-\int_{0}^{\infty} Q_{\theta}^{S}(t) d s\right\|=\mathrm{O}\left(|t|^{-d+1}\right) \tag{2.21}
\end{equation*}
$$

as $|t| \rightarrow \infty$.
The essential part of the proof is the following estimate.
Lemma 2.6. For any integer $0 \leqq k \leqq d+1$ and any compact $K \subset \Delta$ there is a constant C such that

$$
\begin{equation*}
\left\|P_{\theta}^{s}(t)-Q_{\theta}^{s}(t)\right\| \leqq C s^{-(d+1) / 2}\left|s^{-1 / 2}\left(t-s \lambda^{\prime}(\theta)\right)\right|^{-k} \tag{2.22}
\end{equation*}
$$

for all $s>0, t \in \mathbf{Z}^{d}$ and $\theta \in K$.
Proof of Proposition 2.5. It follows from the lemma that the expression on the left in (2.20) and (2.21) is dominated by

$$
\begin{equation*}
c_{d} C \int_{0}^{\infty}\left(s+\left|t-s \lambda^{\prime}(\theta)\right|^{2}\right)^{-(d+1) / 2} d s \tag{2.23}
\end{equation*}
$$

where c_{d} is a constant that depends only on d. An elementary calculation now gives the proposition.

Proof of Lemma 2.6. We shall thus estimate the difference

$$
\begin{equation*}
\int_{(-\pi ; \pi]^{\mathrm{d}}} e^{-i \eta \cdot t} P_{\theta}^{s}(\eta) d \eta-\int_{\mathbf{R}^{d}} e^{-i \eta \cdot t} \hat{Q}_{\theta}^{s}(\eta) d \eta . \tag{2.24}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
\hat{P}_{\theta}^{s}(\eta)=\exp (s \Lambda(\theta+i \eta)-s), \quad \hat{Q}_{\theta}^{s}(\eta)=\exp \left(i s \eta \cdot \lambda^{\prime}(\theta)-\frac{s}{2} \eta \cdot \lambda^{\prime \prime}(\theta) \eta\right) E(\theta) \tag{2.25}
\end{equation*}
$$

Let $\sigma(z)$ denote the spectrum of $\Lambda(z)$. Then $\sigma(\theta+i \eta)$ is contained in the closed unit disc, and it follows from Lemma 2.2 in Höglund 1974 that $1 \in \sigma(\theta+i \eta)$ if and only if $G \subset\left\{t ; e^{i \eta \cdot t}=1\right\}$, i.e. $\eta \equiv 0 \bmod 2 \pi \mathbf{Z}^{d}$.

Given the compact $K \subset \Delta$ choose $\varrho>0, \delta>0$ and $\varepsilon>0$ such that
(i) $\lambda(\theta+i \eta)$ and $E(\theta+i \eta)$ are analytic in a neighbourhood of the set $K_{\delta}=$ $\{\theta+i \eta ; \theta \in K,|\eta| \leqq \delta\}$.
(ii) $\log \lambda(\theta+i \eta)$ has no branching point for $\theta+i \eta \in K_{\delta}$.
(iii) $\left|\log \lambda(\theta+i \eta)-i \eta \cdot \lambda^{\prime}(\theta)+\frac{1}{2} \eta \cdot \lambda^{\prime \prime}(\theta) \eta\right|<\frac{1}{3} \eta \cdot \lambda^{\prime \prime}(\theta) \eta$ for $\theta+i \eta \in K_{\delta}$.
(iv) $\operatorname{Re} w \leqq 1-3 \varrho$ for $w \in \sigma(\theta+i \eta) \backslash\{\lambda(\theta+i \eta)\}$ and $\operatorname{Re} \lambda(\theta+i \eta) \geqq 1-\varrho$ when $\theta+i \eta \in K_{\delta}$.
(v) $\operatorname{Re} w<1-2 \varepsilon$ for $w \in \sigma(\theta+i \eta)$ when $|\eta|>\delta, \quad \theta \in K$.

That such a choice is possible is seen in the same way as in the proof of theorem 3.1 in Höglund 1974.

Put

$$
\begin{gather*}
K_{s}(\eta)=\exp \left[s\left(\Lambda(\theta+i \eta)-1-i \eta \cdot \lambda^{\prime}(\theta)\right)\right] \\
L_{s}(\eta)=\exp \left[s\left(\lambda(\theta+i \eta)-1-i \eta \cdot \lambda^{\prime}(\theta)\right)\right] E(\theta+i \eta) \tag{2.26}\\
M_{s}(\eta)=\exp \left[-\frac{s}{2} \eta \cdot \lambda^{\prime \prime}(\theta) \eta\right] E(\theta)
\end{gather*}
$$

and $y=t-s \lambda^{\prime}(\theta)$. Then by repeated partial integrations

$$
\begin{gather*}
(i y)^{\alpha} \int_{\mathbf{R}^{d}} e^{-i \eta \cdot y} M_{s}(\eta) d \eta=\int_{\mathbf{R}^{d}} M_{s}(\eta)\left(-\frac{\partial}{\partial \eta}\right)^{\alpha} e^{-i \eta \cdot y} d \eta \tag{2.27}\\
=\int_{\mathbf{R}^{d}} e^{-i \eta \cdot y} \frac{\partial^{\alpha}}{\partial \eta^{\alpha}} M_{s}(\eta) d \eta
\end{gather*}
$$

and since the functions $\chi_{\beta}(\eta)=e^{-i \eta \cdot p} \frac{\partial^{\beta}}{\partial \eta^{\beta}} K_{s}(\eta), \beta \in \mathbf{N}^{d}$, are functions of $\eta \bmod 2 \pi \mathbf{Z}^{d}$
(i.e. $x_{\beta}\left(\eta_{1}\right)=x_{\beta}\left(\eta_{2}\right)$ when $\eta_{1}-\eta_{2} \in 2 \pi \mathbf{Z}^{d}$) we also have

$$
\begin{equation*}
(i y)^{\alpha} \int_{(-\pi, \pi)^{d}} e^{-i \eta \cdot y} K_{s}(\eta) d \eta=\int_{(-\pi, \pi]^{\alpha}} e^{-i \eta \cdot y} \frac{\partial^{\alpha}}{\partial \eta^{\alpha}} K_{s}(\eta) d \eta \tag{2.28}
\end{equation*}
$$

Here $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ and

$$
\frac{\partial^{\alpha}}{\partial \eta^{\alpha}}=\frac{\partial^{\alpha_{1}}}{\partial \eta_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{d}}}{\partial \eta_{d}^{\alpha_{a}}}
$$

Therefore the norm of $(i y)^{\alpha}\left(P_{\theta}^{s}(t)-Q_{\theta}^{s}(t)\right)$ is dominated by $I_{1}+I_{2}+I_{3}+I_{4}$ where

$$
\begin{gather*}
I_{1}=\left\|\int_{|\eta|>\delta,(-\pi, \pi]^{\alpha}} e^{-i \eta \cdot y} \frac{\partial^{\alpha}}{\partial \eta^{\alpha}} K_{s}(\eta) d \eta\right\| \\
I_{2}=\left\|\int_{|\eta| \leqq \delta} e^{-i \eta \cdot y} \frac{\partial^{\alpha}}{\partial \eta^{\alpha}}\left(K_{s}(\eta)-L_{s}(\eta)\right) d \eta\right\| \tag{2.29}\\
I_{3}=\left\|\int_{|\eta| \leqq \delta} e^{-i \eta \cdot y} \frac{\partial^{\alpha}}{\partial \eta^{\alpha}}\left(L_{s}(\eta)-M_{s}(\eta)\right) d \eta\right\| \\
I_{4}=\left\|\int_{|\eta|>\delta} e^{-i \eta \cdot y} \frac{\partial^{\alpha}}{\partial \eta^{\alpha}} M_{s}(\eta) d \eta\right\|
\end{gather*}
$$

We are going to show that $I_{j}=O\left(s^{-(d+1-|\alpha|) / 2}\right)$ for $|\alpha| \leqq d+1$.
Put $z=\theta+i \eta$, let $\Gamma=\Gamma(z)$ be a contour surrounding $\sigma(z)$, and let $\gamma(z)$ be a contour that surrounds $\lambda(z)$ but no other point in $\sigma(z)$ when $|\eta| \leqq \delta$. Then (Kato 1966, p. 39 and p. 44)

$$
\begin{equation*}
\Lambda(z)^{n}=\frac{1}{2 \pi i} \int_{\Gamma(z)} w^{n}(w-\Lambda(z))^{-1} d w \tag{2.30}
\end{equation*}
$$

for all z, and

$$
\begin{equation*}
\lambda(z)^{n} E(z)=\frac{1}{2 \pi i} \int_{\gamma(z)} w^{n}(w-\Lambda(z))^{-1} d w \tag{2.31}
\end{equation*}
$$

when $|\eta| \leqq \delta$. Therefore

$$
\begin{equation*}
K_{s}(\eta)=\frac{1}{2 \pi i} \int_{\Gamma(z)} e^{s\left(w-1-i \eta \cdot \lambda^{\prime}(\theta)\right)}(w-\Lambda(z))^{-1} d w \tag{2.32}
\end{equation*}
$$

and hence $\frac{\partial^{\alpha}}{\partial \eta^{\alpha}} K_{s}(\eta)=\int_{\Gamma} H d w$, where

$$
\begin{equation*}
H=\frac{1}{2 \pi i} e^{s(w-1)} \frac{\partial^{\alpha}}{\partial \eta^{\alpha}}\left(e^{-i \eta \cdot \lambda^{\prime}(\theta) s}(w-\Lambda(\theta+i \eta))^{-1}\right) \tag{2.33}
\end{equation*}
$$

In the same way we obtain $\frac{\partial^{\alpha}}{\partial \eta^{\alpha}} L_{s}(\eta)=\int_{\gamma} H d w$.

Let $Q(r)$ denote the contour that sorrounds the rectangle $\{w \in \mathbf{C} ;-2 \leqq$ $\operatorname{Re} w \leqq r,-2 \leqq \operatorname{Im} w \leqq 2\} . H$ is a meromorphic function the poles of which coincides with the spectrum of $\Lambda(\theta+i \eta)$. Therefore

$$
\begin{equation*}
\left\|\int_{\Gamma} H d w\right\|=\left\|\int_{Q(1-\varepsilon)} H d w\right\| \leqq \text { Const. } e^{-\varepsilon s}\left(1+s^{|\alpha|}\right) \tag{2.34}
\end{equation*}
$$

for all $|\eta|>\delta, \eta \in(-\pi, \pi]$, and hence

$$
\begin{equation*}
I_{1} \leqq \text { Const. } e^{-\varepsilon s}\left(1+s^{|\alpha|}\right) \leqq \text { Const. } s^{-h / 2} \tag{2.35}
\end{equation*}
$$

for all $0 \leqq h \leqq d+1$.
Similarly

$$
\begin{equation*}
\left\|\int_{\Gamma} H d w-\int_{\gamma} H d w\right\| \leqq\left\|\int_{Q(1-2 \varrho)} H d w\right\| \tag{2.36}
\end{equation*}
$$

for $|\eta| \leqq \delta$ and hence $I_{2} \leqq$ Const. $s^{-h / 2}$ for all $0 \leqq h \leqq d+1$.
In order to estimate I_{3}, assume that $s \geqq 1$, and make the substitution $\xi=\eta s^{1 / 2}$. Then

$$
\begin{equation*}
I_{3}=s^{(|x|-d) / 2}\left\|\int_{|\xi|<\delta s^{1 / 2}} \exp \left(-i \xi \cdot y s^{-1 / 2}\right) \frac{\partial^{\alpha}}{\partial \xi^{\alpha}} J d \xi\right\| \tag{2.37}
\end{equation*}
$$

where

$$
\begin{equation*}
J=\exp \left(-\frac{1}{2} \xi \cdot \lambda^{\prime \prime}(\theta) \xi\right)\left(\exp \left(s \psi\left(\xi s^{-1 / 2}\right)\right) E\left(\theta+i \xi s^{-1 / 2}\right)-E(\theta)\right) \tag{2.38}
\end{equation*}
$$

and $\psi(\eta)=\log \lambda(\theta+i \eta)-1-i \eta \cdot \lambda^{\prime}(\theta)+\frac{1}{2} \eta \cdot \lambda^{\prime \prime}(\theta) \eta$. The functions

$$
\begin{equation*}
\exp \left(-s \psi\left(\xi s^{-1 / 2}\right)\right) \frac{\partial^{\beta}}{\partial \xi^{\beta}} \exp \left(s \psi\left(\xi s^{-1 / 2}\right)\right), \quad \beta \leqq \alpha \tag{2.39}
\end{equation*}
$$

are polynomials in the variables

$$
\begin{equation*}
s \frac{\partial^{\gamma}}{\partial \xi^{\gamma}} \psi\left(\xi s^{-1 / 2}\right)=s^{1-(1 / 2)|\gamma|} \psi^{(\gamma)}\left(\xi s^{-1 / 2}\right), \quad \gamma \leqq \beta, \tag{2.40}
\end{equation*}
$$

and the latter expression is dominated by Const. $\left(1+|\xi|^{3}\right) s^{-1 / 2}$ for all γ. Furthermore any derivative of $E\left(\theta+i \xi s^{-1 / 2}\right)$ is bounded for $|\xi|<\delta s^{1 / 2}$, and $\left|s \psi\left(\xi s^{-1 / 2}\right)\right|<$ $\frac{1}{3} \xi \cdot \lambda^{\prime \prime}(\theta) \xi$ for $|\xi|<\delta s^{1 / 2}$. The norm of I_{3} is therefore dominated by

$$
\begin{equation*}
s^{(|\alpha|-d) / 2} \text { Const. } \int s^{-1 / 2} p(\xi) \exp \left(-\frac{1}{6} \xi \cdot \lambda^{\prime \prime}(\theta) \xi\right) d \xi=\mathrm{O}\left(s^{(|\alpha|-d-1) / 2}\right) \tag{2.41}
\end{equation*}
$$

where p is a polynomial.
It should be clear that $I_{4}=\mathrm{O}\left(s^{-h}\right)$ for any $h \geqq 0$.
When $s<1$ not only the difference but each term on the left in (2.22) is small. This is obviously true for Q_{θ}^{s}, and

$$
\begin{equation*}
P_{\theta}^{s}(t) \leqq \sum_{n=0}^{\infty} e^{-s} \frac{s^{n}}{n!} \sum_{\eta \cdot u \geqq \eta \cdot t} L_{\theta}^{n *}(u) e^{\eta \cdot u} e^{-\eta \cdot t} \leqq e^{-\eta \cdot t} \sum_{n=0}^{\infty} e^{-s} \frac{s^{n}}{n!} \Lambda(\theta+\eta)^{n} \tag{2.42}
\end{equation*}
$$

for any $\eta \in \mathbf{R}^{d}$. But $\left\|\Lambda(\theta+\eta)^{n}\right\| \leqq$ Const. $\lambda(\theta+\eta)^{n}$ and hence the norm of the sum above is dominated by

$$
\begin{equation*}
\text { Const. } \exp \left[s\left(\lambda(\theta+\eta)-1-\eta \cdot \lambda^{\prime}(\theta)\right)-\eta \cdot\left(t-s \lambda^{\prime}(\theta)\right)\right] \tag{2.43}
\end{equation*}
$$

The choice $\eta=\delta\left(t-s \lambda^{\prime}(\theta)\right) /\left|\left(t-s \lambda^{\prime}(\theta)\right)\right|$ shows that this expression is dominated by Const. $\exp \left[-\delta\left|\left(t-s \lambda^{\prime}(\theta)\right)\right|\right]$ for δ sufficiently small.

We shall now remove the condition that $F=\delta$ in theorems 2.1 and 2.2.
Proposition 2.7. Theorems 2.1 and 2.2 imply that theorems 1.5 and 1.6 hold under the extra assumption that $\Lambda(\theta)$ is aperiodic.

Proof of proposition 2.7. We shall consider the case when $\lambda^{\prime}(\theta) \neq 0$ on Δ. The other is similar but easier and will be omitted.

Define for $u \in \mathbf{R}^{d}$,

$$
\begin{equation*}
T(u)=\frac{u \cdot \lambda^{\prime \prime}(\theta)^{-1} \lambda^{\prime}(\theta)}{\lambda^{\prime}(\theta) \cdot \lambda^{\prime \prime}(\theta)^{-1} \lambda^{\prime}(\theta)}, \quad \hat{u}=T(u) \lambda^{\prime}(\theta), \quad \check{u}=u-\hat{u} \tag{2.44}
\end{equation*}
$$

Then $T(u)=T(\hat{u})$, and $u \cdot \Sigma u=\breve{u} \cdot \lambda^{\prime \prime}(\theta)^{-1} \check{u}$. Let

$$
S_{1}=\left\{s ;|\hat{s}| \leqq \frac{1}{2}|\hat{t}|\right\}, \quad S_{2}=\left\{s ;|\hat{s}|>\frac{1}{2}|\hat{t}|\right\},
$$

and write $F_{\theta}(t)=e^{\theta \cdot t} F(t)$, and

$$
\begin{equation*}
R_{\theta} * F_{\theta}(t)=\sum_{s} R_{\theta}(t-s) F_{\theta}(s)=\sum_{s \in S_{1}}+\sum_{s \in S_{2}} \tag{2.45}
\end{equation*}
$$

Assume that t and $\lambda^{\prime}(\theta)$ have the same direction and that $s \in S_{1}$. Put

$$
x=(\check{t}-\check{s}) \cdot \lambda^{\prime \prime}(\theta)^{-1}(\check{t}-\check{s}) /(2 T(t-s)),
$$

then

$$
\check{t}=0, \quad T(t)=|t| /\left|\lambda^{\prime}(\theta)\right|, \quad T(t-s)=T(t)(1-|\hat{s}| /|\hat{i}|)
$$

and $0 \leqq x \leqq$ Const. $|\check{s}|^{2} / T(t)$. Here and below Const. depends on the compact $K \subset \Delta \cap \Theta_{F}$.

The inequality $0 \leqq 1-e^{-x} \leqq x$ and Theorem 2.1 now yield

$$
\begin{align*}
& \left.\| \sum s_{1}-\left(2 \pi|t| /\left|\lambda^{\prime}(\theta)\right|\right)^{-(d-1) / 2} C(\theta)^{-1 / 2} E(\theta) \sum_{s_{1}} F_{\theta}(s)\right) \| \\
& \leqq \text { Const. }|t|^{-(d-1) / 2} \sum\left(|\hat{s}| /|t|+|\check{s}|^{2} /|t|+|t|^{-1 / 2}\right)\left\|F_{\theta}(s)\right\| \tag{2.46}\\
& \leqq \text { Const. }|t|^{-d / 2} \sum\left(1+|s|^{2}\right)\left\|F_{\theta}(s)\right\| .
\end{align*}
$$

In order to show that this expression equals $o\left(|t|^{-(d-1) / 2}\right)$ uniformly on the compact $K \subset \Delta \cap \Theta_{F}$ it suffices to show that the last sum is uniformly bounded on K. It is a consequence of Jensen's inequality, $\exp \left(\sum_{i} \alpha_{i} \theta_{i} \cdot t\right) \leqq \sum_{i} \alpha_{i} \exp \left(\theta_{i} \cdot t\right), \alpha_{i} \geqq 0$, $\sum_{i} \alpha_{i}=1$, that Θ_{F} is a convex set. Choose a compact, convex simplex $K_{F} \supset K$ in Θ_{F}. Let $\theta_{1}, \ldots, \theta_{r}$ be the corners of K_{F}, and let $\theta=\sum_{i} \alpha_{i} \theta_{i}$. Then by Jensen's
inequality

$$
\begin{gather*}
\sum_{s}\left(1+|s|^{2}\right)\left\|F_{\theta}(s)\right\| \leqq \sum_{i} \alpha_{i} \sum_{s}\left(1+|s|^{2}\right)\left\|F_{\theta_{i}}(s)\right\| \tag{2.47}\\
\leqq \max _{i} \sum_{s}\left(1+|s|^{2}\right)\left\|F_{\theta_{i}}(s)\right\|<\infty
\end{gather*}
$$

from which the uniformity follows.
Another consequence of theorem 2.1 is that $R_{\theta}(t)$ is bounded. Therefore

$$
\begin{gather*}
\left\|\sum s_{2}\right\| \leqq \text { Const. } \sum s_{2}\left\|F_{\theta}(s)\right\| \tag{2.48}\\
\leqq \text { Const. }(|\hat{t}|)^{-(d-1) / 2} \sum_{s_{2}}|s|^{(d-1) / 2}\left\|F_{\theta}(s)\right\|=0\left(|t|^{-(d-1) / 2}\right)
\end{gather*}
$$

The uniformity follows in the same way as above.
Proposition 2.8. If theorems 1.5 and 1.6 hold under the extra assumption that $\Lambda(\theta)$ is aperiodic, then they hold as they stand.

Proof of proposition 2.8. Let p be the period. Then there are matrices $L_{1}(t), \ldots, L_{p}(t)$ and a permutation matrix P such that

$$
L(t)=P\left(\begin{array}{ccccc}
0 & L_{1}(t) & 0 & . & 0 \tag{2.49}\\
. & 0 & L_{2}(t) & . & . \\
. & . & . & . & 0 \\
0 & . & . & 0 & L_{p-1}(t) \\
L_{p}(t) & 0 & . & . & 0
\end{array}\right) P^{-1}
$$

Here the zeros on the diagonal are square matrices. Assume without loss of generality that P is the identity, and put $\bar{L}=L^{p *}$. Then

$$
\bar{L}(t)=\left(\begin{array}{cccc}
\bar{L}_{1}(t) & 0 & . & 0 \tag{2.50}\\
0 & . & . & . \\
. & . & 0 \\
0 & . & 0 & \bar{L}_{p}(t)
\end{array}\right)
$$

where

$$
\begin{gather*}
\bar{L}_{1}=L_{1} * L_{2} * \ldots * L_{p-1} * L_{p} \\
\bar{L}_{2}=L_{2} * L_{3} * \ldots * L_{p} * L_{1} \tag{2.51}\\
\vdots \\
\vdots \\
\bar{L}_{p}=L_{p} * L_{1} * \ldots * L_{p-2} * L_{p-1}
\end{gather*}
$$

Here the matrices $\bar{\Lambda}_{k}(\theta)=\sum_{t} e^{\theta \cdot t} \bar{L}_{k}(t)$ are irreducible and aperiodic square matrices for $1 \leqq k \leqq p$. Also $R * F=\bar{R} * \bar{F}$, where $\bar{R}=\sum_{n=0}^{\infty} \bar{L}^{n *}$ and $\bar{F}=\left(I+L+\ldots+L^{(p-1) *}\right) * F$.

In order to apply the theorems to each one of the p parts $\bar{R}_{k}(t)=\sum_{n=0}^{\infty} \bar{L}_{k}^{n *}(t)$, $1 \leqq k \leqq p$, of \bar{R}, we must check that the groups \bar{G}_{k} equal G, defined in Section 1 (see 1.7). Here \bar{G}_{k} is defined as G but with L replaced by \bar{L}_{k}.

Lemma 2.9. The groups \bar{G}_{k} satisfy $\bar{G}_{k}=G$ for $k=1, \ldots, p$.

Proof. Let X_{k} denote the set of indices corresponding to \bar{L}_{k}, and put for $i, j \in X_{k}$, $\bar{S}_{i j}^{k}=\bigcup_{n=1}^{\infty}\left\{t ; \bar{L}_{i j}^{n *}(t)>0\right\}$. Then $\bar{S}_{i i}^{k}=S_{i i}$, and hence $G_{i i}^{k}=G_{i i}=G$.

We must also relate the maximal positive eigenvalue of $\bar{\Lambda}(\theta)$ to $\lambda(\theta)$.
Lemma 2.10. The maximal positive eigenvalue of $\bar{\Lambda}_{k}(\theta)$ equals $\lambda(\theta)^{p}$. Write $\eta^{k}(\theta)$ and $\bar{r}^{k}(\theta)$ for the corresponding left respectively right eigenvectors. Then there are constants c^{*}, and c such that $e^{*}(\theta)=c^{*}\left(l^{1}(\theta), \ldots, \eta^{p}(\theta)\right)$, and $e(\theta)=c\left(\bar{r}^{1}(\theta), \ldots\right.$ $\left.\cdots, \bar{r}^{p}(\theta)\right)$.

Proof. We shall omitt the θ when convienient, and write λ_{k} for the maximal positive eigenvalue of $\bar{\Lambda}_{k}$. Let $\Lambda_{k}=\sum_{i} e^{\theta \cdot t} L_{k}(t)$, and write $e^{*}(\theta)=\left(l_{1}, \ldots, l_{p}\right), e(\theta)=$ $\left(r_{1}, \ldots, r_{p}\right)$ where the subvectors l_{k} and r_{k} have the same dimension as l_{k}.

The spectrum of $\bar{\Lambda}_{k}$ is contained in the spectrum of Λ^{p} and hence $\bar{\lambda}_{k} \leqq \lambda^{p}$ for each $1 \leqq k \leqq p$.

We have

$$
\begin{equation*}
l_{1} \Lambda_{1}=\lambda l_{2}, l_{2} \Lambda_{2}=\lambda l_{3}, \ldots, l_{p} \Lambda_{p}=\lambda l_{1} \tag{2.52}
\end{equation*}
$$

and hence

$$
\begin{equation*}
l_{k} \bar{\Delta}_{k}=\lambda^{p} l_{k}, \quad k=1, \ldots, p \tag{2.53}
\end{equation*}
$$

But $l_{k} \neq 0$ and hence λ^{p} is an eigenvalue of $\bar{\Lambda}_{k}$ for each $k=1, \ldots, p$, and hence $\bar{\lambda}_{k} \geqq \lambda^{p}$ for each $1 \leqq k \leqq p$. The remainder of the lemma follows from the fact that e^{*} and e are unique up to multiplicative constants.

Another consequence of (2.52) is that if $\theta \in \Delta$, then

$$
\begin{equation*}
\bar{E}\left(1+\Lambda+\ldots+\Lambda^{p-1}\right)=p E \tag{2.54}
\end{equation*}
$$

Here

$$
\bar{E}(t)=\left(\begin{array}{cccc}
\bar{E}_{\mathbf{1}}(t) & 0 & . & 0 \tag{2.55}\\
0 & . & . & . \\
. & . & . & 0 \\
0 & . & 0 & \bar{E}_{p}(t)
\end{array}\right)
$$

where \bar{E}_{k} is the eigenprojection of $\bar{\Lambda}_{k}$ corresponding to the eigenvalue λ^{p}. Therefore

$$
\begin{equation*}
\bar{E}(\theta) \sum_{s} e^{\theta \cdot s} \bar{F}(s)=p E(\theta) \sum_{s} e^{\theta \cdot s} F(s) \tag{2.56}
\end{equation*}
$$

for $\theta \in \Delta$.
Proposition 2.8 therefore follows from the following lemma.
Lemma 2.11. If $\lambda^{\prime}(\theta) \neq 0$ on Δ, then

$$
\begin{equation*}
\bar{\lambda}^{\prime}(\theta)=p \lambda^{\prime}(\theta), \quad \text { and } \quad \bar{C}(\theta)=p^{d+1} C(\theta) \tag{2.57}
\end{equation*}
$$

for $\theta \in \Delta$.

If $\lambda^{\prime}(\theta)=0$, and $\theta \in \Delta$, then

$$
\begin{equation*}
\bar{\lambda}^{\prime \prime}(\theta)^{-1}=\lambda^{\prime \prime}(\theta)^{-1} / p, \quad \text { and } \quad \operatorname{det} \bar{\lambda}^{\prime \prime}(\theta)=p^{d} \operatorname{det} \lambda^{\prime \prime}(\theta) . \tag{2.58}
\end{equation*}
$$

Proof. The second statement is obvious.
Consider the first. After an orthogonal transformation we may assume that $\lambda^{\prime}(\theta)=(\bar{a}, 0, \ldots, 0), \lambda^{\prime}(\theta)=(a, 0, \ldots, 0)$. Write

$$
\bar{\lambda}^{\prime \prime}(\theta)=\left(\begin{array}{cc}
\bar{b} & \bar{c} \\
\bar{c}^{T} & \bar{D}
\end{array}\right), \quad \lambda^{\prime \prime}(\theta)=\left(\begin{array}{ll}
b & c \\
c^{T} & D
\end{array}\right) .
$$

Here D and \bar{D} are $d-1$ by $d-1$ matrices.
We have $\lambda^{\prime}(\theta)=p \lambda^{\prime}(\theta)$, and $\lambda^{\prime \prime}(\theta)=p(p-1) \lambda^{\prime}(\theta)^{2}+p \lambda^{\prime \prime}(\theta)$ when $\theta \in \Delta$, and hence $\bar{a}=p a, \bar{D}=p D$. The upper left corner of $\bar{\lambda}^{\prime \prime}(\theta)^{-1}$ equals

$$
\frac{\operatorname{det} \bar{D}}{\operatorname{det} \bar{\lambda}^{\prime \prime}(\theta)}
$$

and hence

$$
\bar{C}=\bar{a}^{2} \operatorname{det} \bar{D}=p^{d+1} a^{2} \operatorname{det} D
$$

References

1. Berbee, H. C. P., Random walks with stationary increments and renewal theory, Math Centre. Tract. 112, Amsterdam, 1979.
2. Cinlar, E., On semi-Markov processes on arbitrary spaces, Proc. Cambridge Philos. Soc. 66, (1969) 381-392.
3. Höglund, T., Central limit theorems and statistical inference for finite Markov chains, Z. Wahrsch. Verw. Gebiete 29, (1974) 123-151.
4. Höglund, T., A multi-dimensional renewal theorem, Bull. Sc. math., 2^{e} série, 112, (1988) 111-138.
5. Höglund, T., The ruin problem for finite Markov chains, Report, 1989.
6. Iosifescu, M., An extension of the renewal theorem, Z. Wahrsch. Verw. Gebiete 23, (1972) 148-152.
7. Jacod, J., Théorème de renouvellement et classification pour les chaines semimarkoviennes, Ann. Inst. H. Poincaré Sect. B (N.S.) 7, (1971) 83-129.
8. Janson, S., Renewal theory for m-dependent variables, Ann. Probab. 11, (1983) 558-586.
9. Kato, T., Perturbation theory for linear operators, Springer, Berlin-Heidelberg-New York, 1966.
10. Kellson, J., Wishart, D. M. G., A central limit theorem for processes defined on a finite Markov chain, Proc. Cambridge Philos. Soc. 60, (1964) 547-567.
11. Kesten, H., Renewal theory for functionals of a Markov chain with general state space, Ann. Probab. 2, (1974) 355-386.
12. Miller, H. P., A convexity property in the theory of random variables, defined on a finite Markov chain, Ann. Math. Statist. 32, (1961) 1261-1270.
13. Ney, P. and Spitzer, F., The Martin boundary for random walk, Trans. Amer. Math. Soc. 121, (1966) 116-132.
14. Orey, S., Change of time scale for Markov processes, Trans. Amer. Math. Soc. 99, (1961) 384-397.
15. Pyke, R., Markov renewal processes with finitely many states, Ann. Math. Stat. 32, (1961) 1243-1259.
16. Runnenburg, J. T., On the use of Markov processes in one-server waiting time problems and renewal theory, Thesis, University of Amsterdam, 1960.
17. Spitzer, F., Principles of Random Walk, Van Nostrand, Toronto-New York-London, 1964.

Received September 13, 1989
T. Höglund

Department of Mathematics Royal Institute of Technology S-100 44 Stockholm Sweden

