
1. Introduction and results 

Let U, L and F be functions from Z ~ into the set of real square matrices of 
finite dimension N, and let in addition L(t) be positive for each t. Define the con- 
volution L . U  by the formula 

(1.1) L*U(O = Ztl+,~=t L(q)U(t2), 
and put 
(1.2) R = ZT=0 L"*, 

provided the sum converges. Here L~ where 6(0)=1 (the identity matrix) 
and 6(0--0 for t r  and  L"*=L.L  ("-x)* for n=>l. 

A solution U of the renewal equation U - L . U = F  is then given by U=R.F,  
provided the latter expression converges. The object of the present paper is to study 
the asymptotic behaviour of R.F(t) ,  as [t[-*~. 

The result can be applied to first passage problems for sums of Markov dependent 
random variables. See Hrglund 1989. 

Instead of a function L defined on Z ~ we could equally well have considered a 
matrix valued measure on R a, butour  restriction will save us some labour because it 
makes smoothing unnecessary. 

The approximation will be expressed in terms of quantities related to the ma- 
trices A(0), 0EO, where 

(1.3) a(o) = Z ,  e~ 

and where 0 denotes the interior of the set of 0ER n for which this sum converges. 
Here 0. t stands for the inner product of 0 and t. We shall assume that the func- 
tion L is irreducible, by which we mean that for every i and j in {1, ..., N} there 
is a positive integer n and a tEZ a such that LT~(t)>O. We shall assume that 0 ~ 0  
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and then irreducibility is equivalent to that the matrix A (0) is irreducible for some 
(and hence for all) 0E O. 

The Laplace transform A(O) is thus a positive and irreducible matrix whose 
coefficients are analytic in O, and hence A(O) has a maximal positive eigenvalue 
2(0) corresponding to strictly positive left and right eigenvectors e*(0)= {e~(0)} 
and e(0)={ei(0)}. This eigenvalue is simple and analytic in O, and e~(0), and 
ei(O) can be chosen to be analytic in O. Let E(O)=(Eij(O)) stand for the eigen- 
projection corresponding to 2(0), where 

ei(O)e;(O) 
(1.4) Egj(O) - e(O). e*(O) 
and put 

(1.5) 2"(0) = grad.)~(0), )~"(0) = ,~.(0) , A = {0E O ; 2(0) --- 1}. 

Let 
(1.6). = U2" 1_ {t; L,jn* (t) > 0},  

let G~ denote the smallest subgroup of Z d that contains 

(1,7) Sij-Si~ = {tl--tz; tlESiy, t2ES~j} 

and define the group G by G= A~ Nj  G~j. 
The role played by G is illustrated by the following lemmas. 
Note that Sij ~0  for all i and j if and only if L is irreducible. 

I,emma 1.1. Assume that L is irreducible. Choose for each j6 {1, ..., N} a 
v(j)C Sli. Then S i~cv ( i ) - v ( j )+  G. G isminimal in the sense that if  w(1) . . . . .  w(N) 
are real numbers and H a group and S i i c w ( i ) - w ( j ) +  H for some i, j, then HDG. 

Proof. The inequality 

LT~* ( tl)L~* ( t2) <= L ~  +~,)* ( t14- t2), 

implies Sik +:Skac Sij, Therefore Gik q-Gkjc Gi~ and hence also Gik C G~j, Gkjc Gij 
for all i , k  andj .  This cannot be true unless Gij=Gn for all i andj .  Le tco  b e a n  
element in the coset of G that contains S~j. Then S,k+ Sk~ is contained in the coset 
c~k§ , and hence Cik§ modG. Define v(i)=c~, then c~k~v(i)-- 
v(k) mod G. 

The group H contains the set (1.7) and hence also G. II 

l_emma 1.2. Assume that 0 ~0. The matrix 2"(0) is strictly positive definite 
(for all, or for some O) i f  and only if  dim G=d. 

Proof. Theorem 1.2 of Keilson and Wishart 1964 says that if d=  1 (and 06 O), 
then 2'~(0)/2(0)-(2'(0)/2(0))~=>0 with equality if and only if there-is a real ~ and 
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a real sequence to(l), to(2), ... such that L~j( t )>0 only when t=o~+to(i)-oJ(j).  
Note that 2"(0)=0 if and only if 2"(0)/2 (0) - (2'(0)/2 (0))2 = 0 and 2"(0)=0, that 
is Lij(t)>O only when t=m(i ) -~o( j ) .  

Fix 060 ,  0 ~ t / 6 R  a, and let ~ be real and so small that 0+~t /60 .  Apply 
the above result to the matrix .~(~)=A(0+~/ ) .  The result is that ~/. A(0)~/=0 
if and only if e~ only when ~l.t=a~(i)-o~(j). C h o o s e  a sequence 
w(1), w(2), ... in R a such that oJ(i)=g.w(i). Then ~/.A(0)~/=0 if and only if 
L i j ( t )>0  only when ~l . ( t -W(i )+w(j) )=O.  It follows from Lemma 1.1 that this 
is equivalent to G beeing orthogonal to ~/. 1 

Lemma 1.3. Assume that dim G=d. Either 2 ' (0)~0 for all 06A, or else A 
is a one-point set. 

The proof  is the same as the proof  o f  Lemma 1.1 in H6glund t988. 
We shall first consider the case when 2'(0)~O on A. In this case we are able 

to determine the asymptotic behaviour as t tends to infinity in the cone 

(1.8) {~2'(0); ~ > 0, 06A}, 

provided F is sufficiently regular. 

L e m m a  1.4. Assume that dim G=d  and that 2 ' (0)~0 on A. Then the func- 
tion A~O-~2"(O)][,~'(O)[ is one to one. 

The proof  is the same as the proof  of  Lemma 1.3 in H/Sglund 1988. 
We shall write O(t) for the solution O=O(t)6a of  the equation A'(0)/[;t'(0)l-- 

t/Itl when t belongs to the cone (1.8). 

Theorem 1.5. Assume that L is irreducible, that G = Z  d, and 2"(0)~0 on A. 
Let @r denote the interior of  the set of 0 for which, 

(1.9) ~ s  e ~ II F(s)ll < ~.  

I f  It[-~o~ in the cone (1.8)in such a way that (J(t)6Or, then 

(1.10) R .  F(t) = e-~ tl/l~ ~ (O)[)-(d-~I)/~C(O)--1]2(E(O) ZS eO'~F(s) + o (1)). 

Here  0=~( t ) ,  and C(0)= 2'(0) . ,V'(0)-12"(0) det ,V'(0). The convergence is uniform 
in t/Itl as ~(t) stays within compact subsets o f  ActOr. 

If  we write E(O) to the right of  F(s)  in formula (1.10), we get the corresponding 
approximation for V ( t ) = F . R ( t ) ,  which is a solution of  V - V * L = F .  

The moment conditions on F and L are not optimal, but  chosen to facilitate 
the proof. 

An alternative to (1.10) is the approximation 

(1.11) R(t) = e-~ 
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as T-~ 0% which holds uniformly in 0 as 0 stays within compact subsets of A. Here 

t. ~"(0)-1~'(0) 
(1.12) T = 2,(0).2,,(0)_x2,(0), t .Z t  = (t-T2"(O)).2"(O)-~(t-T2"(O)). 

The two approximations are roughly equivalent. 
Note that the relative error in the approximation (1.11) equals 

(1.13) o (exp (~ (t-- T2"(O)). 2" (0)- '  ( t -  7"2"(0))) ) 

and that the expression between the main brackets is minimized and equals 1 if 0 
is such that 2'(0) and t have the same direction. This is why we let 0=0( t )  in the 
theorem. 

The condition G=Z d is just a normalization. To see this, let b~ . . . . .  ha,, 
d'~_d, be a basis for G, and define for (t~ . . . . .  ~d,)rZ d" 

(1.14) L,j(t) = L , j ( v ( i ) - v ( j ) + Z ~ x  lkbk). 

Then G = Z  a', and Rij(t)=Rij(i) when t = v ( i ) - - v ( j ) + ~ l l k b  ~, and Ri~(t)=0 
when tr v ( i ) -  v(j)  + G. 

Furthermore if B is the d•  matrix whose columns are bl . . . . .  bn,, then 
Br B is non-singular and Ao(O)=e ~ ~lij(O)e -~ where O=Br O. Therefore 
2"(O)=B~'(O), 2"(O)=B~"(O)B r, and E(O)=D(O)-~E(O)D(O), where D(O) is the 
diagonal matrix with D~(O)=e ~176 The general case follows from these identities. 

The next theorem is the result that corresponds to Theorem 1.5 when 2"(0)= 0. 

Theorem 1.6. Assume that G= Z n, that L is irreducible, and 2"(0)=0. I f  

(1.15) Z~ [s[e-2e~ < o~ 
then 
(1.16) R ,  F(t) = e-~ 2"(O)-~t)-cJ-~/2K(O)(E(O) Z,e~ 

as It[ = - .o~ provided d>_3. Here K(0)=(det 2"(O))-~/~r~-~/2F(d/2)/(d-2). 

The counterpart to these theorems for independent random variables were 
given by Ney and Spitzer 1966 (Thm. 1.5), and by Spitzer 1964 (Thm. 1.6). 

Concerning one-dimensional markovian renewal theory we refer to Runnen- 
burg 1960, Orey 1961, Pyke 1961, Cinlar 1969, Jacod 1971, Iosifescu 1972, and 
Kesten 1974. Further one-dimensional renewal results can be found in Berbee 1979 
(process with stationary increments) and Janson 1983 (m-dependent variables). 
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2. Proofs 

We shall first show that the theorems hold under the additional assumptions 
that A(O) is aperiodic and F=6 (theorems 2.1 and 2.2). In proposition 2.7 we 
remove the assumption F=6, and in proposition 2.8 the assumption that A(O) is 
aperiodic, 

Theorem 2.1. Assume that G = Z  d, that A(O) is irreducible and aperiodic, and 
that 2'(0)~0 on A. Then 
(2:1) sup (e ~ I[R(t)ll) < co 

t 

and 
(2.2) R ( t) = e-~ (2nT)-(n-1)12C (O)-xl2(e-(t/2)t'zqr + O(T-1/2)) 

as T ~  0% OE A. The error in (2.2) is uniformly small and (2.1) is uniformly bounded 
as 0 stays within compact subsets of  A. Here T and Z are as in (1.12). 

Theorem 2.2, Assume that G = Z  d, d>=3, that L is irreducible and aperiodic, 
and that 2'(0)=0, 06 A. Then 

sup (e ~ IIR(t)ll) < - (2.3) 

and 
(2.4) 
as [ t l ~ .  

R(t) = e-~ 2"(O)-lt)-u-~)/2K(O)(E(O)+O(ltl-1)), 

Proof. Define Lo(t)=e~ and Ro(t)=e~ then 

(2.5) Ro(t) = ~- - -o  Lg*(t) = f o P~ ds 

where 

(2.6) PoS(t) = ~*=o e-~ ~ L~*(t). 
n !  

The Fourier transform of P~ equals 

(2.7) ffo*(q) = exp (sO(O+ riO-s) = z~=o e-~ ~ A(O+ irl)". 

We shall approximate A(O+irl) by 2(O+iq)E(O+irl),E(O+i~l) by E(O), and  
2(0+iq) by l+iq.A'(O)--~rl.2"(O)q. (Recall that 2(0)=1 when OEA.) Thus 

(2.8) 

The expression to the right is the Fourier transform of.the.function R d ~ t - ~ ( t ) ,  
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where 

(2.9) Q~(t) = q~(t)E(O), q~(t) = 
exp (-~- ( t ,  s2'(0)) �9 2" (0)-I(t- S2"(O))ls) 

l/2-'~-s d 1/det 2"(0) 

We shall therefore approximate Re(t) by fo  Q~0(t) ds" This approximation is made 
precise in proposition2.5. Proposition2.3 describes the asymptotic behaviour 
o f  Q~0(t). 

Given these propositions, theorems 2.1 and 2.2 follow if we show that 
Re(t ) is bounded, but  this follows from~ for example, the local central limit theorem 
for Lg*. 

Proposition 2.3. I f  2 ' (0 )#0  on A, then 

(2.10) f0** q~(t) ds = (2rtT)-(a-1)/2C(O)-l/2(e-(Zl2)t'#lr+O(T-1)) 

as T--,oo, OE A. Theerror is uniformly small as 0 stays within compact subsets of  A. 
I f  A'(0)=0, then 

(2.11) f o q~(O ds = (t. 2"(O)-Zt)-(a-z)/2K(O) 

for all t;~O. 

The function 

:: i "s (2.12) G~(x) = s - ~ e x p -  ( s + l / s - 2 )  7 '  x > 0 

will appear in the proof. 

Lemma2.4.  G~(x)=~-~]x (l +O(m/x)), as x ~ .  

Proof of  Lemma 2.4. Define G+(x) as G~(x) b u t  with the domain of  integra- 
tion l < s < ~ o  instead of  0<s<~o .  Then G~(x)=G+(x)+G+~(x), and 

(2.13) 

Here 

(2.14) 

where 

(2.15) 

Therefore 
(2.16) 

G~+ (x) = f o e-X"H'(du)" 

d s  r~Cu) ~ ds 
H,(u) = fos- -;-= j1 s- 7 ,  

{ 1 { 1 }  u.} 
~ =  s > ! ;  T ~+ - 2  < =(1 ,~(u) ) ,  z ( u ) =  l+u+f2u~u2. 

H'- (u) = * (u) - ~(2u + u 2) - 1/2 = (2u) - 1/2 _ a + O (uZ/~), 
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as u---0, and  hence 

(2.17) G + (~) = r (-~) (2x)- 1]'~ - -  O~/X Jr 0 (X--8/2), 

as x--.oo. II 
d 

Proof of Proposition2.3. Put m=2"(0)-~/22"(0), z=2"(O)-x/2t, ~ x = ~ - l ,  
x=(2n)-d/Z(det 2"(O))-l/2. Then 

~ , [ l f l z l  ~ J r l m l ~ s _ 2 . c . m / )  ds (2.18) fo  q ~  s - " e x p (  2 I, s ) ) s  

'and 

(lml/lxl)~exp[-Iml Ixl+m.x]G~(Iml I~1) when m ~ 0 ,  ~ # 0 

= t*(2/t~p)w(~) when m = O; "r # 0 ,  ~x > O. 

I~1 ~ slmt 
Here we made the substitutions -~s respectively ~s.  

2s I~1 
The proposition now follows from the lemma and the fact that  if we define 

by z=Tm+~, then m . ~ = 0  and 

(2.19) Iz12=T21m12+l{I 2, I m l l z l - m . z =  1/Z2+l{lZ/iml2§ I~12=t'Zt" I 

Proposition 2.5. / f  2"(0);~0 on A, then 

(2.20) 

as T-~ oo, 06 A.. The bound is uniform as.O stays within, compact subsets of ;d, 
I f  2'(0)=0, OC A, then 

(2.21) 

as I t l - -~ .  

IIRo(o-f  Q (t)a41 = o( i t l - '+ ' )  

The essential part of  the proof is the following estimate. 

Lemma 2.6. For any integer O<-k_<-d+l and any compact KcA  there is a 
constant C such that 

(2.22) IIe0"(t)-Qg(t)ll <- Ca -~a+1~/2 ]s-1/~ -k 

for all s>0 ,  tEZ a and OE K. 

Proof of Proposition 2.5. It follows from the lemma that the expression on the 
left in (2.20) and (2.21) is dominated by 

(2.2a) c,C f~  (s+ tt-,x(O)l')-{'+"/' as 
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where c~ is a constant that depends only on d. An elementary calculation now gives 
the proposition. 1 

Proof of  Lemma 2.6. We shall thus estimate the difference 

(2.24) L_=.=I d e- 'n"~'( t / )  d,-fR~e-""O~ (t/) dn. 
Recall that 

, < , )  = : 

Let a(z) denote the spectrum of  A(z). Then a(O+it/) is contained in the closed 
unit disc, and it follows from Lemma 2.2 in H6glund 1974 that 1Ca(O+it/) if 
and only if G c { t ;  e ~ t = l } ,  i.e. ~ / - -0mod2nZ a. 

Given the compact K c A  choose 0 > 0 ,  5 > 0  and e > 0  such that 

(i) 2(O+it/) and E(O+it/) are analytic in a neighbourhood of  the set K6 = 
{O+it/; OEK, It/I -~ ~}. 

(ii) log2(0+it /)  has no branching point for O+it/6K~. 

(iii) [log2(O+it/)-tt/.A'(O)+-~t/.2"(O)t/] < ~- t/.2"(0)~/ for O+it/EK 6. 

(iv) Rew~_ 1-3e for wEa(O+it/)\{A(O+it/)} and Re2(0+i t / )_~  1 - 0  when 
o + it/ ~ K,. 

(v) Rew < 1 - 2 e  for wEo(O+it/) when It/I > ~, 06K. 

That such a choice is possible is seen in the same way as in the proof of theo- 
rem 3.1 in HSglund 1974. 

Put 
X,(t/) = exp [s(A(O+ it~)- 1 - it~. 2"(0))] 

(2.26) L, (t/) : exp [s(2(0 + i t / ) -  1 - it/. 2'(0))] E(0 + it/) 

M,(t/) = exp [ - 2  t/ . 2"(O)t/] E(O ) 

and y=t-s2"(O). Then by repeated partial integrations 

(2.27) (iy)~fn e-'~"M,(t/) tit~ = fa"  Ms(t~) - e - " y  dt/ 

0 ~ 
= fad e-Z"'" Ot/~ M,( t / )  dt/ 

and since the functions xa(~/)=er-~'Y 0t/p K,(t/L flEN d, are functions of  t /mod 2nZ ~ 
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(i.e. ~#(th)=~#(n~) when qx-n~E2nZ a) we also have 

8~ 
(2.28) ( iY)~' " tf" ,~ ,~1" e-i'1"'K~(n) dn = ., tf'-,,.,,l" e-i"')' Ks(n) dq. 

- ,  0~" 

Here ~=(~1 . . . . .  %) and 

8" 8 "~ 8"" 

0n '~ 8rip "'" 8n~" 

Therefore the norm of (iy)~(PoS(t)-Q~(t)) is dominated by I~+I2+I~+I4 where 

11 = l f ),,.., ,_.=)~e - " ~  /~s(,)anl 
, , 0n" 

(2.29) I, = I f , , , .~,:"" (K.(n)-z.s(,7))anl 
_ 8rf 

z~ = f , . ,~ ,  e - ' " "  (L~(r/) -- Ms(n)) dr/ 
- Off 

Z. = ]lf ,.,=. e-" ~ 8n=O= M~(n) dqll . 
We are going to show that lj=O(s-(d+x-I"l )lz) for I~l_~d+l. 

Put z=O+in, let F=F(z)  be a contour surrounding o(z), and let ?(z) be a 
contour that surrounds 2(z) but no other point in a(z) when In[~/5. Then (Kato 
1966, p. 39 and p. 44) 

A(z)" = 1 2,~i f ~.,  " " ( ' -  A(z) ) -I  aw (2.30) 

for all z, and 

(2.31) 

when I)11 --</5. Therefore 

-•  (2.32) K s ( n ) -  2m r(z) 

1 (z)"E(z) = ~ -,[c,, w" (w - A (~)) -~ aw 

e~(w-l-,,.a,(0)) ( w -  A(z))-xaw 

and hence - x - = K ~ ( q ) = f H d w ,  where 
O n - J r  

(2.33) H = l e s ( ~ ' - l )  8~ (e-"'~'(~ 
2hi O~l ~ 

8 ~ 

In the same way we obtain -x-z-_ L~(n)=f~ Hdw. 
on" - 
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Let Q(r) denote the contour that sorrounds the rectangle {w~C; -2~_  
Re w =< r, - 2_~ Im w ~ 2}. H is a meromorphic function the poles of which coin- 
cides with the spectrum of A (0 +it/). Therefore 

(2.34) f rHdW = ] f  eCl_oHdw ~_ Const. e-*'(l+sl~l) 

for all Iql>O, ~ ( - ~ ,  ~], and hence 

(2.35) I1 <= Const. e-*'(1 +s  I~1) <- Const. s -h/~ 
for all 0<=h-<d+l. 

Similarly 

(2.36) 

f o r  

Then 

(2.37) 

where 

(2.38) 

] f rHdw-- f ~ ndw I <= I f o._z,~Hdwll 
Ir/l-<t5 and hence I~<=Const. s -h/~ for all 0<=h<-d+l. 
In order to estimate la, assume that s_->l, and make the substitution 4=~/~ x12. 

= ~,,,,-~,,z I ' exp (--i~. ys -a/z) - ~  J dill 

J = exp ( -  {- 4" 2" (0) r (exp (s~k (4s-X/*)) E(O + i4s-i/s) _ E(0)) 

and ~(q)=log 2(O+i~l)- 1-i~/.  2"(0)+~ ~. 2"(0)~/. The functions 

0P 
(2.39) exp (-s~b(r ~ exp(s@(~s-1/2)), fl <= ct, 

are polynomials in the variables 

0~ (2.40) s -~-~k(~s  -1/2) = s 1-(x/z)lrl $(~)(~s-1/z), ), _~ fl, 

and the latter expression is dominated by Const. (l+lfflS)s -in for all 7. Further- 
more any derivative of  E(O+i4s -x/~) is bounded for 141<rsx/z, and Isr 
1 -~ 4" 2"(0)4 for I~l<& x/z. The norm of  Is is therefore dominated by 

(2.41) s (l~l-a)/z Const. fs-Xl~p(r exp { 1 4 . 2 " ( 0 )  4} de = O(s fl'l-a-x)/2) 

where p is a polynomial. 
It should be clear that I4=O(s  -n) for any h_~0. 
When s <  1 not only the difference but each term on the left in (2.22) is small. 

This is obviously true for Q~0, and 

~ s  ~ 
(2.42) Po~(t) <= ~ , = o  e -  -~.,~,.~_~.,L~*(u)e~',e -~'' <= e - ~ " ~ * = o e - S  . A(O+~I) ~ 
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for any t/ER d. But IIa(0+~/)"l[ <=Const. 2(0+~)" and hence the norm of  the sum 
above is dominated by 

(2.43) Const. exp [ s ( 2 ( 0 + r / ) -  1 - r / - 2 ' ( 0 ) ) - t / .  (t-s2"(O))]. 

The choice n=6(t-sX'(o))/[(t-sZ'(o))[ shows that this expression is dominated 
by Const. exp for 6 sufficiently small. I 

We shall now remove the condition that F = 6  in theorems 2.1 and 2.2. 

Proposition 2.7. Theorems 2.1 and2.2 imply that theorems 1.5 and 1.6 hold under 
the extra assumption that A(O) is aperiodic. 

Proof o f  proposition 2.7. We shall consider the case when 2"(0)~0 on A. The 
other is similar but easier and will be omitted. 

Define for uER d, 

u.2"(0)-12"(0) 
(2.44) T(u) -~ 2'(0).2"(0)-12"(0) ' a = T(u)2"(O), ~ = u - a .  

Then T(u) = T(a), and u. Y,u= ~. 2"(0)-1~. Let 

and write F o(t) =e ~ F(t), and 

(2.45) Ro*Fo(t) = Z s  Ro(t-s)Fo(s) = ~,cs~+z~,~s.~. 

Assume that t and ~'(0) have t h e  same direction and that sES1. Put 

x = (~  - ~ ) .  , V ' ( o ) - ~ ( r  - ~ ) / ( 2 T ( t  - s ) ) ,  
then 

? = O, T(t) = Itl/l,g(O)l, T ( t - s )  = T(t)(1 -Igl/ l t l ) ,  

and 0-<x=<Const. Ig[*/T(t). Here and below Const. depends on the compact 
K c A n O f .  

The inequality 0 <= 1 - e -  x _< x and Theorem 2.1 now field 

Zs, Fo(s))ll 
(2.46) =< Const. Itl 7 (a-xJ/2 z~ (Igl/Itl + INIVItl + l t l -1 /9  IIF0(s)ll 

<= Const. [tl-alz z~ (1 + [sl z) IIF0(s)![. 

In order to show that this expression equals o(Itl -(a-*~/u) uniformly on the 
compact K c  A n Oe it suttices to show that the last sum is uniformly bounded on K. 
It  is a consequence of Jensen's inequality, exp ( ~  a~O,. t)<-Z~ ~ exp (0~. t), ~h->0, 
~ e ,=  1, that OF is a convex set. Choose a compact, convex simplex K r D  K in 
O r. Let 01 . . . . .  0, be the corners of  K r ,  and let 0 = ~  ei0i. Then by Jensen's 
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inequality 

(2.47) Z ,  (1 + Isl 2) IlF0 (s)ll -<- Z ,  ~, Z~  (1 + Isl 2) liE0, (s)II 

-<_ max ,~ ,  (1 + Isl'3 liFo, (s)[I < o% 

from which the uniformity follows 
Another consequence of  theorem 2.1 is that R0(t) is bounded. Therefore 

(2.48) IIz ,ll ~ Const. ~,s,  liFo(s)[[ 

<= Const. (ltl)-(a-*)/~ Zs ,  Isl(a-*)/*llF~(s)ll = o(Itl-(a-*)/2). 

The uniformity follows in the same way as above. II 

Preposition 2.8. I f  theorems 1.5 and 1.6 hoM under the extra assumption that 
A (0) is aperiodic, then they hoM as they stand. 

Proof of  proposition 2.8. Let p be the period. Then there are matrices 
L,( t) ,  ..., Lp(t) and a permutation matrix P such that 

0 L 1 ( t )  0 0 
0 L 2 (t) . 

(2.49) L(t) = P 0 e-1.  

0 

(2.50) 

where 

(2.50 

E(O = �9 ! 
o o E (t) 

L1 = Li*L~ * ... * L p - l * L r  
L2 = L2*Ls* . . . * L p * L i  

Lp = Lp* Li * ... *Lp_2* Lp-1. 

Here the matrices AK (0) = ~ t  e~ are irreducible and aperiodic square matrices for 
1 <=k<=p. Also R ,  F = K , F ,  where R = ~ = o  E"* and F = ( I + L + . . .  +L(P-~ F. 

In order to apply the theorems to each one of the p parts R k ( t ) = ~ o  E~*(t), 
l ~=k<=p, of  R, we must check that the groups Gk equal G, defined in Section 1 
(see 1.7). Here Gk is defined as G but with L replaced by E k. 

Lemma 2.9. The groups Gk satisfy Gk = G for k = 1, ..., p. 

0 0 Lp-,(O 
L~(O 0 

Here the zeros on the diagonal are square matrices. Assume without loss of  gen- 
erality that P is the identity, and put L = L  p*. Then 
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Proof. Let Xk denote the set of indices corresponding to Lk, and put for i, jE Xk, 

s , ~  = U 7 ~  { t ;  - " *  - ~  - ~ - - L u (t)>0}. Then and hence II Sis -- Su, Gi~- G u -  G. 

We must also relate the maximal positive eigenvalue of ~(0) to 2(0). 

Lemma 2.10. The maximal positive eigenvalue o f  flk(O) equals 2(0) p. Write 
lk(O) and ~k(O) for the corresponding left respectively right eigenvectors. Then there 
are constants c*, and c such that e*(O)=c*(P(O) . . . . .  lP(O)), and e(O) = c(~(O), ... 
�9 .., ~,(0)). 

Proof. We shall omitt the 0 when convienient, and write ~k for the maximal 
positive eigenvalue of "4k" Let Ak = ~,~ e ~ and write e* (0) = (/1 . . . .  , lp), e (0) = 
(rl . . . . .  rp) where the subvectors lk and rk have the same dimension as lk. 

The spectrum of -dk is contained in the spectrum of  A p and hence ~k<_-2 p for 
each 1 _~k<-p. 

We have 
(2.52) 
and hence 
(2.53) 

liA1 = 21~, 12A2 = 2/3 . . . . .  lpAp = 2l~, 

lkAk = 2~' Ik, k = 1 . . . . .  p. 

and hence 2 p is an eigenvalue of Ak for each k =  l, ..., p, 

(2.54) 

Here 

(2.55) E ( 0  = 

E(I + A +. . .  + A p-l)  = pE. 

El(t) 0 0 ) 

J 
0 

. ~ 0 

0 0 E~(t) 

where /~  is the eigenprojection of -'ik corresponding to the eigenvalue 2 p. Therefore 

(2.56) E(O) ~ e~ = pE(O) ~ s  e~ 
for O~ A. 

Proposition 2.8 therefore follows from the following lemma. 

Lemma 2.11. I f  2'(0)#0 on A, then 

(2.57) ~'(0) = p2'(0), and C(O) = pd+aC(O). 

f o r  OC A. 

But lk ~ 0  and hence 
~[k~_2 p for each 1 <=k<-p. The remainder of the lemma follows from the fact that 
e* and e are unique up to multiplicative constants. | 

Another consequence of (2.52) is that if O~A, then 
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I f  2"(0)=0,  and OEA, then 

(2.58) I" (0)  -1 = )~"(O)-l/p, and d e t t " ( 0 )  = pa det2"(0) .  

Proof. The  second  s ta tement  is obvious .  

Cons ide r  the  first. Af t e r  an  o r t hogona l  t r ans fo rma t ion  we m a y  assume tha t  

J['(O) = (g, O, . . . ,  0), ,V(O)= (a, O, . . . ,  0). Wr i t e  

Here  D and  D are  d - 1  by d - 1  matr ices.  

W e  have ~'(O)=p2"(O), and  ~"(O)=p(p-1)2"(O)2+p;~"(O) when 

hence ~ =pa,  D = p D .  The  uppe r  lef t  co rner  o f  ~"(0)-1 equals  

OEA, and  

a n d  hence 

de t  

det  I "  (0) ' 

C --- ~-2 de t  D = pa+l a s d e t D .  
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