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Abstract. We prove BMO and L p norm inequalities in R n for lacunary Walsh and generalized 
trigonometric series. 

It is known for generalized lacunary trigonometric series f ( :  ) = Z ~ = - ~  ek e~r"x 
with ~ k  Ickl 2<  ~ ,  rk real, r_k-=--rk, rk+l/rk>--__q>l, k = l ,  2 . . . . .  that we have con- 
stants A (p, q) and B(p, q) so that for any interval I c  R with [I[ ->4rc/(rx min ( q -  1, 1)), 

for 0 < p <  ~. A similar result holds for lacunary Walsh series. These LP-norm 
inequalities can be obtained from the results of [3] by a simple change of variable. 

For p =  ~ it is well-known that the right-hand side inequality fails. In this 
paper we show first that we have a norm inequality in the trigonometric case for 
BMO and in the Walsh case for BMOd, dyadic BMO, over R. Then we turn our 
attention to generalize the LP-norm inequalities to R". Finally, as an application, 
we prove BMO norm estimate for lacunary trigonometric series and BMOd norm 
estimate for Walsh series in R". 

We thank the referee for suggesting an improved version of Theorem 2. 
BMO and BMOd on R 1 are defined as follows: 
Let Ij, t=[( j -1)2- t ,  j2-9, for j . . . .  - 2 , - 1 , 0 , 1 , 2  . . . .  and l = 0 , 1 , 2 , . . . .  

t 
For any interval I, let f t = - ~  f t f(y)dy, and define 

f # ( x ) =  sup J;$ = sup ( 1 L 
,~1/2 

{IlXs } {I]xEI} - ~  If(Y)-AI2 dyJ 
and 

f ~ ( x ) =  sup ~ # , = s u p (  1 f h  ~1/~ {I/ , , [xE/d, ,  } ' I1, ,  ~ ,, f(Y)-fh'l~dY~ �9 
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One then defines 

llf[IB~o = [If ~(x)l[~, 

Ilfl[BMOd = IIJ~(x)lJ~ �9 

C / e a r l y ,  t l f l IBMO~<=llf l lBMO . For  more on these spaces, see e.g. [2]. 
Our first theorem concerns the norm inequality for the Walsh functions. 
The Rademacher functions are defined as: r 0 ( t ) = l  for 0<=t<l /2 ;  r 0 ( t ) = - 1  

for ] / 2 - < t < l ;  ro(t)=ro(t+l); and rk(t)=ro(2kt). 
The Walsh functions are then defined by w0( t )= l ;  w,(t)=ra,(t). . .ra(t),  

where n = 2 a l + 2 a ' + . . .  + 2 %  al>a2>... >a,=>0. 

Theorem 1. Given a lacunary sequence {rig} of  natural numbers with n l ~ l ,  
nk + l/nk>= q > l and a sequence { Ck } of  complex numbers with ,~k I ckP  < ~, there exist 
constants Al(q) and A~(q) such that for any f(x)=Co+ ~ = l  CRW,~(X) we have: 

Ax(q)(~k,o  Ic~P) 1/2 <--Id!!~oa ~ Ae(q)(~k~O lekl") a/2. 

Proof Assume c o = 0. The left-hand side inequality follows from the inequality: 

,'fll..,,o.--> {f2 If(y) i2 dy) 112 

and Bessel's inequality. 
For  the right-hand side inequality, we first assume that q=>2, since in this 

case the w.~ with nk~2 ~ are orthogonal on Ij, t. For  rig<2 z, the w.~ are constant 

on each Ij, z; we denote these constants by w.~(Ij, l). We have: 

f fJ ,  I 

Next we calculate f1~'~,, 

2 l L, 
-- (2' f , , , ,  

= 2' f , , ,  

= 2' 2;=1 c, f,,., w,,k(t)dt 

= Z~ , l . , < , ' ~  ~ ,w.~( / j . , ) .  

IX ck w.~ (t)-- Z{kl.k< 2'} Ck W.~ ( Ij,,)l ~ dt) '/~ 

I~<.~='~ c~.,.=(t)[= dr) 1/~ 

= (2ckl=, -~ '~  Ic~lO '/~. 

From this calculation we obtain 

][flIBMOd = (Z~k~O Ickl2) 1/~. 

I f  we have lacunarity with l < q < 2 ,  we can find m so that  we have q ' ->2.  Then 
we may break f ( t ) = ~ k  CkW, k(t) into m series f l  . . . .  , f= with ratio of  lacunarity 
greater than 2 and use the triangle inequality. 
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This theorem cannot be extended to BMO as the following example shows: 

Example. Let Jr=[1/2--2 -*, 1/2+2 -~) for l=2, 3, 4, .... Then for l~_k<l  
we have rk( t)=l  in [1/2,1/2+2 -z) and rk( t )=-- I  in [1/2 -- 2-  *,1/2). Let 

f (x)  = ~2=~ 1 rk(X). 

We have f1~=O for each I and 

1 ~1/2 
= [2 - j , , , _ , , ,  [Z ,=I  ~- r,(t) 

_>-2,'-l>,,[(f,.lZ,.,:,,(0 } tit) -(f,,12<. , -k-rk(t)] dr) J 

_ Z~_x 1 1 ]1/, 
- -  k = l  "=k==-- ( Z ; = l  ==~) �9 

Therefore we have IlfIIBMO~---oo although ~ [Ckl2< co. 

For generalized trigonometric series a stronger result holds: 

T h e o r e m  2. Let f(x)=~k=_~o ckei'k x be defined on R with rk real, rk+l/rk TM 

q > l ,  and r_k=--r  k, for  k----l, 2 . . . . .  and ~ Ickl2<~. 
Then there exist Al(q) and As(q) so that 

Aa(q)(Zk,0 ]Ck]2) 1/~ <= IlfllB~o <= A~(q)(7__,k,O Ickl~) x/~. 

Proof. Assume c0=0. The LP-norm inequality implies that Zr~o Ck elr~x con- 
verges locally in Lp norm for all 0 < p <  0% and that there exists Al(q) so that for 
any interval I ~ R  with [ll =4reid, where O<d<=rl min ( q -  1, 1), 

Al(q)(Zk '~  Ir ~ (I~L[f(Y)]Zdy)II '  ~ llfl[gMO-]-[fl[" 

To prove Al(q)(~k~O ]Ck[~)l/2<=][fIlnMO, it therefore suffices to show that if 
co=O, then limd-,O Ifx]--O- In fact, we prove more: under the hypotheses of the 
theorem, 

e, = ~ ~ r f ( x )  e-i' '~ dx, for all k. 
2 1  - T 

Forf ixedk,  k . . . .  --1,0,1 . . . . .  and n=>lk[, 

1 T n 
lim ~ f ( ~ .  cje%x) �9 e-i'k ~ dx = c~. 
r~o~ ~T a - r  ~ s=-.  
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l T . 1 T . . I-~ f _rf(x)e-,.x dx-cki ~_ l~-~ f _r(Z,,l>.cW'.x)e .... .dx I 

1 
d x -  Ctl , + I ~  f_r r  ,.i..~#=-n Cj e'rsx)e -ir~,x 

I 

and 
I <  I r • fT (Z[jl>ncjeirjx),e_irkxdx ._~_f f _~ lZr~l..cje,,~ld x 

2T - r  = 

::- ~2r - ,  I (~ lJ l>"c~e~") l :  

<-- mq)(Ziss~-,, Icji~) ~s~< ~, 

if n is sufficiently large. The estimate is uniform in T>I .  Let T ~  ~, and get: 

| 7 . . 

To prove [[ f l lnuo-~A2(q)(~,o  Ic~l~) ~/~, it suffices to show that for any interval I 
there exists a constant e x so that 

1 I f ( Y ) -  csl" dy <= A~(q)(,~k,O IcilY) x/~. 

We may assume, by Minkowski's inequality, that f ( x ) = , ~ l  eke ~'~:'. 
S ' ' - 1  ' where we take Let I=[a, b], and c,-~ ~ k = l  Ck e'rka 

m --- mirl {k: rk(b--a) >= 4n/min (q--1, 1)}. 
We have 

( 1  f l  ~11'~ {_ .E . s~ f~zm_,ck(e i , kx_e i ,~ ) l z  ~llz tso') -c , l~  ~yJ "---- ~=1 ax) 

= Ja +J2.  
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Using the Schwarz inequality, we have 

J1 <-- ( ~ k = l  lekP) i/~ z~ "-Ik=~ [e"kX--e*'k"ls ....)l/s 

<= (2L~ 1~1~)1~2(2L- ~ r~,p(b- a) 

(2'2_-1 lc~p)l/~ (~"2_2~_ ~ -  1 C ~ - ' + ' p ( b  - a) 

--~ r,._~(a- a)(~E= ~ Ickl91/~ 

4~ 
<- min ( q -  1, 1) ( ~ = x  lekP) x12" 

For J2, since r,, min ( q - 1 ,  1)>-4~/(b-a), we have, by the L p norm inequality, 

3" 2 ~ B(q)(2k,O Ic~P) v~. 

We next generalize the L p norm estimates in [3] to R n. We present the results 
for R ~ only since R" follows similarly. We consider lacunary Walsh series first. 

Theorem 3. Given 0 < p <  co, qt, q2 >1,  there exist constants A(p, ql, q2) and 
B(p, qa, q2) so that for any f(x,  t )=~k, l  Ck, tW,JX)Wm,(t ) with ~k,t lek, ll 2< co, 
no, m0=0, nk + ffnk>=ql > l, rnk + ffrnk>=qz> l, k , /=1,  2, ... we have 

(f:f: A(p, ql, q2)(Xk.t Ick,,P) ~/' ~ If(x, t)l" dx dt) 1/" ~ B(p, qa, q2)(Zk,~ Ic~,,P) ~/'. 

Proof. For p = 2  the theorem holds by orthogonality. For p_->2, the left-hand 
side follows immediately from H61der's inequality. As to the right-hand side in- 
equality, we have: 

(f2f212~,'c~.'w"~(x)w',(t)l~ dxdt)V~' ~B(P'Ch) ( L  ( [Z'c~"w"'(t)l~)'Z~dt)V~ 

q,)fz  (f2 Iz, aty'7 
B(p, ql,q2)(Z~k,t ICk,,P) 1/2. 

For 0 < p < 2 ,  the right-hand side inequality follows from HiSlder's inequality 
and the result for p=~2. To prove the left-hand side inequality, we write 

1 ( 1 - 0 )  0 
- -  _ _  q -  

2 p 4 
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for 0 < 0 <  l, and we have, as in the one-dimensional case, 

1 1 x dt) 1/2 (Zk.,  le,~,,12) 1/2 = {f~ fo  IS(, t)l ~ dx 

< = ( ~  s If(x, t)[ p dx dt) ('-')/p ( ~  ~ If(x, t)[' dx dt) ~ 

<= B~ 4, q l ,  q2)(f~ ~ If(x, t)l p dx dt) O--elp (Y~,k,t [Ck,,lO ~ 

Therefore, 

A(p, ql, q2)(Zk,t[Ck,,12) ''2 < (f~f~ ) = If(x, t)l p dx dt lip. 

We also prove a local version of  theorem 3" 

Theorem 4. Given 0 < p <  ~,  ql, q2 >1,  there exist constants A(p, ql, q2) and 
B(p, ql, q~) so that for measurable E=[0 ,  1] 2 with positive measure, there exist 
NI=Na( E, ql) and N~=N2(E, q2) so that for any f(x,  t )=~k,t  Ck, tW,~(X)Wm,(t) 
with .~k, l lck,,I 2<~, n0, m0=0, nl>= N1, #nl>--N2 and nk + l/nk>=ql > l, mt + l/mt>= 
q2>l, for k, l=  1, 2, ... we have: 

A(p,  q~, q~)(Z~,, le~,,r) ~/~ <= 1 If(x, 01" dx dt 

<= B(p, q~, q2)(.Z,k,t Ick,,l=) *z=. 

Proof. We prove first the inequalities for p = 2 .  Assume that f(x,  t) is a finite 
sum of terms of the form Ck,?V,~(X)W,,,(t ). Let E be a measurable set in [0, 1] 2. 
We then have: 

f f ~ If(x, t)[ ~ dx dt 

= (2k.~ le~.,I =) IE I -+-2k~,;,, j ek, 'ee'JffE W,~(x)W,,,(X)W~,(t)w~, (t) dx at. 

T h e  Second term does not exceed, in absolute value, 

(2k~:i;lcj ( f  f E Wnk(X)Wnt(X)}l~'nl(t)]&mj(t) dx dt)2)1/2" 2k,! Igk, ll 2, 

As in the proof  of the one-dimensional case (see [3]), we know that if nl and ml 
are large enough, then the coefficient of  ~k,~ [Ck,~r ~ in the above expression can 
be made as small as we wish. Thus we have the theorem for p = 2 .  

Next we prove the right-hand side inequality for p=>2, 
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First suppose E=EI• Then using the 1-dimensional case, we know there 
exist N,=NI(p,  q,) and N2=N~(p, q2) such that 

, , : .q 

t 
_~_ B(p, ql) ( ']-~ L (Zk lZlCk,lWmt(t)[2) pfg dt~ '/p 

1 "x2/p)l]2 
J J~(P, ql) Zk { ["['-E=~2[ fE~ lZlCk,lWml(OI p dtJ l 

B(p, q,. q. ) (X,  ; ]c,.,]O '/2 

whenever n. > N1 and ml > N2. 
Next. suppose E=~finiteE i, where each E; is of the form Ei=E;.,• 

and the E; are disjoint. For each E;. there exist N;., and N~.2 so that if na>N;., 
and ml>N~.2. 

(T~,l f f  ., IZ..; c.,,w..(x)w.,(O[" .x dj"" ., .(p, q., q2)(Zk, lICk,l[2) I/2. 

Let Nj=maxiNi,  j for i = 1 , 2 .  Then when ~/I>N, and m,>N2, we have 

= (Zi [Ell i ff., Z..,..,,w,,. (x)w..,(t) l" a~at} a:" 
IEI IEll 

<-- Z,/-~- [E,I ( l ~ f f ,  lz,.,, c..,w.. (x)w.,(t)[. d~ dO ,/" 

Xi '~- ( 'B(P,  ql, q2)(.~k,t ]ck.tl) t!2 

= B(p, (tl, q2)(Zlck.A2)a/L 

Next suppose E =  ~=1 Ei, where El are of the previous type and the Ei are 
disjoint. We may write E=ElWF2, E,=(JemitoEi, /7, and /72 are disjoint and 
]E~2]'/z<=[El. Let Nj(E)=Nj(/71), j=O, 1. Then for f(x,  t )=~k,  t Ck.tW,~(X)W,,~(t) 
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with n~>-N~(E) and m~_Nz(E), 

.x4" 
. I f ( x .  t ) l "  dx dtJ + t ~ . s . s  ,. I f(x, t) l  p dx dg . 

For the second term on the right, we have 

1 
i-r,I f f ., if<x. t)l" dx dt ( f f liC . t) l '" dx dr)": 

< = (f2 f2 l/(x, t)l .~' dx dt) v: = < B(2p, (11, q2)(Zk,l Ic,,tl:) p/.. 

Therefore, combining constants, 

(-~--(- f f  r lf(x, t)[ p clx clt)llP ~ B(p, ql, qz)(,~k,~ lCk,,'2) llz. 

Finally we consider a general measurable set E in the unit cube in R 2. Define 
Ik, t=[(k--1)2 -t, k2-1], k = l ,  2, ..., 2 I. Define Jk,,,,z=lk, l• k, n = l ,  2 . . . .  ,2  z. We 
want to decompose E. We start with /=0.  J l : ,0=[0 ,  1] 2. If ]E]=[EnJl,~,o]~ 
~-[Jl, a,0[ then we keep Ja, l,0 and the process stops. Otherwise, we divide [0, 1] 2 
dyadically into 4 cubes J1,1:, Jz, l,1, J1,2,x and J2,,,1. If  [EnJk,,,,l]>=-~ [Jk,,,,x[ for 
some k or n, then we keep that one and ignore all subsequent subdivisions of it. 
We subdivide the remaining cubes, and repeat the process. 

In this way we obtain a sequence of disjoint intervals Jk,,,,,,l," Let F= (.Ji Jk,,,,,,z,' 
Clearly, [FI~_2{E[. Moreover, F contains all points of density of E, so that Z~-<Xv 
a.e. Since the theorem holds for F, 

This proves the right-hand side inequality for p_->2. For 0 < p < 2 ,  the right- 
hand side follows from H61der's inequality and the result for p=2 .  The left-hand 
side inequality follows from the convexity argument as in theorem 3. 

For lacunary trigonometric series we have similar results. 

Theorem 5. Given 0 < p <  ~, ql, q2 >1,  there exist constants A(p, ql, q2) and 
B(p, ql, q2) such that for any f(x,  t)=~ak, t ck, teirkXelS: with .~ Ick,~12< ~, with 
rk=- - r -k ,  St=--S-t ,  ro=So=0, rk+l/rk>=ql>l, and st+x/st>=q2>l for k, 1=1, 2 . . . .  
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and for  any intervalslx, & with II~l >=4~/(rx min ( q l -  1, 1)), I&l >=4rc/(s~ min (q2-1,  1)), 
we have 

A(p ,  ql" q2)(~k,I  ]Ck, l[2) 112 ~ [I 1 )~ I2[ f*,f*, If(x,  t)l~ ax at) 

~_ B(p, ql, qe)(Zk., [Ck.,12) 1/z. 

Proof. The generalization follows from the one-dimensional case as in theo- 
rem 3. 

Theorem 6. Given 0 < p <  0% ql, q2 >1,  there exist constants A(p,  q~, qz) and 
B(p,  q~, q~) so that for  measurable Ec[0 ,  1] 3 with positive measure there exist 
N I=NI (E ,  ql) and N2=N2(E, q~) so that for any f ( x ,  t ) = ~ k , l  ck, te~'~e ~s'' with 
_.Yk,~ Ick.I 2< ~ ,  with rk = -- r_k, st= -- s_z, ro=so=O, rl > Na , sl > Ne, rk + l/rk ~ ql > l, 
and sz+l/sz>-_q2>l for k, l=1, 2, ... we have 

( - ~ f f  E ~l/p A(p ,  q~, q~)(z~ 1%,12) ~t2 -~ 1 If(x, t)[, dx dtJ ~ B(p, q~, q2)(Z ICk.,[2) 1/L 

Proof. The generalization of  the one-dimensionaI result follows along the same 
lines as the proof of  theorem 4. 

Theorem 7. Suppose {nk} and {rnt} are lacunary sequences with nk +l/nk >qx > l, 
rnt+a/m~>q2> l, and suppose f (x ,  t)=Co + ~k.Z~_l Ck, tW,~ (X)Wm,(t ) with Z lck,~l~<oo. 

Then there exist constants A(ql,  q2) and B(q~, qz) so that 

A(ql ,  q2 ) (Zk , ,~  ICk,,12) 1'2 ~-- IlfllBMod <---- B(q~, q2)(Zk. 'm Ick,,l~) 1/~. 

Proof. The proof follows the outline of the proof of  theorem 1 except that we 
use theorem 3 for the left-hand side inequality. 

Theorem 8. Let f ( x ,  t)=~__2_~.o ck.,ei'kXe is,' with rk, S t real, rk+l/rk>ql>l,  
SI+I/ss>q2>I for  k, l= 1, 2 . . . . .  Aesume also rl_~4~/min (q~- 1, 1), sx -> 
4n/rain (q2-- 1, 1), r -k--  --rk, S-t = --St, and ~ Ick,~12< co. 

Then there exist constants A(ql,  q~) and B(ql, qO so that 

) ) (z '  A(ql ,  q. .~ ICk.ll2 1/3 < IlfltBMO <- B(ql ,  q2 k.t ICk, t[2) x/z' 

where 2 "  is the sum over all k and 1 except for the case where both k and l are zero. 

Proof. The proof follows as in the one-dimensional case, using theorem 5. 
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