A remark on a theorem by F. Forstneric

Jean-Pierre Rosay*

Let B_{n} be the unit ball in \mathbf{C}^{n} and $b B_{n}$ be the unit sphere. Let γ be a simple closed curve of class \mathscr{C}^{2} in $b B_{n}$. Assume that γ is complex tangential at one point at least (this means $\langle\dot{\gamma}, \gamma\rangle=0$, where \langle,$\rangle is the hermitian scalar product). F. Forstnerič$ has proved that then γ is polynomially convex [2]. This result has been used recently in [1].

The aim of this note is to present an extremely simple proof of this result (part I). Then in part II, we give a counterexample to show that the result fails to be true if the curve is assumed to be only of class \mathscr{C}_{1}^{1} (and fails to be \mathscr{C}^{2} just at one point, where a complex tangency occurs).

I. Proof of Forstnerič's result

We can assume that the curve γ is parametrized by $[-1,+1] ; \gamma(1)=\gamma(-1)$, $\gamma(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right), \gamma(0)=(1,0, \ldots, 0)$ and $\dot{\gamma}(0)=(0,1,0, \ldots, 0)$. In fact, we need only to assume that γ is \mathscr{C}^{1}, and \mathscr{C}^{2} in a neighborhood of $t=0$. The result of Forstnerič is an easy consequence of the following totally elementary geometric fact:

Proposition. For $\varepsilon \in \mathbf{R}$, and $-1 \leqq t \leqq+1$, set $\Gamma^{\varepsilon}(t)=\gamma_{1}(t)+i \varepsilon \gamma_{2}(t)$ (abusively Γ^{ε} will also denote the "geometric" image, which is the projection of γ under the map $\left.\left(z_{1}, z_{2}\right) \rightarrow z_{1}+i \varepsilon z_{2}\right)$. There exists $\varepsilon \in \mathbf{R},|\varepsilon|$ arbitrarily small, $t_{0} \in(0,1)$ and $h>0$ such that:

$$
\left\{\begin{array}{l}
\text { for } t_{0} \leqq|t| \leqq 1 \quad \operatorname{Re} \Gamma^{\varepsilon}(t) \leqq 1-h \\
\text { for }-t_{0} \leqq t<0 \quad \frac{d}{d t}\left(\operatorname{Re} \Gamma^{\varepsilon}(t)\right)>0 \\
\text { for } 0<t \leqq t_{0} \quad \frac{d}{d t}\left(\operatorname{Re} \Gamma^{\varepsilon}(t)\right)<0 \\
\text { the intersection of the line } \operatorname{Re} z=1-1
\end{array}\right.
$$

[^0]
$\operatorname{Re} z=1-h$
The last assertion is the important one. Using arguments from the theory of function algebras (see [3] or [5]), the result of Forstnerič can be deduced from the proposition in the following way. The curve γ can be decomposed into the union of two arcs γ^{\prime} and $\gamma^{\prime \prime}$, which we take to be the intersection of γ with respectively the half spaces $\left\{\operatorname{Re}\left(z_{1}+i \varepsilon z_{2}\right) \geqq 1-h\right\}$ and $\left\{\operatorname{Re}\left(z_{1}+i \varepsilon z_{2}\right) \leqq 1-h\right\}$. It is immediate (using polynomials in $z_{1}+i \varepsilon z_{2}$) that γ^{\prime} and $\gamma^{\prime \prime}$ are peak sets for $P(\gamma)$ (the closed subalgebra of $C(\gamma)$ generated by polynomials). Since γ^{\prime} and $\gamma^{\prime \prime}$ are smooth arcs, one has $P\left(\gamma^{\prime}\right)=C\left(\gamma^{\prime}\right)$, and $P\left(\gamma^{\prime \prime}\right)=C\left(\gamma^{\prime \prime}\right)$ (see remark below). Then, given any $f \in C(\gamma)$ and $\varepsilon>0$, there exist polynomials P_{1} and P_{2} such that $\left|P_{1}-f\right| \leqq \frac{\varepsilon}{4}$ on γ^{\prime} and $\left|P_{2}-f\right| \leqq \frac{\varepsilon}{4}$ on $\gamma^{\prime \prime}$. If $\chi \in P(\gamma)$ is a function which peaks on γ^{\prime} (i.e. $\chi=1$ on γ^{\prime}, $|\chi|<1$ on $\left.\gamma-\gamma^{\prime}\right)$, then for n large enough $\left|\left(\chi^{n} P_{1}+\left(1-\chi^{n}\right) P_{2}\right)-f\right| \leqq \varepsilon$ on γ. This shows that $P(\gamma)=\boldsymbol{C}(\gamma)$, and therefore that γ is polynomially convex. In the last step, we have just rewritten a proof that the union of two peak interpolation sets is a (peak) interpolation set.

Proof of the proposition. One has

$$
\gamma_{2}(t)=t+O\left(t^{2}\right) \text { and } \quad \gamma_{1}(t)=1+\left(-\frac{1}{2}+i \frac{a}{2}\right) t^{2}+o\left(t^{2}\right)
$$

where $\quad a=\left.\frac{d^{2}}{d t^{2}}\left(\arg \gamma_{1}\right)\right|_{t=0}$. Therefore $\quad \operatorname{Re} \Gamma^{\varepsilon}(t)=1-\frac{t^{2}}{2}+\varepsilon O\left(t^{2}\right)+o\left(t^{2}\right) \quad$ and $\operatorname{Im} \Gamma^{\varepsilon}(t)=\varepsilon t+\ldots$.

There exist $\varepsilon_{0}>0$ and $t_{0} \in(0,1)$ so that for $|\varepsilon| \leqq \varepsilon_{0}$ and $|t| \leqq t_{0}:\left|t+\frac{d}{d t}\left(\operatorname{Re} \Gamma^{\varepsilon}\right)\right| \leqq$ $\frac{|t|}{2}$. This already shows that for $|\varepsilon| \leqq \varepsilon_{0}, \operatorname{Re} \Gamma^{\varepsilon}$ in increasing on $\left[-t_{0}, 0\right)$ and decreasing on $\left(0, t_{0}\right]$. Fix $h_{0}>0$ so that $\operatorname{Re} \gamma_{1}(t)<1-2 h_{0}$ if $|t| \geqq t_{0}$. If $|\varepsilon|<h_{0}$ then $\operatorname{Re} \gamma_{1}(t)+i \varepsilon \gamma_{2}(t)<1-h_{0}$, if $|t| \geqq t_{0}$.

Set $\varepsilon_{1}=\min \left(\varepsilon_{0}, h_{0}\right)$. For any $h \in\left(0, h_{0}\right)$, and $|\varepsilon| \leqq \varepsilon_{1}$, the $\operatorname{arc} \Gamma^{\varepsilon}\left(\left[-t_{0}, 0\right)\right)$ (resp. $\left.\Gamma^{\varepsilon}\left(0, t_{0}\right]\right)$ intersects the line $\operatorname{Re} z=1-h$ at only one point which we denote
 $p^{-}\left(-\varepsilon_{1}\right)>0>p^{+}\left(-\varepsilon_{1}\right)$, which is possible due to the fact that $\left.\frac{d}{d t}\left(\operatorname{Im} \Gamma^{\varepsilon}\right)\right|_{t=0}=\varepsilon$.

By continuity, for some $\varepsilon \in\left[-\varepsilon_{1}+\varepsilon_{1}\right], p^{+}(\varepsilon)=p^{-}(\varepsilon)$.
Q.E.D.

Remark. Since γ^{\prime}, and $\gamma^{\prime \prime}$ are arcs in the sphere, one can prove in an elementary way that polynomials are dense in the space of continuous functions on γ^{\prime}, and $\gamma^{\prime \prime}$, without resorting to Stolzenberg's theorem. I do not know how much this has been noticed. F. Forstneric and I came to notice it in a discussion, which is partly the origin of this paper. Here are some indications. Let Λ be a \mathscr{C}^{2} are in the unit sphere in \mathbf{C}^{n}, with $(1,0, \ldots, 0)$ as an end point. For $h>0$, let Λ^{\prime} and $\Lambda^{\prime \prime}$ be respectively the intersection of Λ with the half spaces $\operatorname{Re} z_{1} \geqq 1-h$ and, $\operatorname{Re} z_{1} \leqq 1-h$. If h is small enough, the projection of Λ^{\prime} in the z_{1} plane is a simple arc. By using polynomials in z_{1}, one sees that Λ^{\prime} is a peak interpolation set for $P(\Lambda)$. So, to show that $P(\Lambda)=C(\Lambda)$, it is enough to show that $P\left(\Lambda^{\prime \prime}\right)=C\left(\Lambda^{\prime \prime}\right)$ (the proof has essentially been given above). The problem has thus been reduced to the smaller arc $\Lambda^{\prime \prime}$. And the proof can be completed after a finite number of such steps. If the curve is only \mathscr{C}^{1}, the same proof works, if one replaces the region $\operatorname{Re} z_{1}>1-h$ by the region defined by: $\left|z_{1}-1\right|<1$ or $\left|z_{1}\right|>1$.

II. An example

1) Set $E=\left\{z \in \mathbf{C},|z| \leqq \frac{1}{2 e}, \operatorname{Im} z \geqq 0\right\}$. For $z \in E$, set $f(z)=z \log \frac{1}{z}$ where we take $\log \frac{1}{z}=\log \frac{1}{|z|}+i \theta$ with $-\pi \leqq \theta \leqq 0$, and $f(0)=0$. The function f is $(1-1)$ on E. Indeed $f^{\prime}(z)=\log \frac{1}{z}-1$, so $\operatorname{Re} f^{\prime}>0$ and we can apply the result in [4], page 294, exercise 12. The function f is \mathscr{C}^{1} except at 0 . However f maps $\left(-\frac{1}{2 e}, \frac{1}{2 e}\right)$ to a \mathscr{C}^{1}
curve. The positive real axis is mapped into itself, while the negative real axis is mapped into the curve $x=\frac{y}{\pi} \log \left(\frac{y}{\pi}\right)$. The inverse map f^{-1} is \mathscr{C}^{1} on $f(E)$ and at $0:\left(f^{-1}\right)^{\prime}(0)=0$. Finally notice that although f is not \mathscr{C}^{1} on $E,|f|^{2}$ is \mathscr{C}^{1} and even $\mathscr{C}^{1+\varepsilon}$ for every $\varepsilon \in(0,1)$.

Composing f with a conformal mapping from Δ, the open unit disc in \mathbf{C}, onto a smooth domain in E whose boundary contains $\left[-\frac{1}{4 e}, \frac{1}{4 e}\right]$, we get therefore the following lemma.

Lemma. There exists $F, a 1-1$ continuous map from $\bar{\Delta}$ into \mathbf{C}, with the following properties:

1) F is holomorphic on $\Delta, F(1)=0,|F|<1$;
2) F is smooth on $\bar{\Delta}-\{1\}$;
3) $|F|^{2}$ is of class $\mathscr{C}^{1+\varepsilon}$ on $\bar{\Delta}$ (for any $\varepsilon \in(0,1)$);
4) $F(b \Delta)$ is a \mathscr{C}^{1} curve $\left(\mathscr{C}^{\infty}\right.$ except at 0$)$;
5) F^{-1} is C^{1} on $F(\overline{4})$ and $\left(F^{-1}\right)^{\prime}(0)=0$.

There is no claim that this lemma is original.
2) Construction of the curve.

Take F as in the lemma. Set $\Omega=F(\Delta)$. There exists G, a \mathscr{C}^{1} function on \bar{Z}, holomorphic on A, such that on the unit circle $b \Delta:|G|=\sqrt{1-|F|^{2}}$, since $\sqrt{1-|F|^{2}}$ is of class $\mathscr{C}^{1+\varepsilon}$. We can impose $G(0)=1$. The map $z \mapsto \psi(z)=\left(z, G_{0} F^{-1}(z)\right)$ is a \mathscr{C}^{1} map from $\bar{\Omega}$ into the unit ball which maps $b \Omega$ to a \mathscr{C}^{1} curve γ in the unit sphere in \mathbf{C}^{2}. This curve is not polynomially convex since its polynomial hull contains $\psi(\Omega)$. However $\psi(0)=(0,1)$, and since $\psi^{\prime}(0)=(1,0)$ (due to $\left(F^{-1}\right)^{\prime}(0)=0$), the curve is complex tangential at the point $(0,1)$.

References

1. Berndtsson, B. and Bruna, J., Traces of plurisubharmonic functions on curves, Ark: Mat. 28 (1990), 221-230.
2. Forstnerič, F., Regularity of varieties in strictly pseudoconvex domains, Publications Matematiques 32 (1988), 145-150.
3. Gamelin, T., Uniform algebras, Prentice Hall, Englewood Cliffs, NJ, 1966.
4. Rudin, W., Real and Complex Analysis, 3rd edition, McGraw-Hill, New York, 1987.
5. Siout, E. L., The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown on Hudson, NY, 1971.

Received Oct. 11, 1989
Jean-Pierre Rosay
Department of Mathematics University of Wisconsin Madison, WI 53706 USA

[^0]: * Research supported in part by NSF grant DMS 8800610.

