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1. Introduction and statement of results 

Let B" denote the unit ball of  C". For an holomorphic function f on B" with 
homogeneous expansion f(z)=,~kfk(Z), the fractional derivative/3Bf of  order / ~ C  
is defined by 

(1) Day(z) = Zk(k + 1)afk(Z). 

0 
Thus D = R + l d ,  where R=~jzj-~-)~. is the radial derivative. (The reason for 

using D instead of  R is to get a one to one map and to have simple expressions 
for the inverse map.) The Hardy--Sobolev space H~', l < - p < ~ ,  f l>0,  is defined 

H~ = {f: sup f s  [DPf(r~)lPda(~) = IIfJ[PP'P < + o~}, 

where S denotes the boundary of  B" and da its Lebesgue measure. It is well-known 
(see [5] and [6]) that in case ]~ is an integer one can use R a instead o f D  a and if fCH~ 
then all derivatives up to order ]~ of  f belong to H" (i.e. they are in LP(S)), and thus 
H~ can be thought as the analogue of  the Sobolev and potential spaces in real ana- 
lysis. The space H~ has been the subject of  several recent papers and a theory of  
holomorphic Sobolev spaces is being systematically developed, in many aspects 
analogous to the real-variable theory of  Sobolev and potential spaces (see [5], [7], 
[12], [14], [1], [2], [3] and the forthcoming book [6]). 

The object of  this paper is to describe the trace of  the spaces H~ along certain 
submanifolds of  S, i.e. to find the analogue of  the "trace theorem" (see [8] or [16]). 

To simplify the exposition, here and in the main part of  the paper, we will 
limit ourselves to (simple) closed smooth curves F on S and to the regular range 
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of the spaces H~, i.e., when all functions in H f  are continuous up to S (which is 
f l>n/p if p > l  and f l~n  if p = l ,  see [12], [14], [6]). More general cases will be 
considered in another section. 

As it was to be expected from the real-variable theory, the description of the 
trace involves Besov spaces, whose definition we proceed now to recall. Without 
loss of  generality we may assume our curve F parametrized by [ - n ,  n] and identify 
functions on F with functions on the unit circle T. For l ~ p < ~ ,  and e>0 ,  the 
Besov space B~ is the subspace of LV(T) defined by the condition, independent of 
the integer k > e ,  

IIA'kf[l~ dt < + co (2) f_+] ltt +,, 

where A~ denotes the k-th difference operator. The index a must be thought as 
an index of smoothness. We refer to [8] and [16] as a general reference for Besov 
spaces. 

A complete description of the trace (in real analysis terms) can just be expected 
on those curves in which any nice function can be interpolated by a nice holomorphic 
function. These are the complex-tangential curves, or curves having a tangent at 
any point in the comple.x-tangent space at S. In terms of a parametrization 7(s), 
this is the condition 

~ ' ( s ) .  ~ (s) = 0. 

Our first main result is a restriction theorem: 

Theorem 1. The trace o f  rt~ on any curce is contait:ed in By, with = - - - Y -  7"  
I f  the curve is complex-tangential, the trace is contained in ~p, ~ with c~=2( /~-~) t  7 . "  1 

The better index of smoothness along complex-tangential curves is in cor- 
respondence with the better regularity properties of holomorphic functions along 
complex-tangential directions (this is a general fact and has been made precise for 
the spaces H~ in [3]). From the inclusion B;cLip ,_~ /p(T) ,  the usual Lipschitz 
space of order c~-L we recover the result that the functions in H~ are in p '  

Lip~_,/p (B"), and in Lip~(B_,/p) along any complex-tangentiaI curve, again in ac- 
cordance with the above general fact. 
For complex-tangential curves, A. Nagel introduced in [15] a family (Iq)q>a/~ of 
interpolation operators 

Iq: C ( F ) ~ A ( B ) ,  Iqq0=q0 on /" 

from the space of continuous functions on the curve to the ball algebra. 
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Definition. The curve F is said to satisfy the condition (I) if given m~N, there 
exists qo=qo(m) such that for q>=qo(m), lq maps C = functions on F to functions 
with bounded radial derivatives up to order m. 

We point out that, as said before, it is known that C ~ functions on F can be 
interpolated by holomorphic functions in A ~ =C ~ (B")c~H(B"), but this uses others 
methods of  interpolation. Our second main result is then: 

Theorem 2. I f  F is complex-tangential and satisfies condition (I), the trace o f  
H~ is exactly Bp with . , 1 . " 7  

We prove that the "model"  complex-tangential curve t~-~(cos t, sin t) in C = 
satisfies the condition (I). We also give a method to check that qo(m)=2m works 
for any complex-tangential curve and any concrete value of  m. For  m =  1 this is 
easily done, but for higher values of  m the computations become more and more 
involved and long. We have implemented our method in a computer and have 
checked this property for several values of  m. All this leads us to conjecture that 
condition (I) always holds. 

The paper is structured as follows. In Section 2 some preliminaries and auxiliary 
results are collected. In Sections 3 and 4 we prove Theorems 1 and 2, respectively. 
In Section 5 we discuss some generalizations of  Theorems 1 and 2. There we con- 
sider the situation for the so-called Bergman--Sobolev spaces, for the non-regular 
range of  the spaces H~ and also for higher dimensional submanifolds of  S. In Sec- 
tion 6 we prove our results concerning the condition (I). 

Part of  this paper was done while the first author visited the Mittag-Lefller 
Institute during the special year in several complex variables. He wishes to thank 
this institution for its support. We also thank Professors P. Ahem and J. Burbea 
for valuable discussions. 

2 .  P r e l i m i n a r i e s  

2.1. The spaces Hff have a good behaviour under the complex interpolation 
method, which will allow us to reduce the proofs of  the restriction and interpolation 
theorems to some particular cases. One property we uill need is 

" " = I t ~  = ( 1 - 0 ) / ~ 1 + 0 / ~ o  (3) [H~I, He,]o P .. 

The space H~ being by definition the domain (in H p) of  D p, a general result in 
interpolation (see [17, pg. 103]) shows that (3) is true if D is a positive operator 
and for any tCR 

(4) [ID"fllp ~ C(1 + Itl)NllfI[p 
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for some C, N. In fact something more general than (4) holds. Namely, for any 
t, trCR 

IID"+i'llp ~ liD"lip 

as operators in H p (see [6] and [10]), so that (4) holds with N=0.  Alternatively, 
(4) can be reduced to the one-variable case by slice integration, and proved using 
the analogue in the periodic case of Mihlin's multiplier theorem. 

On the other hand, if l=>0 it is immediately seen that 

f f (  tz) tZ dt = (D+/)-af(z)  

by checking both members with f (z )=z  / for a multi-index I. By the continuous 
Minkowski inequality and the subharmonicity o f f  it is then clear that 

1 
I[(D+l)-XfllP <= 1+1 Ilfllp 

so that D is a positive operator in the sense of [17, Def. 1.14.1]. 
An analogous result to (3) is also true when fl is kept fixed: 

1 1 - 0  0 
. . . . .  q - - - ,  l < - p l ,  P2<C~ (5) [H~ ~, H~']o H~, P Pl P2 

It is enough to prove this for fl=0, and then the result follows, as in [8, Ex. 14, 
p. 18] as a consequence of two facts: for l < p <  co, the Szeg6 projector is bounded 
from LP(S) to H p, and the factorization theorem for functions in HX(B ") of Coifman, 
Rochberg and Weiss ([11, Thm. III]). 

2.2. The Besov spaces B~, can be alternatively defined in terms of harmonic 
functions. Under the Poisson transform, B~ corresponds to the space of harmonic 
functions u in the unit disc such that 

(6) fl l< (1 --]2l)kP-'P-llVku(2)lP dm(2 ) < + oo. 

Here Vku denotes the k-th gradient of u and the condition is again independent of 
the integer k >ct. 

It is well-known that i f j  is an integer less than ~, then fE/Vp if and only if 
f has derivatives in the sense of distributions up to order j" in/Vp -J. In particular, 
for c~ non-integer, k - l < ~ < k ,  ~ c l ,  V~ k-l, the classical Sobolev space. We will 

~t use the following property of functions in B~: 

Lemma. Suppose c~ is non-integer, k - l < ~ < k ,  let fEB~ and let E k f  denote 
the Taylor remainder, defined for a.e. s as 

E~f(s) k-t  f~i)(S) tf" = f ( s + t ) - - ~ i = ~  i! 
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Then 

(7) f + "  dt < + oo, 
-,~ ]tll+~p 

Proof. We assume k-_>2 and use the integral form of the remainder 

1 (f(k--1) (x)--f(k--X) (S)) (X--S) k-2 dx E ~ f ( s ) -  (k-2)------~--~ 

1 t 
-- f] A~f(k-X)(s)xk-2 dx. ( k - a )  t 

By Hardy's inequality this is bounded by 

+~ [IA~f(k-1)l! ~ 
f _ ,  [Xil+(~_k+l) p dx, 

which is finite because f(k--X)(B~--k+X. | 

We point out that the converse of  the lemma also holds. Namely, if k -  l < ~ < k ,  
f C L  p and there are functions go, gl . . . . .  gk_xCL p such that 

E~f(s) ~-1 g,(s)  t' = f ( s + t ) - Z i = ~  i! 

satisfies (7), then fEB~p (and g i = f  (0 a.e.). See the remark at the end of Section 4. 
This characterization of B~ for a non-integer is probably known to specialists but 
we have found no reference for it. 

We will also need the fact that Besov spaces behave nicely under the complex- 
interpolation method ([8, pg. 153]): 

1 1 - 0  0 
~1 ~ - ~ = ( l - 0 ) a l + 0 ~ ,  ~ + - - .  (8) [Bp~,Bp2]o -- Bp, a - -  = 

P Pl P2 

2.3. We will need the notion of Carleson measure. A positive measure /~ on 
B" is called a Carleson measure if there exists a constant C such that for each ~ S  
and 6 >0  

/~({zEB": I I - z . ( I  < 5}) = 0 (5% 

The importance of Carleson measures is given by the following inequality, due to 
Fefferman and Stein: whenever/~ is a Carleson measure one has for any h: B"-~C 

(9) fB- I h (z) l" dl~ (z) ~_ C, f s M,  h (~)P da (~) 

where M,h  is the admissible maximal function 

M , h ( O  = sup {Ih(z)l: zCDr(~)). 
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Here D,(~) is the admissible approach region 

{z~B": II-z-~1 < z(1-1z?)}.  

Combined with the maximal characterization of H p, 

f<H p ca. 3I~f<LP(S) 

(9) gives the well-known result that Carleson measures operate in H& 

2.4. The following lemma will be required 

Lemma. I f  g(r) is differentiable in [0, 1) and g(0)=0 

f~lg( )L ( 1 )  f~ Ig'( )l (1 ) r p - - r  e - l d r  < C7, p = r p - - r  P+~-ldr, T :> O. 

Proof. Let h(r)=-(lg(r)]a+e) p/2 and call I the left-hand term. Integrating 

by parts and making e-+0 leads to 

/={; o Ig'(r)l l g ( r ) lP - l (1 - r ) ' d r .  

H61der's inequality then gives 

I <= P---{~ Ig'(,)l"(1--r)'+'*-ldt}'lPl 'If  

_ _  P P and hence the result follows with Cy, p-(-r (strictly speaking, one should prove 
the inequality for the integral between 0 and R and then make R ~  1). II 

3. The restriction theorem 

3.1. In this section we prove Theorem 1, i.e. 

(10) H~lr c B r any F. 

(11) H~I r C B g(t~-(n/p))+(x/p), [" complex-tangential. 

In view of (3), (5) and (8), in proving (10) we can assume that fl is a positive integer 
and f l - p + ~ -  is not. Similarly, for (11) we can assume fl is a positive integer and 
2 ( f l - p ) + +  not integer. 

We can also assume without loss of generality that the parametrization ?(s) 
of F satisfies that IY(s)l is a constant l. We consider the index of trans~ersality 
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T(s) defined by 

T ( s )  = I / ( s ) .  "l(s)l, 

the complex-tangential curves corresponding to T(s)=O. We denote by /7 the 
surface 

/ - / =  {r~(s ) ,  0 ~ r ~ 1, 0 ~ s <= 2~}  

and for a given function fCH~ we write u(r, s)=f(rT(s)). 
The following geometrical lemma is proved in [2]: 

Lemlna. Given z, ~o, l < z < 0  and a vector v, there exists e=e(z, 0, I1~[I) such 
that whenever z=rqED~( 0 one has 

for all 2EC satisfying 

(12) 

z + 2v ED o (0 

1 - r  

(I - r?l~ + Iv" ;11 " 

Moreover, 1-Iz+~vl is comparable to 1 - r  for these )v. 

Let fEH~ and assume z=rqED~((). Applying the lemma with v=q and 
Cauchy inequality in the disc given by (12) to the function RPf(z+2v) we obtain 
for m=>fl 

(1-[zl)"-PlR"f(z)l ~ constMo(RPf)(O, zED,(O. 

Therefore F(z)aef(1-lzl)'-PRmf(z) has admissible maximal function in Lv(S). 
Assume now that zEl-I, z=rT(s)ED~(~). Applying the lemma with v=y' (s)  

and again Cauchy inequality to R'f(z+2v) we obtain 

(1 - r )  ~ cgk +" u s) 
((l--,)l/2+T(s)) k ~ O, ~ const sup [R"f(z+2v)l 

the supremum being taken over the 2"s satisfying (12). Multiplication of this in- 
equality with ( l - r )  m-a, together with the fact that 1-[z+2v[ is comparable to 
1 - r  leads to 

(l--r)k+m-P ~k+mu (r, s) <= constMQ(F)(0, 
( ( 1 - O ~ , ' ~ + T ( s ) )  ~ Os~O/" 

z = r y ( s ) C D , ( O .  

We conclude that the function h(z), defined by the above expression for z=r?(s)EII 
and 0 outside, has admissible maximal function M,h pointwise bounded by Mo(F) 
and hence in L~(S). 

Next we consider the measure p supported on 17 defined by 

f h dy = f2 f+_~ hQT(s))(1--r)"-2((1--r)X/2+T(s))drds. 
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It is proved in [2] that p is a Carleson measure. By (9) we reach the conclusion that 
for m>=fl and k = 0 ,  1 . . . .  

( 1 3 )  flf+, a +'u I ( l - - r )  p(k+m-t~)+n-2 
�9 , o . ,+,  OskOr m (r, s) ((1--r)X/2+T(s)) "k-1 drds < + ~,  

with u(r, s)=f(rT(s)), whenever f~H~.  Note that in the special case that F is 
a slice, say H is zz=z3 . . . . .  z ,=0 ,  then (13) for k = 0  and m=fl  reduces to 

f ,=,,~1 lRa f(zl)lP(1 -[zl[)"-~dm(zI) "< + ~o 

which is indeed equivalent to f ( e  ~) being in B~ -nIp+alp (subsection 2.2). In the general 
case/-/is not of  course an analytic disk, so u(r, s) is no longer analytic or harmonic. 

IJ-nlp+llp will nevertheless imitate the one giving the Our proof  that f(7(s))  is in B~, 
equivalence between the two definitions (2) and (6) of  the Besov spaces, but com- 
pensating the lack of harmonicity by the fact that we have condition (13) for bigger 
values of  k, too. 

. a 2 . x 3.2. Let us now prove (10) and (11). With ~ either f l - ~ + 7  or ( f l - -~ )+7 '  
respectively and if k - l < ~ < k ,  we have to prove 

tlA~.fllg dt < ~o. 
(14) f_+~ 1,11+~ , 

The method is as usual to pass a bit inside in order to evaluate this k-th dif- 
ference. We write 

r(s, t) = 1-c( t~+Z(s) I t l ) ,  

where c is some constant chosen so that 0 = r = l  when [tl<-n. Now 

A,~f(s) Z , = 0  - 1) v f(~+~t)  X,=0  ( -  1) v ~,(~(~+,,t, r ~+vr 

+ Z , = 0 ( -  1) ( f ( s + v t ) - u ( r ( s + v t ,  t),s+vt)). 

It will be convenient to introduce the notation 

U,(s) = u(r(s, t), s). 

Then the above can be written 

A~f(s) = A~ U, (s) + A~ ( f -  U,) (s) 

and we treat each term separately. For  the first we use that Ut is a C'* function 
and hence 

llzi, ~ g &  <_- Itl ~ t l , .  
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It is easily seen that l d----~ U,(s) 1 is bounded by a sum of  terms 

~kx +k~ u 

Itlk' 0-7~fi7 (r(s, O, s)] 

with kl+k2<=k. Hence 

I" (15) f-+2 lla~'v'lt~ d t < c Z s  a : , a : ,  
ItlX+~, 

In the t-integral we change now t by r=r(s, t). Since 

1-r  dr 
t~- (T(s)~+l_r) , /2 ,  dt ~- (T(s)2+l_r)~/2, 

we get the bound 

f f (l--r)m+kl-')-l(T(s)2 + l--r) -cm)(*+k~-~) ~cgt~+t'U "(r, s)ll " drds. 

By the lemma in 2.4 this is finite if 
O-+k,u P 

(16)  f f r - - P ) P ( k + m - ~ t ) - l ( Z ( s ) " q  - 1 - -  r )  - (p /2) (k+kx-e t )  ~ ( r , "  s)[ drds 

is finite, where m is any integer bigger than kl and ft. 
Next, we bound IIAk,(T-U,)II~ by 

] , . ~  dk-1 ] 
IIA,~-x(f - U,)iip -<- ltl *-~ , A~--Tzi--~ ( f -  U,) . 

P 
Now 

Ou ( f  - U,)(s) = s -~  (y, ~) dy. 

d k- 1 

In a similar way as before, ~ ( f - U t )  is bounded by the sum of 

(17) f l  Oku ,(,,0 0yOs ~-1 (y' s)dy 

Ok~+k2U (r(s, t),s), with kx+kz<=k - 1, terms that have already with terms [tl ~ Ork~OSk~ 

been treated. For (14) it remains to bound 

f :  t '*-~-"- ldt  f + " f  f 1 a*u s)dy)'ds. -~ ~. ,o.o Oycgs k-x (y' 

With s fixed, we apply the same change of  variable as before, from t to r=r(s, t), 
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to obtain 

f+_" as f2 (1--r)P'k-l-')-l(T(s)2+ l--r) -'vm'k-x-~) 

'gku s) d y f  dr. ( f]  ,gy as k- ~ (y' 

Since k -  1 - ~ < 0 ,  we can apply Hardy's inequality in the dr dy integral to get the 
bound 

+. 1~gku I v f _~ d~ f ~ (1-  y)~C~-~)- ~(r (s)~ + l - y)-(~,~)(~- ~-~, Oy O~_ ~ (y, s) ayd~. 

Again the application of the lemma in 2.4 gives as bound (m>=fl) 

k+m-lll [ v 
f+_~ f j  (l--lr)'(k--~t+m--1)-l(T(s)2-~ t--F) -(p/2)(k-I-:Q ~ (I',S) drds, 

which is of  the same type as (16). 
In conclusion, we have seen that (14) holds if the integrals in (16) are finite. 

Recall that in (16) m>=fl and k~+k2<=k. 
An easy computation shows that the integrand in (16) is bounded by the one 

o f ( D )  for k=k, if 

(18) (1 --r)-V~+l+Pv-n(TZ(s)+ 1 - r )  (~pi2)-(l!2) = 0(1). 

Here we see that the choice ~ = B - - L +  1 works for all curves (because then ~p=>l r p-- p 
by the regularity assumption fl>--~), thus proving (10) and the better choice 

n 1 ~ = 2 ( f l - 7 )  + 7  works for complex-tangential curves, proving (11). 
We remark that if the curve F is transverse, i.e. T(s) is bounded below, every- 

thing simplifies defining instead of  r(s, t) 

r(t) = 1 - t  

(in this case only the term with k l=0 ,  k,,=k arises in the estimate of  [[A~Utllv 
and (17) in that of  A~(f-Ut)). Similarly, all the above is simpler when F is com- 
plex-tangential, in which case r ( t ) =  1 - t  ~. 
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4. The interpolation problem 

4.1. To prove Theorem 2, we use linear operators of interpolation from com- 
plex-tangential manifolds constructed by A. Nagel in [15] that we proceed to recall. 

We assume as before that our closed, simple, complex-tangential curve F is 
parametrized by I-re, rr] and also that ~'(s) has constant length. For each q > l / 2 ,  
let he(z ) be the function 

he(z ) = f+~ ds , zE B~" 
z), 

For z~B", we denote by d(z) the pseudodistance from z to the curve 

d(z) = inf{ l1-7(s ) ,  zl, - n  --< s _~ zr}. 

The following estimates are proved in [15]: 

l_emma. 

(a) Ih~(z)l -~ d(z) x/2-a 

(b) IR'hq(z)l = O(d(z)llZ-'-i), i = 1 , 2  . . . . .  

We will fix in the following a tubular neighbourhood U of the curve F. Each point 

zEUc~B" has a unique euclidian projection y(s,) so that Re ( z -  ?( s,)) . 7' (s,)= 
Re z .7  (s,)=0. It is easy to see using Taylor's development and again the condi- 

tion 7 ' ( s ) . ? ( s ) - 0  that 

(19) l l - -y(s) ,  zl - II -y ( sz ) .  z l+ls - s , I  ~. 

In particular, 
estimates: 

d(z) ~11-~(sz) .  zl. Using this, it is immediate to check the following 

= O ( i h e ( z ) l ) "  
11 - ?  (s)- z[' 

f d,  =o([hq(z)l) as d ( z ) ~O,  for fixed 6 > 0 .  
I~-~zl~-5 I I - y ( s ) .  zl ~ 

Assuming without loss of  generality that hq(z)~O for z~U, it follows that the 
kernel 

Ke(s, z) der 1 1 zE U, Isl =< 
h,(z) ( l - r ( s ) .  z), ' 
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is an approximation of  the identity in the sense that 

K.(s, )ds = 1, 

and 

f+_: [Ka(s, z)] ds = 0(1)  

f,-~ts-s,l_~ [K~(s, z)lds ~ 0 as d(z) ~ O, z~ U. 

As a consequence, i f f ( s )  is a continuous function on the curve, the holomorphic 
function T~f(z) defined in Uc~B" by 

interpolates f ,  i.e. Tqf(z)~f(s) as z---7(s) (and it is clearly C ~ in U",,F). To 
obtain a globally defined interpolating function we solve a ~) equation as usual: 
if V c c  U is another tubular neighbourhood of /', we let )~ be a test function 
supported in U and equal to 1 in V, and we consider the (0, 1) form w =  
TqfOz/h. Here h is a function in A~ vanishing exactly on F (one can even 
choose h as flat on F, see [13]). The form w has coefficients in C~*(B) and hence 
there is a function uCC~ such that Ou=w. Moreover, u can be chosen u=Tw 
where T is a linear integral operator (see [9, Lemma 5.2]). Then the function 

def  
1 , f  = 2~Tqf-hu 

is a function in the ball algebra that interpolates f on the curve, and the operator 
lq is linear. The function hu is C 0~ up to the boundary, and hence the behavior of  
Tqfdetermines whether I g f  belongs or not to a certain function space. 

2 n , 1 4.2. As before we write = ( f l -~- ) •  We will complete the proof of Theo- 
rem 2 in the introduction by proving: 

Theorem. I f  F satisfies condition (I) and Iq maps to 

As in the previous section, and given the linearity of  lq, we may assume that fl 
is a positive integer and a is not. 

Assume k -  1 < e < k  and let f6B~. By the lemma in 2.2, the Taylor r e m a i n d e r / ~ f  
satisfies (7). We begin by estimating RiTqf, i = 0  . . . . .  ft. With ?(s,) being the projec- 
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tion of  zE U, 

R'T~f(z) = f f(s) RzKa(s, z) ds = f _, f(t+sz) R~K~(t+sz, z)dt 

k-1 1 f(t)(s )r+~ = ,~./=o-- T ~ j_~  tlR~-K~(t+s~, z)dt 

+ f : :  E~f(s:)R~K,(t+s,, z)dt. 

According to property (I), the first integrals of  the last term are all bounded in z. 
It is easy to check, using (19) and part (b) of the lemma in 4.1 that 

d(z)~-v~-t 
(20) IR~K~(t+s~, z)l <= const 

( d ( z ) + t ~ ) ~  �9 

In conclusion, we obtain, for i = 0  . . . . .  fl 

IR'T~f(z)[ <~g(sD+d(z)~-v~-' f+_~ lE~tf(s')[ (d(z)+t2) q dt, z~U, 

for some gEB~-k+~LP(T). 
Next we introduce coordinates in U suitable for these estimates. In what fol- 

lows we will assume that the dimension n is 2, the computations being just a bit 
more involved if n >-2. That U is a tubular neighbourhood of F means that the map 

(t I, t~, ta, t,) ~ V(q)+(--tz+ it3)V(q)+ it, v'(tx) 

is a coordinate map if  ta6[-n, n] and ' -  t - ( tz ,  ta, q) has [t'l small enough, say, 
It'l=<e (this is because 7(fi), iv(tO and V'(q) span the orthogonal of  7"(q)). I f  

A(q, t2, t3, q)=z, then h=s~ and d(z)~-ll-v(s,).zl~lt~l+lt3l. Our estimate 
reads in these coordinates 

I/~f(tl)l 
(21) IR'Tj(z)I <~ g(tl)+(ltd+ltal)~-v~-a f+_~ (t2+ It~t + It3]) q dt, 

i = 0  . . . . .  fl, an estimate independent of t4. From the formula for Iqfi and since 
X, h, u are C ' ,  we conclude that (21) holds for RaI~f. 

In this parametrization the sphere of radius R <  1 is given by 

( i_ t~)z+ ~ 2 R ~. ta+ ta = 

Since the bound we have obtained is independent of  t4 we choose tl, t2, t3 to co- 
ordinate S~oU, where SR = {[zl=R}, for R close enough to 1. Then 

1 
dcr R = O ( ( R~_( l ~ t2)2- t~ ) dtl dt2 dt~. , 
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(strictly speaking, we should consider two regions, one corresponding to /4>0 
and the other to t4<0). The region of integration SRc~U is contained in 

{Itxl -~ re, 0 < t2 < 5, It31 -~ 5, (1- t2)z+ t] _~ R2}. 

To finish the proof we have to show that 

I = Jsf~nv lg(ta)lP dtl dt, dta 
RC-~-~- O - t ~ ) ' -  ~ " 

t 2 t ~ x12 +~ H =  f s .nv  (It~l+lt31)P('-l/~-a)(R'-O- 2) - 3) { f  _. ( t~+'lE~f(tl)ldt~-~- I~T)w$l~'atx cltz- at3" 

are bounded independently of R <  1. 
Using continuous Minkowski's inequality in II and the fact that g is in LP(T) 

i n / ,  we see that ff dto dt~ 
I<= ~/R2 ( l _ i ~ _ t  ~ ' 

t2~_f~_al2~ f +~ [IE~tf[lp dt }Pdt2dt3" ( 2 2 )  II<- (It21+It31)Pq-P/2-PP RZ-(1 ( 5, ~j t J - ,  ( t"+l tz l+l t31)  q 

It is convenient to introduce the new variables Q, ~/ defined by 

1 - t2 = Q cos ~k, 

t3 = Q sin ~, 

with 1-e=<Q<_-R and ~/ small. Writing 

Itzl + It31 ~ (t]+ t]) ~/2 = [(1 - e) 2 +2e(1 - c o s  r def A(Q, ~/) 

we are led to the following integrals: 

coast f?_~ Q(R 2 -  Q2)-~/z I d~, 

I I  ~ coast f "  f+' A(Q, r [IE~flladt }" 
- , ~- , . , -~  (t~+.a(Q, ~))~ a ~ a ~ , .  

It is clear that the first is bounded independently of R. To evaluate the second, we 
break it into two parts, IIt and IIa, corresponding respectively to the regions (1 - Q)2=> 
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2 0 (1 - - c os$ )  and ( 1 -  0)z -<= 20 ( 1 -  cos $) which imply, respectively, A ( e , $ ) ~  
( 1  - e) and A (0, ~)-~ (1 - cos ~k) 1/2. In 111, ~2_ 1 - cos ~k ~< (1 - 0) 2 and hence 

111 <~ f ~  (1--~)Pq-P/2-P#+I(R2-o2)-x/z{f:~ ][;Ek'f[lpdt }'dQ. 
l--t: ( tz + 1 - -  O) ~ 

In this one, for R close to 1, we break the do integral according to whether O<=2R - 1 

or 0=>2R- l ,  obtaining two integrals that we call 111,1 and 111:. In 111, z, I--0-'~ 
1 - R  and so 

lll z ~  fs  (1-R)Pq-P/2-P#+I(R-o)-I/2(f:~ IIEk'ftipdt ~:'" 
�9 ( t -~-gl- - -c-~q)  a o  

~< 
tJ-~ (t'~+ 1 - R )  q) 

1(2#--2/p)~ )p--I 
(i- R)~,~+,,-,'~-,,(f+2 ll~,:ll~Itl~-~,,d,) (f+_: O: R-;~,", 

with p '  the conjugate exponent of  p. Now it is easy to see that the last integral is 
for q big enough (in fact q>fl+l/2-3/2p)  dominated by ( l - R )  -8/2-pq+p/z+p#. 
Thus 

IIl.z Z f+__~ IEk, fl[~,t=-2#pdt 

which is finite, in view of  the lemma in 2.2. 
In 111. a, R -  ~ is comparable to 1 - 0 and we bound 111,1 by making R = 1, i.e. 

(23) l',x~ f:_ (I-Q)P'-P/~-"+I/~(f+~ [I E~, f ll , dt 

, (f+_: [IEk, f[lpdtiP~ ) 
~= f~ :,-"/'-,,+',= do. 

Here we use Hardy's :inequality to obtain that if q is big enough (specifically q > fl + 
1 3 
2 ~-) then 111: is also bounded by 

f llEk, fll~,:-~-a~dt < + ~. 

It remains now to estimate II2. In this case ,4(0, ~ ) ~ ( 1 - c o s  ~)'2~-I~1 and 
also (1-e)<=c[~l 

f~ #'+' iOi.~-.,:-.,(R o)-.:{f_+: ll~,~fil, lPa.o,+. 113 ~< ~in(r,X-~t~i)e-a - (t"+lq, l)qJ 
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The integral in do is bounded by Ir and hence II~ is bounded by the same in- 
tegral appearing in (23). 

This completes the proof of the theorem. II 

Remark 1. The same method of proof but using the Poisson transform P 
instead of the operator Iq serves to show the converse of the lemma in 2.2. If Ekf  
satisfies (7), then u=P[f]  is an harmonic function for which (6) holds, an hence 

5. Generalizations 

5.1. The first generalization concerns the so-called Bergman--Sobolev spaces 
A~.y consisting of the holomorphic functions f such that 

(24) f B. IRaf(z)lP(1 - l z l )~- ldV(z)< + ~ '  p >= 1, ~ > O. 

In a certain sense, H~ corresponds to the limiting case ),=0. It is well-known 
that Apl ,p r~--Ap,, p r, if f l lp -v l=f l2p-v2  (in fact, the class of harmonic functions 
satisfying (24) corresponds to the Besov space B~-rtP(SZ~-I)). Also it is known 
(see [6]) that the regular range is here fl>"+Y for p > l  and fl>=n+v for p = l  

P 

(in which cases A ps,~ cLip,_c.+r)/p) 
We state the two corresponding results: 

Theorem. I f  F is as before, the trace of  A~.~ is contained in B~p, with ~ = f l -  
.+7 + a I f  F is complex tangential, the trace of  A~,~ is contained in B~p, with p _ _ ' ~ o  j 

0s n+~, 1 . =2(8--7-)+7 
Theorem. I f  F is a complex-tangential curve, for which property (I) holds, the 

r 2 n+~ z trace of  A~,~ is exactly B~, with = ( f l - - - - i - )+7.  

From these results we draw the conclusion that the Hardy--Sobolev spaces 
and Bergman--Sobolev spaces (i.e. Besov spaces) of holomorphic functions both 
have Besov spaces as traces on complex-tangential curves, in a complete parallelism 
�9 r the real-variable theory. 

The ideas to prove the above theorems are analogous to the ones used before, 
but there are some technical differences that we next indicate. 

The analogue of  (13) for f~A~. 7 is 

f ~ f l  O'+ku [P ( 1 - r )  " k + ' - " , + " - ' + '  
(25) -57wh7- (r, s) J o J l O  Os ~ [(1-r)I/2+T(s)] pk-~ drds < + ~o, 

m=>//, k = 0 ,  1,2 . . . . .  

Here u(r, s)=f(ry(s))  To see this, for each z let P~ be a polydisc centered at z 
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with size 8(l--[z[) in the normal direction and size e(1-lzl)  I/2 in the complex- 
tangential directions, so that its volume is comparable to ( I -  lz[) "+I. We need the 
following one-variable result proved in [3]: 

Lemma. I f  g is an holomorphic function in a disc 12-201~R, then 

c 
[gfk)(2~ ~ R 2+pk f Ig(2)lPdm(2)" 

Fix r, s; we apply the lemma to g(2)=R'~f(r~(s)+2?'(s)), 20=0 and 
R=c(1  -r) /((1 -r)X/2+T(s)), where c is chosen so that 1 -Ir~(s)+A~'(s)l ~- 1 - r  for 
all 2, 121-<-R. We obtain 

om+ku (r, s )v (  - 1--r ) ~  C :  
f dm(2). 

On the other hand, by plurisubharmonicity, for each z =  r~: ( s )+  2~,:'(s) 

[Rmf(z)] p < const f • IRmf(w)[Pdm(w)" 
= ( l _ r ) , + l  : 

Here we also used the fact that 1 -  [z[ ~ 1 - r .  An easy computation shows that, 
for z=r~(s)+2?'(s), 12I<=R, one has P~=P~,r(~) with some e'=e'(e). Therefore 
we conclude that 

~rn+k u IV [ 1--r ) ,k< C 
-~-~-~(r,  S) [(l_r)l/2 + T(s) ) = ( l - - r )  ~+1 fee's,, IRmf(w)l" dm(w) 

and hence the integral in (25) is bounded by 

f2 f+: (1--r)p(m-#)+r-a[(1--r)~/Zq-T(s)] 

{ f  ~,r [Rmf(w)] p dm (w)} dr ds. 

Next we apply Fubini's theorem and use the fact that for fixed w 

f t(,,,) ((1 - + Z(s)) dr ds = O (1 - Iwl) 

together with the fact that 1 -1wl~  1 - r  for w~P~,r<~) (choosing ~ small enough) 
to bound (25) by 

(1-1wl) ptm-a)+ ~-llRmf(w)[ p dm(w). 

This finishes the proof of  (25), because f~A~. r is equivalent, by the remarks made 
before, to the finiteness of this integral. 
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We point out that (25) for k = 0  and m=fl simply says that the measure 
d/~ = (1 - r) n-z+~[(1 - r) 1/~ + T(s)] drds is a Carleson measure for the weighted Berg- 
man space A p (those are characterized by the condition p{z~B': I I -z .~ l<c5}= 0,'t 
0(fi~+r), [~S, ci>0). In this sense, all the above corresponds in the limiting case 
7=0  to the argument used in Section 3. 

Observe now that (24) is exactly (13) but with D replaced by p - ~ ,  and so 
it is clear that it wiU lead to the Besov space B~ -(n+rllp+llp, for the general curve, and 
B~ (11-(n+~)Ip)+llp for the complex-tangential curves, thus completing the proof of 
the restriction part of the theorems. 

In the interpolation part of the second theorem we use the same interpolation 
e=2( / / - - - -7 - )+- f ,  we check now that IqfCA~,~, using operator Iq. Given f~/~p, ,+~ 1 

estimate (21) for Ralqf, again only in the case n=2 .  In the coordinates tl, t2, ta, 
t4 used in Section 4, we have IzlZ=(1-t2)z+t3z+tiz and l-lzlZ=2t2-t2-ta-t~ . 2  2 
In the following we replace t~ by the (equivalent) coordinate 2t2-  t~, which we con- 
tinue to denote by t~. Using (21), we have to check that 

f f f f I g ( t l ) l p ( t 2 - [ ~ - t i )  ? - 1  dtl dt2dt3dt4, 

I" IEtf<t,)l a, dlldt. dtgdt, 1 
�9 z -  ,aJ (t z + tz + ltaL) q 

:'- 2+t~ and - n ~ t ~ r t .  are finite, both extended over the region of integration t2=t a 
This is clear for the first integral because gEL p. In the second integral we use 
the continuous Minkowski's inequality in dt~ and perform the integration in t 4 to 
bound it by 

�9 #'#/-#-=rr(t~+it31)'"-<l/~)-')(t2-t~)'-"~fr+= liE,~fll.dt / ' _ -  (t2~ ~ 1 ) # -  j at: cltz 

2<= the first integral being extended over t 3 = tz. Notice now that this is bounded by 
the integral in (22), replacing /7 by / ~ - •  with R =  1. Since in Subsection 4.2 

P 
we showed that (22) is finite when fEB~ ca-"Ip)+~/p, the result is completely proved. 

5.2. In our theorems we have considered up to now the regular case ] / > ~  
for p > l  and ]?_->n for p = l  i.e., when the functions in H~ are continuous up 
to the boundary, in order to have a well-defined (continuous) trace on F. Beyond 
the regular range one can still speak about traces on curves in some cases. A recent 
result of  P. Ahem [1] states the following: if  p =  I and m=n-f fp>O, and i f / t  
is a measure on S such that #(B~)=O(5 m) for a Koranyi ball B~={z: I I - z . ~ l < ~ }  
ofradious ci, then each function in H~ has admissible limits (i.e. within the admissible 
approach regions D~(~)) almost everywhere dp. If  p > l  and m=n-~p>=O, the 
result is still true if  p(B~)=O(c5 m+") for some ~>0 (this follows using standard 
arguments from part (iii) in Theorem 1.9 of [4]). 



Traces on curves of  Sobolev spaces of holomorphic functions 43 

If  d# is arc-length on a curve, then p(B~)=O (61/2), and thus, as a consequence 
of  Ahern's results, we see that if O<_n-tip< 1/2, then all functions in H~ have an 
admissible limit almost everywhere along the curve. When the curve is transverse, 
then/x (Ba)= O (6) and there is a trace when n - t i p  < 1. Next theorems are generaliza- 
tions of  our main results to the non-regular range. 

Theorem. Assume O<=n-tip<l/2. Then the trace of  H~ in F is included in 
B~ ca-"Ip)+llp. I f  F is a transverse curve and 17> ,-1 the trace o f  H~ in F is contained 

s p 

in B~ -(n-1)lp . 

Note that contrary to the regular case, the best trace here is for transverse 
curves and the worst trace occurs in the complex-tangential case. For  the general 
curve, one has to live with the worst case, i.e., index of differentiability e equal to 
2 n 1 �9 

Theorem. Assume F complex-tangential satisfying condition (I) and n - t i p <  1/2. 
Then the trace of  H~ along F is exactly R~(#-nlp)+llp 

We comment briefly on the proofs of  these generalizations. The restriction 
part is proved exactly as in Section 3. The only difference is that now in (18) the 
choice - , 1 = - - 2 ( t i - - y )+  7 works for all curves (because ~ p - l < - 0 ) ,  whereas the 

- -  ?1 1 better choice ~ - t i - 7 + 7  works only for the transverse curves. 
As for the proof  of  the interpolation part, everything works equally well. The 

only detail to be checked is that for a general function f (s)  which is just integrable 
on the curve, TJ(z)  has admissible limit f ( s )  at almost every point 7(s) of  F. Since 
we already know that the limit exists and that the result holds when f i s  continuous, 
by standard arguments it is enough to see that 

(TJ)* (s) <= const Mf(s), 

where (Tqf)*(s) denotes the radial maximal function and Mf(s) the Hardy--Lit t le-  
wood maximal function. To prove this, if z=r2(s) then s==s and by estimate 
(20) we obtain 

(1 - r) q- 1 /2  I f(rv(s))l cf+s I f ( , ) l  at. 

Let now I~ be the interval centered at s with length 2k/2(1--r) v2, k = 0 ,  1, 2 . . . . .  
Then, with Ilkl=2k(1--r) */z 

1 1 f ,~ If(t)l dt Ir f(r, (o))l <- const i-~ol f,o If(t)l d t + c  22"=1 (1--r)  q-1/2 2k,( 1 - - r ) '  

<= Mf(s) {c + c 2~=x 2k/=-kq} = cMf(s). 
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5.3. The third generalization concerns the replacement of  a curve by a higher 
dimensional submanifold M of  the sphere. I f  the dimension of  M is m, analogous 
interpolation operators T~ were introduced by Nagel for q > ~  and a property (I) 
can be stated. We state without proof  the corresponding results. 

Theorem. Let M be a complex-tangential submanifold of  dimension m (i.e. 
Tg(M)cT~c(S) for each ~EM, and m<-n - 1) for which property (I) holds. Then, i f  

~(IJ- nip) + ralp n--tip< z ,  the space H~ has a trace on M exactly equal to B o (M). 

For a general manifold the description of  the trace would involve non-isotropic 
Besov spaces in the sense of  Nikol'skii, with more regularity in some directions than in 
others. We simply mention that the trace is always contained in BPv-n/~176 
when n- t i p<  ,.+1 ~- . 

6. A p p e n d i x  

In this section we consider the property (I) used in the proof  of  the interpola- 
tion results. We first prove it for the model curve s ~ ( c o s  s, sin s) in C 2 in Sub- 
section 6.1, with qo(m)=2m. In Subsection 6.2 we give, for a general complex- 
tangential curve, a combinatorial type argument to check this property for a given 
value of  m. We will give details only for m = 1. 

6.1. For  the curve ~(s)=(cos s, sin s), and with the notations used in Section 4 
we prove first: 

Lemma. The function 

f+_~K~(s,z)sink(s-s~)ds, 

is of  class C ~ up to the boundary in a neighbourhood o f f  i f  q>k, kEN. 

Proof. It will be enough to show the result for 

-]-Tg 

h(z) = f Kq(s, z )e ikSds ,  q > Ikl, k integer. 

In fact we will show that h extends holomorphically across F. We first consider a 
point z = (r cos 0, r sin 0) with real coordinates. In this case 

h z) = e'kO f r ds 1-1 e,kS ds) . 
, . . , - . .  
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Write 

where 

. '+ ::: 
= f + :  ( l _ , c o s s ) q  ds = ~2+_o q (-r)  1 e/k'cos ' s d s  

1 
= ~l~_o l ( -  r)k+2t 2 k+21 2re 

2nrk(q)k2kk! F(q+k+12 , q+k.2 ' k + l : r 2 )  

F(a, b; c:2) denotes the hypergeometric function 

(a)lCb)+ ) t  
F(a, b; c:2) = Z/=0  lt(c)l 

and (a)0= 1, (a)~=a(a+ 1)... Ca+l- 1). 
Using the identity 

F(a, b; e:2) = (1--2)c-"-b F(c--a, c - b ;  c:2) 
we obtain 

2nrk(q)k ( k q . k + l :  r2) i+,k(r)= 2k.k! (l_r~)O/~)_q F .1+ -- 2+k--q 
' 2 ' 

Note that the function Gq, k(2)=F(.t+~-q, ~+k-q.: -, k + l : 2 )  is a polynomial of  
degree [(q-k-1)/2], if q is an integer bigger than k and that Gq, o(1)#0.  

We can then write 

Iq, k(r) = (1--r2)(1/2)-qr-2kPq,a(1--! "2) 

where Pq, k is a polynomial with Pq,0(0)~0. 
Therefore we conclude that for z =  (r cos 0, r sin 0) 

h(z) = e'k~ -2k Pq,k(1 -- r 2) 
Pq.0 (1 - - r  2) 

with Pq, o(0)r  By analytic continuation it then follows that 

(z,.+iz+'(' _e+,,, (l - z~ -  ++'~) hCz)= zl+z+) e~,0(1-z+-zD 
for z close to F, which proves the lemma. I 

Let us now prove the result. Let f (s)  be a C ~ function on the curve. It is 
enough to deal with Tqf  for z close to F. Fixed z, we consider the change of  vari- 
able u=s in  (s-sz)  from a neighbourhood of  s+ to a neighbourhood of  u=0 .  
We apply Taylor expansion to f(s(u)) up to order 2 m - 1  at u = 0  to obtain 

f(s) = ao (s,) + at (s,) sin ( s -  s,) +. . .  + am-  a (s~)sin 2m-a (s - s+) + O (ts - s~ 12") 
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with the ai(sz) being C ~ functions of  z in the tubular neighbourhood U. From 
the lemma we conclude that in order to show that T J ( z )  has radial derivatives up 
to order m bounded it is enough to check it for 

F rom the estimate (20) it follows that such derivatives are bounded by 

OOs-s._i'm)ds f+_2 
which proves the result because the integral is O (d(z) ra-q+U2) if  q > m +  1/2. 

6.2. We indicate now the procedure to prove the result for a general curve. 

Exactly as before we must prove that for q~=2m 

f+ 'K , ( s ,  z)(s-s~)~ds, k <= 2 m - 1  

have bounded radial derivatives up to order m (in fact, this was the result needed 
in Subsection 4.2). We introduce the notation 

(s-,%)~ 
= f2 2 (l-y(,) .  

R i (  hq.k SO that hq, o=hq. We must show that  ~--~-/ are bounded for k ~ 2 m - 1 ,  i ~ m .  
Since Rhq=qhq+~-qhq and Rhq, k=qh~+l.k--qhq, k it is easily seen that 

Here e=(e~,  e2 . . . . .  ei+a) is a multi-index of length te ]~ i  and c, absolute con- 
stants. Recall that  [hq(z)l~d(z) 1/2-~ and hence we must show that 

(26) z~,c~,h,+~,~(z) ... h~+~,,(z)hq+~,,.x.k(Z ) = O(d(z)(~+a)m/2)-q)). 

Note that each term of the sum is O(d(z)(X/2-~)(~+~)-~+k/2), so that we have to show 
that  appropriate cancellations occur in the sum. For  this we will consider asymptotic 
expansions of  the functions hq, k as a sum of terms, each having a growth exactly as 

a power of  d(z), as done in [151. We write 

where 
1 - - z . v ( s )  = G - E  

, l 2 G(s, z) = 1 - z " 7 ( s z ) - z ' 7  ( s z ) ( s - s ~ ) + - f ( s - s ~ )  , 

1 ,, ~ 1 
E(s, z) = y ( / + z . ~  (s.))(s-sz) +5-f z. ~,"(s~)(s-s~)~ + .... 
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Here I is the constant such that l=y'(s).y'(s). Differentiating 7(s).7"(s)=O we 

obtain V(s ) . v " ( s )=- I  and hence II+z.~"(sOl=O(lz-7(s=)l). Since z.~/(s.) is 
> 1 (s_s~)2 and therefore pure imaginary, IRe GI =-~ 

We can then write 

y2m-2 ( -  q] ( -  R) j 1 
(1--zT(s)) -q = ~-- j=0 ( j ) G--G-7u [O(Iz-T(s=)l + ls-s=l)] ~m-~. 

Since each factor O([z-~(s=)l+ls-s=l) improves the corresponding integral in 
d(z) ~/2 we will have 

hq(z) = ~--, j=0 ~,2,.-2 (-)q) f _.+. (--E) q+j ds +O(d(z)(1/z)_q+m_(l/2))" 

Next, we consider Taylor's development of ( - E )  j at s~ up to order 2 m + 2 j - 2  

( - E )  j = z~m+2J-Z((-E)J)+O(Is-szl~m+zJ-~). 
Using 

- ~  ~ as = o(a(~) m-~) 

we obtain 

(27) hq(z ) = ~..Y2m- 2 ( - ) q ) j = 0  f+: Tzm+2j-2((--E)J)Gq+j ds+O(d(z)"-q) 

and analogously 

S,2m-2(--.q] f+= T2"+zJ-2-"((--E)i)(s-s.) m ds+O(d(z).,-q). 
(28) hq, k(z) = ~..,j=o ~ j ] , _ =  Gq.j 

Finally, one explicitly computes integrals of the type 

f+=(~-~z)" _ f+= ," 

by contour integration, obtaining a polynomial 

() r r i - ( q + j ) + ( r - i + l ) / 2  + ~  BA f (l+~ z~i=o i - . .  t tz)q+ j dt 

I p t 2 where A=l- - zT(sz ) - - f f ( z .  7 (sz)), B=+z.7"(s~). It is easy to see that [Al~d(z) 
and IB[ =O(]z-7(sz)l)=O(d(z)l/2). Inserting this in (27) and (28) gives the desired 
expansions of h e and h~. k. To illustrate we write the first three terms of the expan- 
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sion of  hq. We assume l=  1 and write for short 

E = ~i>-2 ei(s--sz) i 

t 1 
c"1 = f : :  (1 +~te) ' d,. 

Then 
hq(z) = Cq,oA(1/2)-P + {e.,(qc~+ l,zA-P+(1/2) + BZQ+ l,0A-p-(1/2)) 

+ e3 qOBC~+l,2 A-q+(lm +BZCa+l.0A-a-(x/2))} 

-be~q(q;1)[B'c,+2,oA-'-(3/2)+(~)B~ca+~,2A-q-(1/2'Wc~+,,,A-'+(l'2' } 

2 B~cq+2~176 B4c~+2"2A-~-(V2) 

(:1 , , ) 
+ B~cq+2 4A-q+(llZ)+ca+ ~ 6A-q+tz/z) + 

+eae3q(q+l)(BSca+2.oA-'-(3.'2)(~lB3ca+~,gA-'-(1,'2)+(~) Bca+2,4A-q+(l/2))} 

are the terms in d(z) (V2)-q, d(z) 1-a and d(z) (a/2)-q of  h a (recall that e2=O(d(z)ll2)). 
The use of  these expansions of  the hq,ds in (25), together with the explicit 

formula for the C~, shows that the desired cancellation takes place. 
The case i= 1 is short enough to be written here and will serve as illustration. 

To show that 

R ha'l haha+~'l-hq'lha+t 
h a = q h~ 

is bounded it is enough to consider the leading terms of  h a and ha,~ 

ha(z ) = c~,oA(X/z)-a+O(d(z)'-q) 

ha,l(Z ) = C~,oBAO/Z)-a+O(d(z)(3/2)-~). 
Then 

haha+ a,x-ha,x ha+ 1 = (q,oC~+~,o-c~.oc~+ ~.o)Ba-~+O(d(z) 1-~a) 

= O  (d(z) ~-2a) = O(h]). 

To deal with R ~ h~,, it already requires a considerably longer computation. For  
h, 1 

higher values of  i we have checked all cancellations with the help of  a computer. 
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