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A compact subset E c C  N is said to be polynomially convex if for every point 
zECN\E,  there is a holomorphic polynomial P with P(z )= l  and IIPII~= 
sup {IP(w)l: wCE}< 1. In general it is difficult to determine whether a set is poly- 
nomially convex, but questions of polynomial convexity come up repeatedly in 
function-theoretic considerations in C M. In the present paper we exhibit some new 
examples of polynomially convex sets in C ~, which are contained in the boundary of 
the ball B2= {z(C~: Izll'+ Izzl2< 1}. This work is closely related to work on remov- 
able singularities for ~b. 

Given a relatively compact domain D in a Stein manifold J[ ,  call the compact 
subset E of bD removable provided b D \ E =  F is a ~,1 submanifold of .g"xE such 
that for every continuous functionfon F that satisfies there the tangential Cauchy-- 
Riemann equations in the weak sense, there is F holomorphic on D and continuous 
on D u F  such that F = f  on F. Such removable sets have been studied in several 
recent papers [8, 12--16, 20]. In particular, J6ricke [8] proved that a compact totally 
real 2-disc of class c~2 in bB2 is removable. 

The nexus between the theory of polynomial convexity and that of removable 
singularities is provided by the result that a compact set E c  bBz is remoz'able i f  and 
only i f  it is polynomially conrex [20, Th. II.I0]. An analogous result is valid on 
strongly pseudoconvex domains: If D is a strongly pseudoconvex domain in a 
Stein manifold of dimension two, bD smooth, then E c b D  is removable if and 
only if it is convex with respect to the algebra tV(~) of functions holomorphic on /~. 

We begin with a general theorem that shows certain sets in strongly pseudo- 
convex boundaries to be removable and hence to enjoy the convexity property 
indicated above. It has as an immediate corollary J6ricke's theorem. The proof 
of J6ricke's theorem thereby obtained is not long, but it does depend in an essential 
way on some recent work [1] of Bedford and Klingenberg on the hulls of 2-spheres 
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in Stein manifolds. We also show that certain discs in bB~ that are not  totally real 
are, nonetheless, polynomialty convex, viz., those with at most a finite number of  
complex tangents each of which is hyperbolic. Our general theorem also yields the 
polynomial convexity of certain Cantor sets. The paper concludes with a proof  that 
a hyperbolic point in a two-dimensional submanifold of  C ~ has a neighborhood 
basis of  polynomially convex sets. 

We are indebted to Professor J. Vrabec for help with the topological parts of  
this paper. 

We shall use the notation that if E is a compact subset of  the open set f2, then 
~9 (I2)-hull E denotes the set 

{zEf2: lf(z)l ~ supE lfl  for all fEIV(f2)}. 

I f  E=0(f2)-hul l  E,  we say that E is 0(~2)-convex. 

I. Theorem. Let D be a relatively comFact, strongly pseudoconvex domain with 
boundary of  class ~2 in the two-dimensional Stein manifoM .g.  Let E c b D  be a 
compact set with the following properties: 

A) There is a Stein neighborhood ~2 of  E such that E is O(~?)-convex. 
B) I f  p~ E, there exists' a neighborhood U of  p in bD with ~2 D U, with bUttE=O, 

and with U homeomorphic to a Euclidean ball in R a. 
Then the set E is removable and so O(D)-convex. 

The condition A implies that the set E is an intersection of  Stein domains, so 
by a result of Lupacciolu [15], if we were in dimension three or above rather than 
in dimension two, it by itself would suffice to guarantee the removability of  the 
set E. 

Note also that condition A implies that E is small topologically: Its topological 
dimension (as distinguished from its metric or Hausdorff dimension) is not more 
than two: As E c b D ,  dimE<=3; if dim E = 3 ,  then [7] E contains an open subset 
of bD. Granted that E is 0(f2)-convex, this is impossible. 

Proof of  the theorem. We consider a continuous function f on b D \ E  that 
satisfies 0b f = 0  in the weak sense; we are to show that there is F(~(D)  that 
assumes continuously the boundary values f on b D \ E .  

We show first that f continues holomorphically into D in a neighborhood of  
each point of  the set E. Thus, let p~E, and choose a neighborhood Up o f p  in ac- 
cordance with condition B. As Up is diffeomorphic to a Euclidean ball in R a and 
as bUv is disjoint from the set E, it follows that there is a smooth two-dimensional 
sphere 2; ;cUp that separates the compact set bUp from the compact set E~Up. 
(Note: We use here the nontrivial fact that a three-dimensional manifold of  class 
cg~ that is homeomorphic to k s is (c~)-diffeomorphic to R ~. See [18] and the ref- 
erences cited there. The analogous statement for R 4 is known to be false.) 
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�9 t t  There is a sphere I~p in D that is of  class cg ~ and that is very near s so near 
that every CR-function g on b D \ E  extends holomorphically into a neighborhood 

t �9 of  2;p. According to Bedford and Klingenberg [I], we can perturb 2;p slightly to 
obtain a 2-sphere 22,, that lies very near /~ and that bounds a Levi-fiat 3-ball ~ ,  
which is the envelop of  holomorphy of  I7p in the sense that if h is holomorphic on 
a neighborhood of  27p (in Jr'), then h continues holomorphically into a neighborhood 
of  27 5. If  we have made our perturbations sufficiently small, then our function f 
continues holomorphically into a neighborhood of  22~. 

Let ,4p be the domain in bD that is bounded by 17~ and that contains EC~Up. 
n Let FVpCD be a domain obtained as follows: Perturb ApUI;p into D slightly leaving 

it fixed near E so as to obtain a smooth manifold with boundary zTp. If  we have 
H �9 made our perturbations of  2;p into rp into rp sufficiently small, we can obtain zTp 

that is again strongly pseudoconvex, that is so close to bD that each CR-function 
h on b D \ E  extends holomorphically into a neighborhood of  zTp, so that bzTp= 2;p 
and so that bzTf~2~+=2;p. The subdomain Wp of D bounded by zTpw17 + is pseudo- 
convex. Consequently, there is a strongly pseudoconvex domain W/ with these 
properties: 1) W/~Wp, 2) near Ec~Up, bWp and bW/ coincide, and 3) outside a 
neighborhood of Ec~Up, bW/is contained in the domain where f is known to be 
holomorphie. 

Since W/cs  and E is ~(~2)-convex, the set E~Up is convex with respect to 
~)(W~). It follows that f continues holomorphically through W/: In case M = C  2, 
we may invoke a result of  Lupacciolu [14]; in the more general case, we refer to 
the paper [12] of  Laurent--Thiebaut.  

As a consequence of  the construction of  the neighborhoods W, and W / a n d  
the compactness of  the set E, we see that there are finitely many pairwise disjoint 
relatively open subsets V~ . . . . .  V,, of  D with Ec~bVj=fJ and such t h a t f  continues 
into Vjc~D as a holomorphic function. There is, in addition, a neighborhood V 
of  b D \ E  in D \ E  such that the function fcont inues  holomorphically into Vc~D. 
It follows that for some neighborhood Vo of bD in D, f continues holomorphically 
into VnD. As D is pseudoconvex, f continues through the whcle of  D - -  by a 
version of  Hartogs' theorem. (For this, we can cite [4, Th. VII.D.4].) 

This completes the proof  of  the theorem. 
Having established the general result I, we turn to some special cases. 

1I. Corollary. Let D be a strongly pseudoconvex domain in a two-dimensional 
Stein manifold .t[. Every two-dimensional compact totally real disc A of class cgl in 
bD is removable and so 0 (D)-convex. 

In connection with this corollary it is worth noting that not all totally real 
discs in C a are polynomially convex. An example was given in Wermer [21] : another 
example is given in [5]: Define g(ff)=(l-ff~)~e i'~. q-hen Og/O~ is zero-free on C, 
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and g(()=O if Is = 1. Thus, the polynomially convex hull of  the totally real disc 
E =  {(~, g(~)): I(I ~- 1} contains the disc {((, 0): 1~1 -< 1}: E is not polynomially 
convex. 

Proof. According to [6], there is a neighborhood 12 of  A in M on which there 
is a nonnegative strongly plurisubharmonic function 0 of  class cr with A = {Q=0}. 
If  for small e>0,  12,={zE12: O(z)<e}, then for small e, the component of  I2, 
that contains A is a Stein neighborhood of  A with respect to which A is convex. 

It remains only to see that A has a neighborhood U c  12c~bD that is diffeo- 
morphic to a ball in R 3. This is essentially clear. We may suppose given a cr diffeo- 
morphism ~b from Az={(xx, xz)ER2: x l+x~<2}  onto a closed submanifold of  an 
open subset of  bD such that ~b takes the closed disc zl~cA~ of radius one diffeo- 
morphically onto A. We can then find a cr field ~ defined on a neighborhood 
of  A in bD that is tangent to bD and that is transverse to A. If  then ~P: A2XR sat- 
isfies ~'(xl,x2,0)=~b(xl,xz) and ~.(~-~-~,)=r then ~P takes some neighborhood 
of  z tx •215  diffeomorphically onto an open neighborhood of  A in bD. 
As zl~ • {0} has arbitrarily small neighborhoods diffeomorphic to a ball, we are done. 

If  Z is a two-dimensional submanifold of  class er in a two-dimensional com- 
plex manifold, .At', and if Z is totally real in a deleted neighborhood of  the point 
PoE ~ but the tangent space TVoZ is complex, then it is possible to choose local 
holomorphic coordinates (z, w) in ./-t' near Po so that P0 is the origin and so that 
near 0, Z is given by an equation 

w = z~+2(z~+~')+o(z'). 

The number ,~ is uniquely determined, and P0 is said to be an elliptic point i f  2E [0, ~), 
- ~ hyperbolic point if ;tE(~, o~). This classification a parabolic point if 2 - T ,  and a 

was introduced by Bishop [3]. 
Near an elliptic point, the local hull of  holomorphy of  Z contains a real hyper- 

surface with boundary [11]. We shall see below that near a hyperbolic point, Z is 
polynomially convex. 

Ill .  Corollary. Let A be a compact two-dimensional disc of  class ~ in bD, D 
a strongly pseudoconvex domain with ~ boundary in a two-dimensional Stein mani- 
foM .tl. I f  A is totally real except at a finite number of points each of which is a hyper- 
bolic point, then A is removable and so ~(B)-convex. 

The crux of  the corollary, given what has gone before, is to see that A is the 
zero locus of  a continuous nonnegative plurisubharmonic function. 

IV. Lemma. With A as in Corollary III, there is a neighborhood 12 of  A 
in .t[ on which is defined a nonnegati~e plurisubharmonic function Q such that 
a={z 12: 
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Proof. Fix a smooth Hermitian metric on ./ / ,  and denote by dist~ (p, q) the 
distance from p to q, p, qE~' ,  in this metric. 

Let Pl . . . . .  p ,  be the points in A at which the tangent to A is complex, and 
let A'=A\{pl . . . .  ,p,}, a totally real closed submanifold with boundary of  
d t ' \ { p l  . . . .  ,p,}. The function Qx(z)=dist~ (z, A) is of  class if2 in a small neigh- 
borhood 12 x of  A in ~t' and is strongly plurisubharmonic on a smaller open set 
12~cO1 containing A'. It is not plurisubharmonic near the points PJ, so we will 
modify it there. The modification will be local near each pj .  Thus, we may fix a pj  
and work in local coordinates in which pj = 0. 

According to Theorem VI below the set Anr~z is polynomially convex for 
each sufficiently small r > 0 .  Hence, there is a smooth plurisubharmonic function 
~0: O- - [0 ,  ~)  the zero locus of  which is the set AnrB2. I f  r > 0  is sufficiently 
small, A c~r~2 is totally real except at 0. 

Choose numbers O<r"<r'<r, and let z<-0 be a smooth function satisfying 

(i) supp T c c  r'B~, and 

(ii) ~ < 0 near Anr"i~2. 

I f  z is sufficiently small in the ~g~-norm, then the function Q2 = Qx + �9 is still strongly 
plurisubharmonic in a neighborhood f2a of  An(rB2\r"B2). The nonnegative func- 
tion Q3=max (02, 0) is continuous and plurisubharmonic on 03 and vanishes on 
a neighborhood of  Anb(r"B2). Thus, we can extend 03 as a plurisubharmonic 
function on a neighborhood f24 of  AnrB 2 by taking the extension to be zero in a 
neighborhood of  Anr"~2. 

Recall that ~o is a nonnegative plurisubharmonic function on C 2 vanishing on 
Ac~rll2. The function Q4=03+~0 is a nonnegative continuous plurisubharmonic 
function on f24 that has Anrl] 2 as zero locus. Moreover, on f24n(rl]2\r 'B2),  ~3 
agrees with Qx, so on this set, Q~=01+~. This function is smooth and plurisub- 
harmonic on f24n(rl~2\r" B~). 

Finally, we patch Qa and Q4 to obtain 

Q = hQ~+(1-h)Q4 

where h: O ~ [ 0 ,  1] is a smooth function that equals 0 on r ' g z  and equals 1 outside 
rB2. Since both QI and 04 are smooth and strongly plurisubharmonic along 
An(rB,\r'B2) where the patching occurs, the resulting function ~ is also strongly 
plurisubharmonic there. The function 0 is the required modification of  0~ near pj .  

We repeat this procedure for each pj and obtain finally the plurisubharmonic 
function we seek. 

This completes the proof. 
There is an extension of  the results obtained above for discs to certain more 

general sets. A subset X of  an n-dimensional manifold is called cellular if for every 
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open neighborhood U of  Xthere is an open set V homeomorphic to R n with X c  V c  U. 
The proof of  Theorem I implies that i f  D is a strongly pseudoconvex domain in a 
two-dimensional Stein manifoM, bD of class cg2, then e~ery compact set X c b D  that 
is cellular and that is t~(O)-convex for some neighborhood s of  X is removable. 

The final application we make of  Theorem I is to certain Cantor sets. By a 
Cantor set we understand a compact perfect subset of some Euclidean space. Alter- 
natively, a Cantor set is a subset of  a Euclidean space that is homeomorphic to the 
usual Cantor middle-third set constructed in the interval [0, 1]. For  these matters 
one can consult the topology text [10]. 

The following question has not been settled yet: Is every Cantor set in bB~ 
removable? We shall exhibit below a class of  removable Cantor sets. 

A Cantor set E c R  n is called tame if there is a homeomorphism of  R n onto 
itself that carries E onto the usual middle-third Cantor set contained in a coordinate 
line of  R ". In [2], Bing gave a condition under which a Cantor set E in R 3 is tame. 
To state it, we need a definition: Call a set X c R  3 I-LCC (1-1ocally connected 
complement) if for each xEX and for every neighborhood U of  x, there is a neigh- 
borhood V of  x, V c U  such that every simple closed curve ~ c V \ X  is null- 
homotopic in U \ X .  Bing proves that a 1-LCC Cantor set in R 3 is tame. (Not 
every Cantor set has this property as is shown by Antoine's necklace [17].) Alter- 
natively, it suffices for each point x~X to have a neighborhood V that is homeo- 
morphic to R 3 and that has the property that bVnX=q~. 

V. Corollary. Let D be a strongly pseudoconvex domain in a two-dimensional 
Stein manifold ~t[, bD of class cg~. Suppose E c b D  is a Cantor set such that 

A) There is a Stein neighborhood f2 of E in J /such that E is O(f2)-comex. 
B) I f  p~ E, there is a neighborhood V~ of p in bD that is homeomorphic to R 3 and 

that contains a compact neighborhood Ep of p in E that is a tamely embedded 
Cantor set in R3=Vp. 

Then E is removable. 

Proof. Let poEE. The hypothesis B) yields a homeomorphism ~:  Vp0-*R 3 
that carries Epo onto the standard Cantor middle-third set K contained in the x~- 
axis of  R 3. Let P0 correspond to xo~K under ~. There are open Euclidean balls 
B in R 3 that contain Xo and that satisfy bBc~r It  follows that in 4~-~(B) 
there are 2-spheres of  class cg2 disjoint from E that bound 3-balls containing P0- 

We turn finally to the proof  of  the result we have used above to the effect that 
hyperbolic points have polynomially convex neighborhoods. 

VI. Theorem. Let ~ be the surface in C 2 given by the equation 

z~ = z l ~  + ~ (z~ + ~ )  + F(zO 
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with ~>~ and where F is of  class ~z and satifies F(zl)=o(z~), zx--0. I f  r > 0  is 
su~ciently small then ~,nrB 2 is polynomially com'ex and satisfies P(2~nrl]z)= 
~(~ n r ~ ) .  

Here for a compact set X in C 2, cg(X) denotes the space of  continuous C-valued 
functions on X, and P(X) is the subspace consisting of those functions that can be 
approximated uniformly by polynomials. 

We are indebted to Sidney Webster for drawing this problem to our attention. 
To prove the result, we introduce the surface Z0 with equation 

z~ = 21~1 + ~ (z~ +~D 

and the totally real two-dimensional planes 

V, = {((, ()CC2: (~C} 
and 

�9 

In addition, we define a map ~: C2-~C2 by 

As Dan Burns pointed out to us in a slightly different context, �9 is a proper map 
from 12 2 onto itself of  muItiplicity two, which carries V~ and V 2 injectively onto 27 ~ 

Proof. We propose to find surfaces S~ and Sz that osculate V~ and V~, respectively, 
at the origin, and that satisfy 

�9 - l ( S )  = S~uS~. 

To this end, it is convenient to introduce ~p: 122~C by 

so that tp=0 defines 27. 
We construct ,5'I as follows. The surface S~ is to be of the form 

S~ = {((, (+f(r  (~12, r small} 

with f ( ( ) = o ( O ,  ( ~ 0 .  The condition that ~(S~)cY, is that ~o(O((,(+f(O))=O, 
which, when written out explicitly, is the quadratic in f 

7f(O 2 + (2~(+ ( ) f (O -- F(O = O. 

Solve this for f using the quadratic formula to find 

1 
(1) f = -~- { -  (~ + 2}'() 4- ] / ( (+ 27~f" + 4"fF}. 
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We want f ( 0 = o ( O ,  ~-*0, so we choose the plus sign in (1). With this choice of sign, 
df(0)=0, and f is of class cr everywhere except possibly at zero. We show that f 
is of class ~ at 0 as follows. Write 

1/(~ + 2y() ~ + 4yF(0 = (~r + 2y() +f(O. 

The function ] satisfies the equation 

] s+2( r  = 4rF. 

Differentiate this with respect to ~ to get 

(2) (t;+2r~+Y)7~: = 2rF~-]. 

We have F(~)=o(E =) and ~(0=o(~), E-~0. Consequently, by (2) we see that ~(~)= 
o(1), (--0. Similarly, f~(O=o(1), (--0. It follows tha t f i s  of class cr as we wished 
to see. 

Thus, with f determined in this way, the surface Sx is of class cr and near the 
origin, it is a small perturbation of the totally real plane Vx. As such, it is totally 
real. We know that totally real surfaces are locally polynomially convex and that 
we have, locally at least, polynomial approximation on such surfaces. Thus, for 
small 6>0, if 

S,(6) = {(r, i~+f(r)): [~'l < 6} 

with f given by (1), then Sx(6) is polynomially convex and satisfies P(Sx(6))= 

We now make a similar analysis for the surface S~. It is to be of the form 

with g(()=o(~r), ~ 0 .  
the equation 

l ( _ ( + g ( O ) :  ~ C }  s,_-{(,,_7 
The condition that ~(S~)cZ is found to be expressed by 

~g ' ( ( ) -  (2y( + 0g(O- -  F (0  = 0. 

The quadratic formula yields 

1 g = ~ -  {(21~ + r) + r + r)~ + 4yF}. 

We take the minus sign to obtain g(()=o(O, (~0 .  The function g is continuous, 
is of class cex except possibly at the origin and satisfies dg(0)=0. We claim that g 
is of class cr at 0 as well. Write 

1/(27~ + r)= +4~F = (2~ + ~) +~. 
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Then the function ~ satisfies the quadratic equation 

We differentiate this with respect to ~ and with respect to ~ and find that ffr and 
~({) are both 0(1), ~-*0, whence ~ is of class egl at 0. Thus, g is of class egx as we 
wished. 

If for small 6>0, 

S~(6) = {[(, _ l ( _ ~ + g ( ~ ) } :  1~1 ~_ 6}, 

then S,.(6) is polynomially convex and satisfies P(Ss(6))=eg(Sz(6)). 
Notice that if 6 is small, then S~(6)nS2(6)= {0} as follows from the assump- 

tion that y>l /2 .  
Now fix e>0, define ~p: C2~C by 

1 2 0 (zl, z~) = ~- ( z , -  ~) + ~z~ z~, 

and consider the sets ~,(S~(6)) and ~(S~(6)). For small ~, we have, taking ~=~+irl, 

(3) ~b (~, ~ +f(~)) = i~q + ~ (~ + r/s) + o (~2), 

for f(~)=o(~), ~--*0. The equation (3) implies that for small 6, ~(S~(6)) is contained 
in the cone 

{u+iv: Ivl ~- Cu} 

in the u+iv=O(zl, z2)-plane for some C>0.  We also have 

{~, __+ ~__~+g(~,} = 1 {~z__(__ [+  ~_I - ~)+ g(~,)2} + ~ / - - +  ~-- ~+g(~')" 

As g is o(~), ~-*0, we can write this as 

0(~, 1 ~+g(~)} 1 1 (+  ~+~1+o(~2) 

l [  fl+2/ , 2 1 , 2, = - -  q +-~- 

The coefficient of ~s is plainly negative, and so is the coefficient of t/s, because ~ > 1/2. 
Thus, provided e and 6 are sufficiently small, we have that Re ~O ([-~-[-[+g([))<_-0 
and that 

1 [_~+g( [ ) )  
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That  is, the set ~($2(6)) is contained in a cone with vertex the origin and lying 
otherwise in the open left half of  the (u+iv)-plane. 

Notice that ~-~(O)nSx(6)c~Sz(5) is the polynomially convex set consisting of  
the origin in C 2. 

Thus, a theorem of  Kallin [9; 19, Lemma 29.21] implies that, provided 5 is 
small, the union S~(5)uS2(5) is polynomially convex. 

Moreover, as P(S~(5))=~(S~(5)) and P(S2(6))=cg(S~(5)), again provided 6 
is small, it follows that 

(4) P(s (a) u s , (5 ) )  = 

It not, there is a nonzero measure # on $1(5)wS2(5) such that / I ( P ) = 0  for every 
holomorphic polynomial P. Since ff takes S~(5) and $2(5) into disjoint sectors, 
Mergelyan's theorem provides a sequence {Pj}j=a,2 .... of  polynomials such that 
IPjor on S~(5)wS2(5) and {Pjoff}j=~, 2 .... converges pointwise to one on 
$1(5) and to zero on S.,.(5)\{0}. If  P is any polynomial, we have 

for all j .  By the dominated convergence theorem we may conclude that /q,  the 
restriction of  p to $1(5), satisfies p l ( P ) = 0  for all polynomials P. As P($1(5))= 
c~(Sx(5)) it follows that pl is the zero measure. In the same way, P2, the restriction 
of  # to Sz(6), is the zero measure, and thus p--0.  

The equality (4) follows. It implies that every compact subset of  $1(5)wS2(5) 
is polynomially convex. 

I f  now E c  2~ is a compact neighborhood in 2~ of  the origin chosen so small that 
�9 -a(E)cSl(f)uSz(5), the set ~ - I ( E )  is polynomially convex. But as ~:  C2-*C ~ 
is a proper holomorphic mapping, the polynomial convexity of  ~ - I ( E )  implies 
that of  E. Let zoECZ',,,E. As ~-I(E) is polynomially convex and disjoint from 
the set ~- l (z0)=E0,  which consists of  one point or of  two points since �9 is a 
two-sheeted branched covering, the set Eou~-X(E)  is polynomially convex, so 
there is a polynomial P on C ~ with P---1 on Eo and IP [< I /2  on ~-~(E) .  The 
theory of  analytic covers [4] yields a polynomial equation 

P2 +(po~)P + qo~ = 0 

for some choice of  entire functions, actually polynomials, p and q on C z. We have 
then that q is holomorphic on C 2, q(z0)=l  and Iq l<l /4  on E. Thus, E is poly- 
nomially convex. 

Finally, we must show that P(E)=qC(E). Granted that E is polynomially 
convex, this follows from a result of  Wermer's [21]. As Wermer's proof  is not 
simple - -  of  course it covers situations much more general than ours, we offer 
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the following short proof.  Consider  hCCg(E). The funct ion h o #  is in c r  

so there is a sequence {Pj}j=I,2 .... o f  polynomials  on C ~ that  converges uni formly  

on t ~ - I ( E ) t o  ho~ ,  since ~(S I (~ )~S2 (~ ) )=P ( Sx ( O ) uS~ ( 6 ) )  and ~ - I ( E ) c S I ( O ) k 3  

$2(6). The function ai(z)=~(Pj(z ')+Pj(z")) for all zCC 2 such that ~-~(z) 
consists of  exactly two points z' and z" is holomorphic on C 2 - -  again we invoke 
the theory o f  analytic covers. The sequence {Qj}j=~,2 .... converges uniformly on 
E t o  h. 

This completes the proof.  
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