A new class of polynomially convex sets

F. Forstneri¢ and E. L. Stout*

A compact subset ECCN is said to be polynomially convex if for every point
Z€CN\E, there is a holomorphic polynomial P with P(z)=1 and [P|g=
sup {|P(w)]: weE}<1. In general it is difficult to determine whether a set is poly-
nomially convex, but questions of polynomial convexity come up repeatedly in
function-theoretic considerations in CV. In the present paper we exhibit some new
examples of polynomially convex sets in C2, which are contained in the boundary of
the ball B,={z¢C?: |z;|2+|z5|><1}. This work is closely related to work on remov-
able singularities for 0.

Given a relatively compact domain D in a Stein manifold .#, call the compact
subset E of bD removable provided bDN\E=T is a ¢* submanifold of #\E such
that for every continuous function fon I that satisfies there the tangential Cauchy—
Riemann equations in the weak sense, there is F holomorphic on D and continuous
on DUl such that F=f on I'. Such removable sets have been studied in several
recent papers [8, 12—16, 20). In particular, Joricke [8] proved that a compact totally
real 2-disc of class €? in bB, is removable.

The nexus between the theory of polynomial convexity and that of removable
singularities is provided by the result that a compact set ECbB, is removable if and
only if it is polynomially convex [20, Th.11.10]). An analogous result is valid on
strongly pseudoconvex domains: If D is a strongly pseudoconvex domain in a
Stein manifold of dimension two, bD smooth, then EcbD is removable if and
only if it is convex with respect to the algebra 0(D) of functions holomorphic on D.

We begin with a general theorem that shows certain sets in strongly pseudo-
convex boundaries to be removable and hence to enjoy the convexity property
indicated above. It has as an immediate corollary Joricke’s theorem. The proof
of Joricke’s theorem thereby obtained is not long, but it does depend in an essential
way on some recent work [1] of Bedford and Klingenberg on the hulls of 2-spheres
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in Stein manifolds. We also show that certain discs in bB, that are not totally real
are, nonetheless, polynomially convex, viz., those with at most a finite number of
complex tangents each of which is hyperbolic. Our general theorem also yields the
polynomial convexity of certain Cantor sets. The paper concludes with a proof that
a hyperbolic point in a two-dimensional submanifold of C? has a neighborhood
basis of polynomially convex sets.

We are indebted to Professor J. Vrabec for help with the topological parts of
this paper.

We shall use the notation that if E is a compact subset of the open set @, then
0(2)-hull E denotes the set

{z€Q: 1 f(2)| = supglf] for all f€O(Q)}.
If E=0(2)-hull E, we say that E is 0(Q)-convex.

L. Theorem. Let D be a relatively compact, strongly pseudoconcex domain with
boundary of class €* in the two-dimensional Stein manifold #. Let ECbD be a
compact set with the following properties:

A) There is a Stein neighborhood Q of E such that E is 0(Q)-convex.

B) If p€E, there exists a neighborhood U of p in bD with Q> U, with bUNE=,

and with U homeomorphic to a Euclidean ball in R®.
Then the set E is remorable and so O(D)-convex.

The condition A implies that the set E is an intersection of Stein domains, so
by a result of Lupacciolu {15}, if we were in dimension three or above rather than
in dimension two, it by itself would suffice to guarantee the removability of the
set E.

Note also that condition A implies that E is small topologically: Its topological
dimension (as distinguished from its metric or Hausdorff dimension) is not more
than two: As EcbD, dim E=3; if dim E=3, then [7] E contains an open subset
of bD. Granted that E is ¢#(Q)-convex, this is impossible.

Proof of the theorem. We consider a continuous function f on bD\E that
satisfies 0, f=0 in the weak sense; we are to show that there is Fc@(D) that
assumes continuously the boundary values f on bD\E.

We show first that f continues holomorphically into D in a neighborhood of
each point of the set E. Thus, let p€E, and choose a neighborhood U, of p in ac-
cordance with condition B. As U, is diffeomorphic to a Euclidean ball in R® and
as bU, is disjoint from the set E, it follows that there is a smooth two-dimensional
sphere Z;C U, that separates the compact set bU, from the compact set EnU,.
{(Note: We use here the nontrivial fact that a three-dimensional manifold of class
%? that is homeomorphic to R3 is (¢?)-diffeomorphic to R3 See [18] and the ref-
erences cited there. The analogous statement for R* is known to be false.)
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There is a sphere X, in D that is of class ¢~ and that is very near I7, so near
that every CR-function g on bDN\E extends holomorphically into a neighborhood
of X7. According to Bedford and Klingenberg[1], we can perturb X, slightly to
obtam a 2-sphere X, that lies very near X, and that bounds a Lev1-ﬂat 3-ball 2},
which is the envelop of holomorphy of X, in the sense that if h is holomorphic on
a neighborhood of Z, (in .#), then h continues holomorphically into a neighborhood
of ZF. If we have made our perturbations sufficiently small, then our function f
continues holomorphically into a neighborhood of Z}.

Let 4, be the domain in bD that is bounded by X7 and that contains EnU,.
Let W,cD be a domain obtained as follows: Perturb 4 puZ: into D slightly leaving
it fixed near E so as to obtain a smooth manifold with boundary 4,. If we have
made our perturbations of X7 into X, into Z, sufficiently small, we can obtain 4,
that is again strongly pseudoconvex, that is so close to bD that each CR-function
h on bD\E extends holomorphically into a neighborhood of 4, so that bd,=%,
and so that bA,nZ}=%,. The subdomain W, of D bounded by 4,0} is pseudo-
convex. Consequently, there is a strongly pseudoconvex domain W, with these
properties: 1) VK,’CW/;,,Z) near EnU,, bW, and bVI;',' coincide, and 3) outside a
neighborhood of EnU,, bVI{,’ is contained in the domain where f is known to be
holomorphic.

Since VI{,’CQ and E is 0(Q)-convex, the set EnU, is convex with respect to
0(W,). 1t follows that f continues holomorphically through #,": In case M=C?
we may invoke a result of Lupacciolu [14]; in the more general case, we refer to
the paper [12] of Laurent—Thiebaut.

As a consequence of the construction of the neighborhoods W, and W and
the compactness of the set E, we see that there are finitely many pa1rw1se disjoint
relatively open subsets V], ...,¥,, of D with Enb¥V;=@ and such that f continues
into ¥;nD as a holomorphic function. There is, in addition, a neighborhood ¥
of bD\E in D\E such that the function f continues holomorphically into ¥nD.
It follows that for some neighborhood ¥, of bD in D, f continues holomorphically
into ¥nD. As D is pseudocconvex, f continues through the whele of D — by a
version of Hartogs’ theorem. (For this, we can cite [4, Th. VILD.4].)

This completes the proof of the theorem.

Having established the general result I, we turn to some special cases.

1I. Corollary. Let D be a strongly pseudoconvex domain in a two-dimensional
Stein manifold M. Every two-dimensional compact totally real disc A of class €" in
bD is removable and so O(D)-convex.

In connection with this corollary it is worth noting that not all totally real
discs in C2 are polynomially convex. An example was given in Wermer [21]: another
example is given in [5]: Define g({)=(1—-(0){e™. Then dg/0l is zero-free on C,
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and g({)=0 if |{|=1. Thus, the polynomially convex hull of the totally real disc
E={({,g(0)): {I=1} contains the disc {({,0): [{|=1}: E is not polynomially
convex.

Proof. According to [6], there is a neighborhood Q of 4 in M on which there
is a nonnegative strongly plurisubharmonic function p of class €2 with 4= {¢=0}.
If for small ¢>0, Q,={z€Q: g(z)<e}, then for small ¢, the component of £,
that contains 4 is a Stein neighborhood of 4 with respect to which 4 is convex.

It remains only to see that 4 has a neighborhood U< QnbD that is diffeo-
morphic to a ball in R3. This is essentially clear. We may suppose given a € diffeo-
morphism ¥ from d4,={(x,, x,)€éR?®: x}+x3<2} onto a closed submanifold of an
open subset of bD such that iy takes the closed disc 4,c4; of radius one diffeo-
morphically onto 4. We can then find a ¥*-vector field ¢ defined on a neighborhood
of 4 in bD that is tangent to bD and that is transverse to 4. If then ¥: 4,XR sat-
isfies ¥ (x;, x5, 0)=y(x,, x;) and ¥, (3_;’—:)=C, then ¥ takes some neighborhood
of 4,X{0}c4,XR diffeomorphicaily onto an open neighborhood of 4 in bD.
As 4,x {0} has arbitrarily small neighborhoods diffeomorphic to a ball, we are done.

If Z is a two-dimensional submanifold of class €2 in a two-dimensional com-
plex manifold, .#, and if Z is totally real in a deleted neighborhood of the point
Do€Z but the tangent space T,z is complex, then it is possible to choose local
holomorphic coordinates (z, w) in 4 near p, so that p, is the origin and so that
near Q, X is given by an equation

= 22+ A(2*+2%) +0(2?).

The number 1 is uniquely determined, and p, is said to be an elliptic point if 2€[0, )
a parabolic point if A=+%, and a hyperbolic point if A€(%, ). This classification
was introduced by Bishop [3].

Near an elliptic point, the local hull of holomorphy of Z contains a real hyper-
surface with boundary [11]. We shall see below that near a hyperbolic point, X is
polynomially convex.

IIL. Corollary. Let A be a compact two-dimensional disc of class €* in bD, D
a strongly pseudoconvex domain with €* boundary in a two-dimensional Stein mani-
Jold A. If A is totally real except at a finite number of points each of which is a hyper-
bolic point, then A is removable and so 0(D)-convex.

The crux of the corollary, given what has gone before, is to see that 4 is the
zero locus of a continuous nonnegative plurisubharmonic function.

IV. Lemma. With A as in Corollary 111, there is a neighborhood Q of A
in M on which is defined a nonnegative plurisubharmonic function @ such that
4={z€Q: o(2)=0}.
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Proof. Fix a smooth Hermitian metric on .#, and denote by dist , (p, q) the
distance from p to g, p, g€, in this metric.

Let py,...,p, be the points in 4 at which the tangent to 4 is complex, and
Iet A’=AN{pi,...p.}» a totally real closed submanifold with boundary of
AMN\{p1> ..., p}- The function p,(z)=dist%, (z, 4) is of class 4* in a small neigh-
borhood @, of 4 in .# and is strongly plurisubharmonic on a smaller open set
Q,cQ, containing 4°. It is not plurisubharmonic near the points p;, so we will
modify it there. The modification will be local near each p;. Thus, we may fix a p,
and work in local coordinates in which p;=0.

According to Theorem VI below the set AnrB, is polynomially convex for
each sufficiently small »=>0. Hence, there is a smooth plurisubharmonic function
@: C*—~[0, =) the zero locus of which is the set 4nrB,. If r>0 is sufficiently
small, 4nrB, is totally real except at 0.

Choose numbers 0<r”<#’<r, and let 7=0 be a smooth function satisfying

(i) supp T cc #'B,, and
(i) T <0 near Anr”B;,.

If 7 is sufficiently small in the €%norm, then the function g,=p,+7 is still strongly
plurisubharmonic in a neighborhood Q, of 4An{rB,\+”B,). The nonnegative func-
tion p;=max (g,,0) is continuous and plurisubharmonic on @, and vanishes on
a neighborhood of Anb(r”B,). Thus, we can extend g, as a plurisubharmonic
function on a neighborhood , of 4nrB, by taking the extension to be zero in a
neighborhood of 4nr”B,.

Recall that ¢ is a nonnegative plurisubharmonic function on C? vanishing on
AnrB,. The function @,=g;+¢ is a nonnegative continuous plurisubharmonic
function on Q, that has AnrB, as zero locus. Moreover, on Q,n(rB;\r’By), 0;
agrees with ¢, so on this set, g,=¢,+¢. This function is smooth and plurisub-
harmonic on Q,~(rB,\+’B,).

Finally, we patch g, and g, to obtain

e =ha+(1-h)o,

where h: C2-[0, 1] is a smooth function that equals O on r’ B, and equals 1 outside
rB,. Since both g, and p, are smooth and strongly plurisubharmonic along
An(rB,\r’B,) where the patching occurs, the resulting function ¢ is also strongly
plurisubharmonic there. The function p is the required modification of g, near p;.

We repeat this procedure for each p; and obtain finally the plurisubharmonic
function we seek.

This completes the proof.

There is an extension of the results obtained above for discs to certain more
general sets. A subset X of an n-dimensional manifold is called cellular if for every
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open neighborhood U of X there is an open set ¥ homeomorphic to R” with Xc V' cU.
The proof of Theorem I implies that if D is a strongly pseudoconvex domain in a
two-dimensional Stein manifold, bD of class €2, then every compact set XCbD that
is cellular and that is O(Q)-convex for some neighborhood Q of X is removable.

The final application we make of Theorem I is to certain Cantor sets. By a
Cantor set we understand a compact perfect subset of some Euclidean space. Alter-
natively, a Cantor set is a subset of a Euclidean space that is homeomorphic to the
usual Cantor middle-third set constructed in the interval [0, 1]. For these matters
one can consult the topology text [10].

The following question has not been settled yet: Is every Cantor set in bBy
removable? We shall exhibit below a class of removable Cantor sets.

A Cantor set ECR” is called rame if there is a homeomorphism of R" onto
itself that carries E onto the usual middle-third Cantor set contained in a coordinate
line of R". In [2), Bing gave a condition under which a Cantor set E in R® is tame.
To state it, we need a definition: Call a set XcR® 1-LCC (1-locally connected
complement) if for each x€X and for every neighborhood U of x, there is a neigh-
borhood ¥ of x, ¥cU such that every simple closed curve ycV\X is null-
homotopic in UN\X. Bing proves that a 1-LCC Cantor set in R® is tame. (Not
every Cantor set has this property as is shown by Antoine’s necklace [17].) Alter-
natively, it suffices for each point x¢X to have a neighborhood V that is homeo-
morphic to R3 and that has the property that bVnX=¢.

V. Corollary. Let D be a strongly pseudoconvex domain in a two-dimensional
Stein manifold M, bD of class €*. Suppose ECbD is a Cantor set such that
A) There is a Stein neighborhood 2 of E in M such that E is 0(Q)-convex.
B) If pEE, there is a neighborhood V, of p in bD that is homeomorphic to R® and
that contains a compact neighborhood E, of p in E that is a tamely embedded
Cantor set in R3*=V,.
Then E is removable.

Proof. Let p,€E. The hypothesis B) yields a homeomorphism &: V;,o—»Rs
that carries E », ONtO the standard Cantor middle-third set K contained in the x,-
axis of R3 Let p, correspond to x,6K under &. There are open Euclidean balls
B in R that contain X, and that satisfy bBN®(EnV, )=0. It follows that in &*(B)
there are 2-spheres of class %2 disjoint from E that bound 3-balls containing p,.

We turn finally to the proof of the result we have used above to the effect that
hyperbolic points have polynomially convex neighborhoods.

V1. Theorem. Let X be the surface in C? given by the equation

Zy = 2121+7(Zf+5§)+F(21)
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with y>% and where F is of class 4* and satifies F(z))=0(%), z;~0. If r=0 is
sufficiently small then ZnrB, is polynomially convex and satisfies P(EnrB,)=
€(ZnrBy).

Here for a compact set X in C?, €(X ) denotes the space of continuous C-valued
functions on X, and P(X) is the subspace consisting of those functions that can be
approximated uniformly by polynomials.

We are indebted to Sidney Webster for drawing this problem to our attention.

To prove the result, we introduce the surface X° with equation

2z, = 2Z,+y(21+2D)
and the totally real two-dimensional planes
V1 ={( DecC: {eC)

1
v={(e ~2 ¢~ vec).
In addition, we define a map &: C*-~C2 by

and

D(z1,2) = (21, Z Zz’*‘}’(zf'{‘Z%))-

As Dan Burns pointed out to us in a slightly different context, ¢ is a proper map
from C2 onto itself of multiplicity two, which carries ¥ and ¥; injectively onto 2°.

Proof. We propose to find surfaces S, and S, that osculate ¥; and ¥;, respectively,
at the origin, and that satisfy

d-1(2) = S;US;.
To this end, it is convenient to introduce ¢: C2*-~C by
0(21,2) = 2,51 +9(3+ )+ F(z)— 2

so that @=0 defines ZX.
We construct S; as follows. The surface S, is to be of the form

Sy ={(¢ T+/): teC, ¢ small}

with f({)=0((), {~0. The condition that &(S))cZX is that ¢(®(, {+£()))=0,
which, when written out explicitly, is the quadratic in f

WO+ +Of )~ F(Q) = 0.

Solve this for f using the quadratic formula to find

) = —217 (- €+ 29D £V T 0P 47F).
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We want f({)=0((), {+0, so we choose the plus sign in (1). With this choice of sign,
df(0)=0, and fis of class ¥* everywhere except possibly at zero. We show that f
is of class %' at 0 as follows. Write

VE+29D2 +4vF Q) = C+29D+1 ().
The function f satisfies the equation

J32¢+2yD)f = &F.
Differentiate this with respect to { to get

2 C+20+N)J; = 29F—].

We have F({)=0({?) and f({)=0((), {~0. Consequently, by (2) we see that f,({)=
o(1),{—+0. Similarly, fz(C)=o(1), {~~0. It follows that f'is of class 4, as we wished
to see.

Thus, with f determined in this way, the surface S, is of class 4, and near the
origin, it is a small perturbation of the totally real plane ¥{. As such, it is totally
real. We know that totally real surfaces are locally polynomially convex and that
we have, locally at least, polynomial approximation on such surfaces. Thus, for
small =0, if

5:(8) = {(& T+AD): 1Ll < 6}

with f given by (1), then S,(3) is polynomially convex and satisfies P(S,(5))=
€(5,(9).
We now make a similar analysis for the surface S;. It is to be of the form

s, ={& -3 t-t+80): tec}

with g()=0((), {—0. The condition that &(S,)c X is found to be expressed by
the equation

84— @l +Dg)—F() = 0.

The quadratic formula yields
1 —
§= 5, {20+ O£V + )P+ 4yF}).
We take the minus sign to obtain g({)=o0({), {~0. The function g is continuous,

is of class €* except possibly at the origin and satisfies dg(0)=0. We claim that g
is of class €* at 0 as well. Write

VL + 02+ 4yF = (90 +0)+8.
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Then the function § satisfies the quadratic equation
g:+2(2y{+ 0§ = 4yF.

We differentiate this with respect to { and with respect to { and find that g.({) and
& (0) are both o(1), {0, whence g is of class 4" at 0. Thus, g is of class ¥* as we
wished,

If for small =0,

5.0 ={(t. -5 t-t+50): 1 =4},

then S,(6) is polynomially convex and satisfies P(S,(5))=%(S.(9)).

Notice that if § is small, then S;(8)nS,(6)={0} as follows from the assump-
tion that y=1/2.

Now fix £¢>0, define y: C2—-C by

1
V(z1, 20) = ‘4‘(2§—2§)+82122’

and consider the sets y(S;(5)) and ¢ (S,(8)). For small {, we have, taking {=¢+in,

3) YL THAD) = En+e@+nD+o(0d),

for f()=0({), {—+0. The equation (3) implies that for small g, l//(S1 (6)) is contained
in the cone
{u+iv: o] = Cu}

in the u+iv=y(z,, z,)-plane for some C=0. We also have
1 1(,, 1, ? 1
o6 —2e-trs) = 4 [o-(- (e t) v |ra (2o trew).
As g is o), {0, we can write this as
1 1(,,(1 z 1 .
o[ ~2e-trs) = 4o (Lerd) | u (Lert)roe

1[(1 2) (2 1] 2; ] [1 )

= |-|5+=|e—-|=—=|n?+= &n|—el | =+ T+ o (D).

7 yzyf yyznyzﬁn ?C (

The coefficient of £ is plainly negative, and so is the coefficient of n?, because y=>1/2.
Thus, provided ¢ and § are sufficiently small, we have that Re y ({ ——} {-l+g@)=0
and that

IImw (C—%C—-C-&—g(())l =—cRey (C—% C—Z+8(C))-
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That is, the set y(S,(d)) is contained in a cone with vertex the origin and lying
otherwise in the open left half of the (u+ix)-plane.

Notice that y~1(0)nS,(6)nS.(8) is the polynomially convex set consisting of
the origin in C2,

Thus, a theorem of Kallin [9; 19, Lemma 29.21] implies that, provided 6 is
small, the union S,(6)uS,(8) is polynomially convex.

Moreover, as P(S;(5))=%(S,(5)) and P(S,(5))=%(S;(5)), again provided o
is small, it follows that

@ P(S1(3)uS,(8)) = %(S1(8)uUS,(5)).

It not, there is a nonzero measure g on S,(5)uS,(5) such that u(P)=0 for every
holomorphic polynomial P. Since  takes S;(d) and S,(8) into disjoint sectors,
Mergelyan’s theorem provides a sequence {P};-, .. of polynomials such that
|[Pioy|=1 on S,(8)uS,(8) and {Poys};=,,,.. converges pointwise to one on
S1(8) and to zero on S,(6)\{0}. If P is any polynomial, we have

0 = [ (Boy)Pdy

for all j. By the dominated convergence theorem we may conclude that p,, the
restriction of p to S;(6), satisfies p,(P)=0 for all polynomials P. As P(S,(5))=
%(S1(8)) it follows that g, is the zero measure. In the same way, y,, the restriction
of u to $,(0), is the zero measure, and thus p=0.

The equality (4) follows. It implies that every compact subset of S,(6)vS,(0)
is polynomially convex.

If now Ec X is a compact neighborhood in ¥ of the origin chosen so small that
P YE)CS,(8)uS,(5), the set $~1(E) is polynomially convex. But as ¢: C2~C?
is a proper holomorphic mapping, the polynomial convexity of ¢~1(E) implies
that of E. Let z,¢C™\E. As ®~1(E) is polynomially convex and disjoint from
the set @~1(z,)=E,, which consists of one point or of two points since ¢ is a
two-sheeted branched covering, the set E,u®~1(E) is polynomially convex, so
there is a polynomial P on C2? with P=1 on E, and |P|<1/2 on ¢~ (k). The
theory of analytic covers [4] yields a polynomial equation

P24 (po®)P+qgod =0

for some choice of entire functions, actually polynomials, p and g on C% We have
then that ¢ is holomorphic on C?, ¢q(z;)=1 and |g|<1/4 on E. Thus, E is poly-
nomially convex.

Finally, we must show that P(E)=%(E). Granted that E is polynomially
convex, this follows from a result of Wermer’s [21]. As Wermer’s proof is not
simple — of course it covers situations much more general than ours, we offer
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the following short proof. Consider h¢%4(E). The function ho® is in €(P~(E)),
so there is a sequence {P},., ,, . of polynomials on C? that converges uniformly
on ®7Y(E) to ho®, since €(S,(6)uS;(8))=P(S,(5)uS:(6)) and &~HE)TS (S)v
S,(8). The function Q;(z)=7 (B(z)+P(z")) for all z&éC* such that &71(2)
consists of exactly two points z’ and z” is holomorphic on C? — again we invoke
the theory of analytic covers. The sequence {Q;};=1,,,.. converges uniformly on
E to h.

10.
11,

12.

13.

14

15.

16.

17.

18.

This completes the proof.
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