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1. Introduction 

Complex interpolation of general couples (X0, X1) of quasi-Banach spaces has 
been considered by several authors [8], [11], [16]. The first approach was made by 
Rivi6re in his thesis [16] and recently it has been developed by Cwikel, Milman 
and Sagher in [8], where some new interpolation results have been obtained. See 
also [9] and [17]. 

These authors have used in the classical construction of Calder6n (see [4] or [3]) 
the space ~ of all functions J(z) =~=lfk(z)xk, where x ~  X0 n X 1 and f~E A (S, C), 
the class of scalar valued functions analytic on the strip S={z:  0 < R e  z < l }  and 
continuous and bounded on S. As a result, a quasi-normed space of analytic func- 
tions is obtained in which the quasi-norm IL" IL~ on ~ is the one introduced by 
Calder6n [4], i.e. 

Ilf]J~ = max {sup Ilf(it)Hxo, sup Ilf0 + it)llxx}. 
t E R  zER 

When making the quotient to define the intermediate spaces, the following pa- 
thologies can occur for the quasi-seminorm [Ixll0=inf{llf[7~: J~O)--x, J ~ }  on 
X0 n X1. First, the intermediate space is always the intersection and only the re- 
sulting quasi-seminorms defined on it vary. Moreover, these quasi-seminorms can 
be identically zero. If  they are genuine quasi-norms, the intersection need not neces- 
sarily be complete. Its inclusion in the sum space may also fail to be continuous. 
Even if  this latter problem does not arise, it is not clear whether the extension of 
the continuous inclusion to the completion is one to one. For information about 
these facts see [8], [14], [16], [18] and [19]. 

* This research was partially supported by DGICYT/PS87-0027. 
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Another approach can be found in a paper by Janson and Jones [tl] ,  
where a third term sup,~llf(z)llx0+xl is added to define a space of vector 
valued functions as the completion of ~ with respect to the quasi-norm t] f][ = 
max {][f[[~, supzEs 1] f(z)]]x,+x). The complex interpolation methods introduced in 
that paper always yield quasi-Banach intermediate spaces and have been succesfully 
used to interpolate Hardy spaces and BMO. However, those methods give no con- 
vexity inequality in the interpolation theorem (in the terminology of Bergh--L6f- 
strSm [3] they are not of exponent 0). 

The purpose of this paper is to present a complex interpolation method based 
on complete spaces of analytic functions (hence yielding quasi-Banach interpolation 
spaces) and with a convexity inequality in the interpolation theorem. In doing so, 
we will restrict the category of general quasi-Banach pairs to some smaller category 
in which important examples remain included. 

In the construction of the interpolation method, one has to deal with analytic 
functions with values in a quasi-Banach space. These functions are defined by the 
local existence of power series expansions and have many of the usual properties. 
For example, the power series expansion about a point zo converges uniformly on 
compact subsets of any disk D centered at z0 and contained in the domain of the 
function. Information can be found in [12], [13] and [21]. 

We will denote by A and S the unit disk ]z]<l and the strip 0 - < R e z < l  
respectively. A(A, ~) and A(S,~') will be the corresponding spaces of  ~-valued 
bounded analytic functions that are continuous up to the boundary, for a given 
quasi-Banach space 0g. 

We will consider quasi-Banach spaces q/ which have an equivalent plurisub- 
harmonic quasi-norm. Those spaces are called A-convex by Kalton [13], locally 
analytically pseudo-convex by Peetre [15] and locally holomorphic by Aleksan- 
drov [1]. They are characterized by the existence of a constant C so that if  
f~ A(A,Yl) then 

I[f(0)ll --< C sup IIj(z)l[- (1) 
!zl =1 

It is known that any quasi-Banach space (X, [1. I[) has an equivalent quasi- 
norm [. I so that, for certain r, 0<r=<l,  [. l" is subadditive. Such a quasi-norm 
is said to ~e an r-norm. -[hroughout the paper we will consider the case where all 
the quasi-norms are r-norms for some r, 0 < r _  <- 1. The general statements can be 
reduced to this case by equivalently re-quasi-norming the spaces with suitable 
r-norms (phrases like "with equal quasi-norms" would have then to be replaced 
by "with equivalent quasi-norms"). Similarly, let (q[, [I �9 [I) be A-convex. The quasi- 
norm I] �9 ~] satisfies the inequality (I). If  we pick an equivalent r-norm 1-], (1) still 
holds with another constant and (0g, 1.1) is an r-Banach space satisfying this weak 
maximum modulus principle. According to [13, Theorem 3.7], there exists an r-norm 
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equivalent to 1" I which is plurisubharmonic. Throughout the paper, whenever an 
A-convex space (q/, II �9 If) appears, we will suppose that II "II is at the same time 
r-norm and plurisubharmonic, thus we will have C =  1 in (1). 

Also we shall make free use of  the basic terminology of  interpolation theory, 
like that of  [3], and follow [13] for definitions and results about A-convex spaces. 

Finally we wish to thank the referee for many helpful suggestions that have led 
to substantial improvements in the paper. 

2. Interpolation pairs with an A-convex containing space 

Let (X 0, X1) be a compatible pair of quasi-Banach spaces. The pair (i"0, X1) 
will be said to have an A-convex containing space if there is an A-convex space q/ 
so that 

with continuous inclusion. We will denote by ]1 "ll~ and ]1 "]]j respectively the 
quasi-norms of  q / a n d  X j, j - -0 ,  I. 

We define the space o~f (ql)= o~ (Xo, Xa; J/l) to consist of all functions J ( A  (S, ~') 
such that J(j+it)EX3, and / ( j + i t )  defines a bounded continuous function J) 
from R to Xj, j = 0 ,  1. 

Since q/ is A-convex, the three lines theorem for functions with values in q/ 
can be proved from (1). Also, by [12, Theorem 6.3], A(S,ql) is complete with 
respect to the quasi-norm Ilfll =supz~s Ilf(z)ll~,. The argument given in [3] for the 
Banach space case works now to prove that 

Ilfllje(~) = max sup IIf~(t)ltj 
j=0,1 t~R 

defines a complete quasi-norm on Jtt~(~), and we do not need a third term like 
in [11]. 

As in [11], we consider the l[ �9 II~e<~)-closure ~-(q/)=~-(X0,  X~; ~ )  of  

N X : . :  c), N rq. 

For 0<=0<=1, (X o, X~)[01. ~ will denote the space of all.](0), f~:T(~r with 
the complete quasi-norm 

Ilxllt01,m --- inf{llfll~e(~): f f f ~ ( ~ ) ,  f(O) = x}. 

The same spaces and quasi-norms are obtained if we consider functions in ~ ( q / )  
vanishing at infinity (multiply by suitable scalar functions). 

Thus the existence of  an A-convex containing space q~g allows us to make the 
construction in a very similar way to that of Calder6n [4] and guarantees that the 
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technical difficulties mentioned in Section 1 do not arise. Also Proposition 5, which 
is a result on interpolation of  Banach spaces and, as far as we know, appears here 
for the first time is proved following ideas from the A-convex case. 

We shall see that, in general, j ~ - ( ~ / / )  does not take its values in the sum 
Xo+X~, and so (Xo, XO[o].~ need not to be contained there. However we will 
prove that the interpolation spaces are independent in a certain sense of  the choice 
of  ~//. 

3. The independence theorem 

Let (X0, X1) be a compatible pair of  quasi-Banach spaces and suppose that 
there exist two A-convex spaces 0g and ~ such that X 0 + X~ c 0g and also X0 + Xa c ~r 
with continuous inclusions. Suppose further that both of  the spaces a// and ~g" are 
contained with continuous inclusions in an arbitrary Hausdorff topological vector 
space d .  

Theorem 1. The spaces o~ (~) and ~ (~I r)  are equal as sets of  sd-valuedjimctions 
and their quasi-norms coincide. The spaces (Xo, X1)tol,~ and (Xo, X1)tol, f are iso- 
metric and coincide as vector subspaees of  sJ. 

Proof Clearly, we only have to prove the assertion about the spaces of  analytic 
functions. If  J~o~(q/), pick g, Cff so that IIg,,_/lTje~,)-~0 as n ~ o .  The func- 
tions g,, converge Xfuni formly  to J over j + i R ,  j = 0 ,  1. By the A-convexity of  q/, 
they also converge q/-uniformly t o f o v e r  S. On the other hand, {g,}, is also a Cauchy 
sequence in o~f'("U), so there exists f ~ - ( ~ )  with IIg.-f~fl,r(~)~0 as n-~oo. 
Thus g,-+Jl as n~oo Xj-uniformly over j+iR ,  j=O, 1, and "//'-uniformly over S. 
Since both og and "K" are continuously contained on d ,  it follows that f=fl~5~-(~g'). 
Thus ~(a//)c~-(~K')  and, interchanging the roles of  q/ and ~e', the equality 
follows. | 

In view of  Theorem 1, notations like (X0, X1)tol,, and o~(~ can now be 
replaced by (X0, X1)[o],a and ,~- (d)  to indicate that these spaces do not depend on 
the containing A-convex spaces q / s o  that 

X 0 + X l C  ~ c sr 

However, in order to simplify the notation, we will denote by (X0, X1)[01 the 
interpolation spaces and by o~ or ~ (Xo ,  X~) the corresponding spaces of  analytic 
functions if there is no danger of  confusion. 

We will see later that we cannot dispense with the condition in Theorem 1 
that both q/ and ~ nmst be contained in the same space ~ .  
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Let (X, iI" []) be a quasi-Banach space and, as in [13], denote 

t[xl[A = inf {~ax Hq~(z)l] : gpEA(A, X), (a(O) = x} 

the biggest plurisubharmonic quasi-seminorm on X such that IF" l ia r  J]" ][. 
If  we have a continuous embedding Xc~ ~//being A-convex, it follows that 

Ilxll~ <-- CIIxll~ (2) 

for each xEX and consequently in this case ii �9 l!a is a quasi-norm on X. t h e  com- 
pletion Xa of (X, ll" [la) is an A-convex .space and X is continuously embedded 
in Xa. 

If  a quasi-Banach space has a separating dual, it has a Banach envelope. In 
analogy to this case, we call Xa the A-convex envelope of X. It follows that any con- 
tinuous linear operator from X into an A-convex space factors through Xa. See 
the remarks after [13, Theorem 3.7]. 

It will be convenient to compute the interpolation spaces (X, X)[0]. xa when 
0 ~ 0 < 1 .  

Lemma 1. I f  0 < 0 < 1 ,  the relation 

(X. X)to~. x., = S~ 

holds with equality of quasi-norms. 

ProoJ~ By the definition of  the interpolation spaces, it follows that (X, X)to],xC 
Xa, and 

Ilxll,t <- llxlltol,x~, (3) 

for each xE(X, X)toj, XA" 
Let xEX a. We consider x,,EX, nEN, so that .~ff=~x.=x, the series being 

convergent in Xa, and 

Pick f.CA(A, X) such that f . (O)=x ,  and 

where 

I[Lll~ < llx,!fS~ 2" ' 

ItAIlw = m a x  ItA(w)!l- 
rw] =1 

Thus, the series ~,~=af, converges X-uniformly on T (and hence Xa-uni- 
formly on A) to a function lEA(A, XA) because ~ = z  Ir!l'~-~,,,,. + ~ .  

Let q~ be a conformal mapping between S and A\{zo, zL} where z 0 and zl are 
certain points in T and qi(0)=0. The function g(z)=/(~O(z)) belongs to .~(Xa). 
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To see this, consider 6 > 0  and N =  >1 such that 

Denote by ~ 0 1 = Z I N = l J n .  I t  follows that qhEA(A, X). I f  we dilate a little, we 
will obtain a function ~P2, X-uniformly close to ~p~ over A, defined and analytic on a 
neighborhood of  ,]. Hence the power series of  ~P2 will converge X-uniformly over z]. 
We take a partial sum o f  the power series of  ~o2 X-uniformly close to r 2 on z] and 
we obtain an X-valued function of  finite rank ~P3 (a polynomial), X-uniformly close to 

~01 over z]. Say ][~pl-tpa][~-<6. Then ~03o~Eff and I[g-(p3o~l[~(xa)<26. 
Thus we have that gE~(Xa) and g(O)=x, so xC(X, X)toj.xA and the equal- 

ity (X, X)toj, xA=Xa follows. 
Moreover  

r r [ I - I lco j ,xA <= IIg[I,v(xA) 

= I l f l l ~  

< [Ixll5 +2e .  

From this inequality, and from (3), the lemma follows. II 

In the sequel we will need to use the fact that there exist quasi-Banach spaces 
which have separating duals but which are not A-convex. The following example 
o f  such a space was suggested to us by N. J. Kahon.  

Consider E=LP/H p ( 0 < p < l )  and fEA(A,E) vanishing on T but with 
[]f(0)][ =1.  See [1] or [12, pp. 276 and 278]. As in the proof  of  Lemma 1, we can 
obtain f ,  EA(A, E) with finite rank and so that !!J~(0)[[ = 1 and 

II f, llT ~- 0, 

as n - ~ .  Let X, be the linear span o f f , (A)  with the quasi-norm l[" 1[ of  E, and 
define the space X to consist o f  all sequences x={x ,} ,  with x,,EX, and ][Xl[x= 

Z [tx, ll <o~. 
It  is clear that X has a separating dual. However it is not A-convex, since the 

functions F,,(z)={f,,,(z)},,, with 

, [L,  if  n = m ,  

f " " - [ 0 ,  if n ~ m .  

are in A(A, X) and satisfy [IFr,(Z)IIx=i!J,,(z)[I for aH zEA. 
The following proposition wiII enable us, among other things, to show that 

in some cases the space (X0, X1)~ej.~ may depend on ~r I f  X is a quasi-Banach 
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space so that for an A-convex space ~ the continuous inclusion X c q /  holds, (2) 
shows that the inclusion extends continuously to an operator 

J: Xa~-~y. 

Proposition 1, Let X be a non A-convex space with separating dual. There ex&ts 
a Banach space ql such that Xc-*Oll but the continuous extension 

not one toone.  

Proof. Let II �9 be the Banach envelope norm of the quasi-Banach space X. 
Thus II. I[1 is the Minkowski functional of  the convex envelope of  the unit ball 
on X. Denote by X1 the completion of  the normed space (X, [!-I]i). The Banach 
space X1 is an A-convex containing space for X, hence the inclusion 

is continuous and extends to a continuous operator J :  XA~X~.  
I f  J ( X A ) c X  , then J is not one to one and we have a counterexample, ~I=X~. 
Suppose that J ( X A ) ~ X .  Pick v=JxoCff(XA)~X , xoCXA~X and consider 

ql=X1/[v]. Let n: Xl-*q/ denote the quotient map, then the restriction of  n to X 
is a continuous inclusion of  X into the Banach space ~[ and the continuous extension 
to X A is neff, which vanishes at x0~0. 1 

Now, to see, as mentioned above, that , l E g  need not take its values in Xo+XI 
we simply choose X o = X I = X  with X and q! as in Proposition 1. By kemma 1, 

(X  o, Xa)to],xA is strictly larger that Xo+ X ~. 

4. Some properties of the spaces (Ao, X1)to] 

Let (X 0, X1) be an interpolation pair with the containing A-convex space J#, 
and 0 < 0 <  1. Let (Y0, Y~) be another interpolation pair with an A-convex containing 
space 3e-, and let 

be a linear continuous map which is of  type (Xj., Yj) x~ith constant Mj ( j = 0 ,  1). 

Theorem 2. The operator T is boundedji'om (X,,  X1)to] to (Io, Y1)t0] with con- 
stant M~-~176 . 

Proof See [3]. l 
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If  the operator T is only defined in the sum X0 + X1 and is of  type (Xj, Yj) 
with constant Mj,  it extends continuously to 

T~: (Xo+x1)A -~ ~ ,  

thus Theorem 2 applies and T A maps (X0, X1)to~,(Xo+X,)~ into (Yo, Y1)[01. This 
observation makes it interesting to compute the interpolation spaces with respect to 
the A-convex envelope of  the sum space. In the section of applications we have done 
this for a class of vector valued L p spaces. 

If  
Y c ~ / ~ d  

we denote by Y~ the interpolation space (Y, Y)Eoj. We note that (Y, Y)~ol are the 
same spaces if  0 < 0 <  1. Also, by Proposition 1, it follows that there are examples 
where the natural map between YA and Y~,, the extension to YA of  the inclusion 
Y~q/ ,  is not one to one (the fact that this extension maps Ya into Y~, can be de- 
duced from Theorem 2 and it can be proved directly that it maps YA onto Y~). 

Proposition 2. The intersection Xo~ Xl is deme in (Xo, Xl)[oj, (Xo, X1)U]=X; 
(the closure of XonX1 in Xj, j=O, l) and 

( X o n X O d  c (x0, x~)Eol = (xg,  xf)tol c (xg  + x ~ ) ~  c +. 

Proof. Xor~Xa is dense in (X0, Xa)~ol by construction. ~he equalities 

X[jj = Xf  and (X0, X1)[0 ] = (Xg,  X~)[0 ] 

can be proved as in the locally convex case. See [3]. 
Thus q / i s  a containing space of  (X o, X~) and 

(x0 nX~L, c (y0, x~)tol c (x~ + x~)~, c ++. | 

As mentioned in the previous section, if all the conditions of Theoreln 1 are 
not fulfilled, we may have a situation similar to that described in [7] where the inter- 
polation spaces (X0, X~)w].+ can be essentially different for different choices of  
the containing space ~g. Let us describe this phenomenon more precisely. We shall 
consider a particular couple (X 0, X1) for which there exist A-convex spaces q/ 
and ~" both of  which continuously contain Xo-'-X~. Let T be any continuous 
linear map from (Xo, X1)[o,~. into (X0, XJlo],~ whose restriction to Xor~X~ is the 
identity map. We shall see that T cannot be one to one. This example is obtained 
using the spaces X and q! and the map J of  Proposition 1, and setting Xo=X~=X 
and ~/'=X~. The restrictions of  the maps T and i to XonX~ coincide, so by 
density and interpolation (Theorem 2 and Proposition 2) they also coincide on 
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We want to note that the following result of [16] holds true in our setting: 

Proposition 3. Let q)j (.]=0, 1) be a pair o f  increasing functions on (0, +~o) 
such that %.(exp t) is convex, and let J~ /~. Then 

(a) log l i f(O)ll~o~ <-- f~ log Ilf(it)N,,Po(O, t) dt 

+ log Ill(1 + it)NiP~(O, t) dr, 

�9 {~c' [-0- f - =  'p=(Ijf(1 +/0;;,) 4(o, 

Proof For (a) see [3] or [4]. We sketch the proof of (b) given in [16] to provide 
an easy reference. The inequality in (a) can be re-written as 

Ilf(o)llto~ -~ (exp 1-~10 f:~ log IjJ( it)jJoPo(O, t)dt) ~-~ 

�9 [exp 1 -~f_= 
Now we observe that 

f~  eo(O, Odt = 1--0 

0 

log []f(l +it)jilP~(0, t) dt . 

and f~_~ ~(o, t ) d t  = O. 

Then, since qoj(exp t) ( . i=0, 1) are convex functions, \~e have 

I ( '  )] ' 
~00 exp l - - Z ~ f _  ~ log If(it)[ oPo(O, t)dt ~ 1--0 f _7~ %(}Lf(it)t]o)Po(O, t)dt, 

and a corresponding inequality for (p~. 1 

Finally we show a relation with the interpolation method given in [16] and [8]. 
If  (X o, Xl) is a general quasi-Banach couple, in [16] and [8] the quasi-seminorm 
ilXlfo is defined in XonX~ by 

Nx]10 = inf{I[fH~: .fC~, f(0) - x } ,  

where the space fq and the quasi-norm ]1 �9 on it are the ones introduced in Sec- 
tion 1 as in the locally convex case�9 If  (Xe, X0 has a containing A-convex space ~/., 
the relation Ilxlt~,<=Cl[xllo holds for some absolute constant C and all xC, Xoc~X~. 
Thus, in this case, I]' ]]0 is a genuine quasi-norm. Moreover: 
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Proposition 4. The inclusion 

(XonXl ,  II" [!o) ~+ (Xo, X,)tol 
is continuous. 

It is unknown to us whether the continuous extension to the completion is one 
to one, at least in the case where the containing space is taken to be (Xo+XOa. 

5. Examples 

The following examples show a number of  quasi-Banach couples (X 0, X1) with 
a containing A-convex space. 

Example 1. If  Xo is continuously contained in X1 and )(1 is A-convex, then X1 is 
a containing A-convex space. This is the case of the pairs (L r', L po) on a finite 
measure space, (HP~(A),HVo(A)) and (1 vo, IV,), if 0<p0<:p~< ~ .  

Example 2. (Hardy spaces on R".) For  the pair (Hpo(R"), HP'(R")), the sum 
can be imbedded into a Banach space because it has a separating dual. 

To see this, take q56S(R") with ~ ( 0 ) ~ 0  and define 

for y~R", t>0 ,  and 

It is well-known that 

qb,(y) :- t-"(D(t-l y), 

u (x, t) : f *  q6, (x). 

[u(x, t)l --< c(,~) t-",'"ll/llHp, 

if  f ~ H  p, and the evaluations J ~ u ( x ,  t) are continuous on the sum space. We 
remark that when computing the interpolated spaces for this example, another con- 
taining space will be used. 

Example3.  (L p spaces on a a-finite measure space (f2, X, p)). If  (Y, [1. II) is 
a quasi-Banach space, a function f :  f2 ~ Y is said to be measurable if it is the limit 
of  an almost everywhere convergent sequence of  measurable simple functions. If  
0 < p < , ~ ,  L~(Y) will be the completion of the simple measurable functions with 
respect to the quasi-norm 

II flt LP(Y) : ( L I[ J((O)[[~ d~(~))x]P. 

I f  f is a measurable function, so is [!,/(')[[r. It follows that L ' ( Y )  (denoted by 
LP(Y) in [22]) consists of  all measurable functions f such that IlfllLp<r)< +co. See 
[22] "korollar 4.(2)". 
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For  every quasi -Banach pair  (Xo,)(1) with an A-convex containing space ~', 
let us see that  (L~o(Xo), LP,(XO) has an A-convex containing space too.  Sup- 
pose  for  simplicity that  the inclusion Xo-!-X~c~?l is norm decreasing. Define 

~o=min {Po,Pl, 1}. 
Let  {B,}, be an increasing sequence of  measurable  sets o f  finite measure such 

that  O=U~~ For  f=fo+f~ in LPO(Xo)+LPffXO, we have ( j = 0 ,  l) 

so that,  for a certain cons tan t  C(n)=C(n,  po, pl,<]/)>0, 

119%,,lIL.c~) ~ C(n)l!filLpoO~.o~+L.,O:,,. 

Now we define the space Y/" to consist  o f  all measurable  J//-valued functions g 
such that  

tlgll+- = sup C(n ) -~ l l  gz~,.l!m.~,~ < + .... 
n~l 

We notice that  L~ is A-convex. In fact, if  [i' i]~t is phl r i subharmonic  and 
is an r -norm,  then {I./l~={I.II%. Then,  by [13, Theorem 3.7], the functions 
log I[ '][e, and hence If" Ilfu, are p lur isubharmonic .  Thus the following inequal- 
ities hold : 

= II f(co)N +, tilt (co)) 

~z ( f  1 f 2 .  , ~lIQ 

1 fo=[ f  +~,.,g )H~/d~ ( ))liQ -< llf(co) ( o  co as  
= 27r -~ 

1 f2.  = 2~ o ILf+ei~gl t~t~~ 

After  this observat ion,  we prove  that  N �9 I',~ is p lur isubharmonic .  I f  F~ A(A, ~' ) ,  
we have 

[rF(0)fl,- = sup C(n) -1 rlF(0)Zn, f[Lo(e) ~ sup C(n)  -1 sup flF(w)zn.[fLo(e ) 
n ~ l  n_>l ]w = I  

= sup [[F(w)It~-. 
lwl = 1  

Also,  completeness o f  ~g" follows easily f rom the completeness o f  L~ 
Thus Lpo(Xo)+LPffXx) is cont inuously  contained in the A-convex space ~V'. 
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Example 4. (Tent spaces of  Coifman, Meyer and Stein [6].) Let 0 < p ,  q -<~.  
The tent space T~ p is the set of  all measurable functions f o n  ..+R "+1 such that 

[f R ( f  r "'" dy dt )'/~ Ix/" Ilf]l,,q = . (x) If(Y, O" t--?;7~ ) dx] < § ~,  

where F(x) is the cone of all (y, t)6R'+ +~ such that yEB(x, t). 
1/"+1 we define I f  f is a function defined on __+ , 

Tf(x) = Zr(.~)f 

i f  xER". I f  f ~ T [  it is clear that, for almost every xER" Tf(x) belongs to the L q 
R "+1 with respect to the measure dy dt/t TM. We denote by Lq, this space. space on _.+ 

Thus we have a function Tf: R"~Lq,. 

Lemma 2. The.function T f  is measurable. 

Proof. The proof  is straightforward and we leave the details to the reader. 
First one has to prove that measurability is preserved by a.e. limits, this can be 
done using Egorov's theorem. Now, approximating f by simple scalar functions 
a defined on -.+Rn+l, it is enough to prove the measurability of  aT~r(.). Also, we can 

restrict ourselves to consider the functions Zr'/re), whenever K c R +  +1 is compact.  
Now, if /1" . . . . .  I},  are the dyadic cubes of  volume 2 - ' "  which are contained in 
B(0, r),  we consider x~EIf and define the simple Lq,-valued function defined on R" 

S , ( x )  = v N- ~ , a k =  1 Ztf,(x)(zKzt-(ff,))" 

It  follows that, for each xER", 

[ IS , (x ) -z ,~Zrc~)NL:  -~ 0, 

as t.~oo. I 
It  is clear that the measurable function T f  is in LI'(Lq.). Here we understand 

L p as the Lebesgue space on R ~ with respect to the Lebesgue measure. Moreover, 
it is also clear that T is a one to one map from the space Jr '  of  all complex meas- 
urable functions on 1/,+1 to the space of  all functions defined on R ~ with values 
in o~q. 

The operator T maps Ty0~-Tp, into LPo(Lq, o)+LP~(L~,O and it is an isometry 
q0 ~ q l  

from T~i into LPJ(Lqd), 0 < p  j, q j < ~ ,  ( j = 0 ,  1). F rom Example3,  we have an 
A-convex containing space ~e-for the pair (LPo(Lqo), LP'(L~g)). We define ~ to 
be the set of  all complex measurable funct ions . f  on R~_ +~ so that TfE'r and we 
put in ~ the induced quasi-norm by ~//. It follows by standard arguments that 
~//r is an A-convex quasi-Banach space which contains continuously the sum TqPo* + T~ .  

Now, some interpolation spaces can be computed. 
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Theorem 3. Let 0 <P0, P~ < ~ ,  0 <= 0 <= 1, (X o, Xa), *l and Y/" be as in Example 
3. Then 

(L "~ (Xo), L m (X0)tol,,- = L" ((.go, X1)toa, ~,) 

isometrically (here 1/p = (1 - 0)/1)o + O/pl). 

It will be useful to have the following auxiliary result: 

1.emma 3. The space 5e(XonX1) of  all simple XonX~-valued measurable flmc- 
tions is dense in Lpo(Xo)C~LP'(XO. 

Proof. Let B,, be an increasing sequence of measurable sets on f2 of  finite meas- 
ure with UB,,=f2. Let fELP*(Xo)~LP~(XO and e>0.  The functions fXB. ap- 
proximate f in Lpo(Xo)nLPffXO and so we only have to approximate -/J(B, in 
L p~ (Xo) n L p~(X0 by simple X o n X~-valued measurable functions. 

Fix an integer n. The functionj~B, maps B, into Xo c~ )(1 and is Xj-measurable, 
( j = 0 ,  1). The argument given in [4, pp. 17t--172] works, without any change, to 
prove thatfzB, is X0 n X~-measurable. Pick simple X 0 c~ X~-measurable functions S,, 
supported on B, so that 

}}S,.(x)-f(x)ltxonx~ ~ O, 

as m-*~,  for almost each xEB,.  Let 3 > 0  be such that, whenever N is a meas- 
urable subset of B, with # ( N ) < 6  it follows that 

fN (llAx)llg~ + ]1 f(x)llD) d~(x) < ~. 

By Egorov's theorem, there is a measurable subset N6 of  B. with # ( N , ) < 3  so that 
S,. converges X0nXl-uniformly to JXn. outside N,. Define ~r,,=SmZn,\N. The 
functions ~,. are in 5P(X0nX0 and, if j = 0 ,  1, 

[[~-fx. . l l~x)  < ~+ f B.~N~ llS'~(x)--f(x)lt~Jonx~ dMx)" 

By the uniform convergence of  Sm over B , \ N 6 ,  the last integral can be made 
arbitrarily small and the lemma is proved. I 

Proof o f  Theorem 3. The case where 0 = 0  or 0 =  1 follows from Proposition 2. 
We consider 0 < 0 < 1 .  

(a) Let f~(LPO(Xo),LP,(XI))to~ and FE~J(LVO(Xo), LP,(X1)) with F(0)=f .  We 
consider F~ of  finite rank so that ][F,-F[[~e(,-)~0 as n-~oo. In view of  Lemma 3 
we can in fact assume that each F, is of  the form ~ = 1  c~jxj, wbere dPiEA(S, C) 
and x~E~(XonX1).  For xE-Q, the functions F,.~(z)=F~(z)(x) are in .~r(Xo, X O. 
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We apply Proposi t ion 3 to the functions ~oj(t)=t p~ ( j = 0 ,  1) and we obtain 

�9 (lf~ilF,, .~(l+it)HflPl(O,t)dt) ~ (2) 

We observe that  the right-hand side o f  the last inequality is a simple measurable 
funct ion o f  x. Also f,=F,(O)CSP(Xo~XO are (X 0, X0tovmeasurable .  Hence fol- 
lowing the usual steps, we obtain from (2) the estimates 

so[(,-5'o s ;  "~ ' - ' " "  llf.lll.~(Xo, xo~t J) <= ~ IIF,,,~(it)llgOeo(O. t) dtJ 

1 ~ , f f 0 / r q  

�9 (3-f_l lF, , : ( l+i , ) l l f~(O, OdtJ Jds,(x) 

<(L ' = --fZ--o-f-~ IlF~'x(it)lig~176 t)dtdlx(x)) "(1-~176 

�9 (so o s:_ ~, ~,, ~, +,,~,, ; ' , ,  ~o, ,, .,~.~x~)"" 
1 ~ ~ p( l - -  O)/Po 

= (l--r-=-o-f-~ lir"(/Oli~%-"o> Po(O, ,)dtJ 
1 

�9 [-0- f--ti~2(1 + it)ll[~,,(,< o ~ (o, ,)dtJ " ~  

"l 

It follows that  IIf.--fmllL.((xo, X,hop<=llF.--F,.lt~e(+)~O, as n ,m~<~ and there is 

gEL'((Xo, X1)t01) so that  

Ilf.--gllL.((xo, xo~oO -+ O. 
Also f .-+f in (LpO(Xo), L"(X1))roj. Since this space and LP((Xo, Xa)r0~) are both  
cont inuously  contained in f ' ,  we conclude that f=g~ LP((Xo, Xi)t01) and we obtain 
the inclusion 

(L'O(Xo), LP'(X,))Eol c L"((Xo, X,)toJ ). (4) 

Fur the rmore  : 

Nfll L"((xo, x1~o9 = li~'l[]JLII L'((xo, x,,,,,> 

n 

= It FNje(~-), 

and the above inclusion has norm not exceeding 1. 
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(b) For the reverse inclusion, let S be a simple function of  the form 

S = ~ k  XkZE~, 

where XkEXoc~)(1 and E~ are pairwise disjoint measurable sets on f2 of finite meas- 
ure. Let ~bk6~(X0, X0 be such that ~bk(0)=Xk and [[~bkll~(e)is close to ]lxkIItol. 

As in [3, Theorem 5.1.2], define 

F(z) = Zk  Ok(z) ~k (Z) "AE~, 

where ~kEA(S, C) is defined by 

[ IIx~llto] )p((l/Pl)--(1/p~ 
Ok(z) = t IIS IIL,<<xo, x,>~~ 

Since q~kC~-(Xo, XO, 
it follows that 

Now 

it is easy to see that F~(LpO(Xo), LP,(X1)). Since F(O)=S, 

II e ( j+  it)llLp~(x~) = (f. 2~  lOk(J+ it)l',ll 4~k (./-F it)llf~ZE~(x) dl~ (x)) x/'~ 

< ( L  ~a [~/ )[ [1 []~g )d , (  ))l/pj_~ = k k ( j + i t  pj Xk ]ZEk(X X e 

-- IJ $11 L,<<Xo, x,>~o]> + e. 

We have proved that 

IIS I]<L~o<xo,~<x,>)~o~ ~- IIS llL,<<xo, x,)~o~), (5) 

for each simple X 0 n Xl-valued function S. 
This shows that the quasi-norms of  LP((Xo, X1)to]) and of  (Lpo(Xo), LP'(X1))tot 

concide in 5P(XonX1). Applying Lemma 3, the theorem follows. I 

In the preceeding theorem, the A-convex containing space q/for the pair (X0, X~) 
is arbitrary and the space f-~ is the associated A-convex space given in Example 3, 
or any other A-convex containing space which is compatible with ~ / i n  the sense of  
Theorem 1. 

The paricular nature of ~ was used in part (a) of  the proof  when it was claimed 
that the space LP((Xo, X1)t0]) was continuously contained in "V'. 

In part (b) the nature of  ~/~ was used to claim that F was in 

"~ (L eo (X0), L ~' (t"1); ~ )  

and to obtain the reverse inclusion of  (4) as a consequence of  (5). 
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We observe however that, if  X 0 = X I = ~ / = C ,  the above proof  works for any 
A-convex containing space for the pair (L po, LP0. In the scalar case LPcLpo+ 
LP'c~ r and the functions ~b k can be taken to be costant, 49k=X k, then 

F~ ~ ( L  p~ , L n~) (6) 

and the result follows for any A-convex containing space for LPo+L p,. 
Moreover, if II "]10 denotes the quasi-norm introduced in LpomL p' by the 

method of  RiviSre, Cwikel, Milman and Sagher [16], [8], it follows from (6) that 

IIflI~LVo, L,,)Eo~ = [[f][0 = IlfltLp, 

for each simple f u n c t i o n f  By Lemma 3, the same is true for functions f C L  p~ r L p'. 
We identify the interpolation spaces of  vector valued L p spaces with respect to 

the A-convex envelope of  the sum when the pair (Xo,)(1) and the space ql satisfy 
the following property:  

lPxtJt01,. = Itxl/0, (7) 
for each x~Xoc~X1 . 

Theorem 4. I f  (Xo, Xa) and J?[ sati~J)" (7), and A denotes the A-convex envelope 
o f  LpO(Xo)+LP~(Xx), then the identity map on LPo(Xo)nLP~(X1) extends to an 
isometry fi'om LP((Xo, X0t0j,~ ) onto (L~o(Y0), L P l ( X 1 ) ) [ o ] , A  . Here 1/p=( l  -O)/po+ 
O/p~. Moreover, the pah" (LPo(Xo), LP,(XO) and the containhlg space A satisfy (7). 

Proof Let S~Se(Xoc~X 0 as in part (b) of  the proof  of  Theorem3.  We can 
pick the functions ~b k appearing in that part of  the proof  in f#(Xo, X0. Then the 
function F is in C~(Lpo(X0), LP,(XO) and we obtain: 

I 

and the inclusion 

~(X0 t~ XI) c (LP~ L pl (X1))[O],A 

is continuous with norm not exceeding one. q he inclusion extends to a bounded 
operator 

I: L"((Xo, X,)[o].~, ) ~ (Z~0(X0), Cn'(X0)t0],a 

with norm no greater than one. 
On the other hand, if ~/" is the A-convex containing space given in Example 3, 

the inclusion 
L.O(Xo) +/_.,(Xl) c ~ 

extends to K: A~V" and, by Theorems 2 and 3, 

K: (L,O(Xo), L, ,(x,))to~,  ~ -- L, ( (Xo,  x0to~,,,),  

with norm not exceeding one. 
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The relations 
K o l = I d  and I o K = I d  

(where the identity operator is understood in the corresponding space) hold in 
6e(X o c~ X1). By Lemma 3, we conclude that the operator I is an isometry from 
LP((Xo, X1)to],~) onto (Lpo(Xo),LPI(X1))to],A that leaves fixed ~(XonX1).  

We note that 

L p~ (X0) n L p' (X 0 = (L p0 (X0) , L ~1 (X,))[0] ' ~. = L~((Xo, X0[0],,). 

Again by Lemma 3, the intersection Lpo(Xo)~ LPI(X1) is fixed by L 

From (8), it follows that the quasi-norms of LP((Xo, Xa)t0],~ ), (LP~ 
L~'~(X1))to],a and II �9 II0 (the one introduced by Rivi~re, Cwikel, Milman and Sagher) 
coincide on 6P(X~n Xx) and therefore on Lpo(Xo) c~ LP~(X~). I 

Corollary. Let (Yo, Y1) be an interpolation pair of  quasi-Banach spaces with an 
A-convex containing space ~ .  Suppose that the pair (Xo, X~) satisfies (7) for some 
A-convex containing space. Let A be a linear operator defined on Sf (XonX1), the 
space o f  all simple Xo n Xl-meast~rable functions, with values in Yo nY~. I f  the operator 
A satisfies the estimates 

IIAfll < Mjllfll YJ -~- LPj(Xj)  " 

for each fESP(XonX1), j = 0 ,  1, it follows. 

Ilafllt0] <= M l - ~  M~ llfllL~cx~xoto,) �9 

Proof. We extend A to an operator defined on Z--Lr'o(X~)+L~(X~). We 
remark that LPJ(X~.) is the LPJ(Xj)-closure of 6e(Xoc~Xa). We extend A to 
Aa: Z a ~ g ' .  We observe that if the pair (X0, X~) satisfies (7), by Proposition 2, 
the pair (X ~ X~) also satisfies (7). The proof ends applying Theorem 2, Theorem 4 
and Proposition 2. | 

We consider now the A-convex containing space ~/V introduced in Example 4. 
By definition, the operator T is an isometry from ~/V into "g" and, by Theorems 2 
and 3, it follows that 

T((T o, = (9) 

with 1/p=(1-O)/po+O/px and 1/q=(1-O)/qo+O/q~. Thus we arrive to the fol- 
lowing result: 

Lemma 4. If" 0 <p j, qj < o~ ( j=  O, 1) and 0 ~= 0 <= 1 then 

~ = 

i f  1/p=(1--O)/po+O/pl and 1/q=(1-O)/qo+O/ql. The inclusion has norm <=1. 
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Proof The inclusion follows immediately from the definitions of  the tent spaces, 
the operator T and (9). 

The fact that the inclusion is norm decreasing follows by interpolation of  T. II 

From this lemma and using duality like in [6] we obtain a result that, in part,  
complements [6, Theorem4 and Proposition 6], in which qo=q~, and [2, Theo- 
rem 6.5], in which qi=oo, ( j = 0 ,  1). 

Proposition 5. I f  l < p i ,  qj<o~ ( j = 0 ,  1), 0=<0=<1, 1/p=(1--O)/po+O/pl and 

1/q = (1 - O)/qo + O/ql then 

(T~ . ,  T~ ) t~  ~ = T : .  

Finally, we observe that complex interpolation of  H p spaces (0<p_-<~) and 
B M O  works exactly as in [5] and [11]. We remark that H p is continuously contained 
in 6"" endowed with tile weak topology relative to ~ [10, p. 174]. Also BMO  is 
continuously contained in ~ "  when normed by 

IlfllBmo = ft0,1] n f(x) dx + tlfll 

where ][. k[. is the usual B M O  seminorm as in [10]. I t  is not necessary to make 
any new argument in the interpolation theorems. It is convenient to take as A-con- 
vex containing space ~ the linear span in b ~ of the closed convex hull B of  the 
unit ball in the corresponding sum space. 

This is a Banach space with respect to the Minkowski functional because B is 
a bounded, convex, balanced and complete subset of  ~ ' .  In fact, since ~ is a Fr6chet 
space and B is bounded, convex, balanced and closed, B is weakly compact. See [20]. 

We point out that in the original proofs of  [5] and [11] only functions of  finite 
rank are considered. Thus, when reproducing these proofs in our context, the A-con- 
vex containing space q/wil l  not appear. 

Also, we observe that the conditions on the analytic functions appearing in the 
interpolation theorem of [5] are satisfied by functions in . ~ ( H  po, HPl; qd) vanishing 
at infinity. This can be seen using that 6 e is a Montel space and so any weakly con- 
vergent sequence in 6 ~' is strongly convergent and thus uniformly convergent on 
compact  sets o f  Y .  See [20]. 
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