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1. Introduction 

Lately there has been a great deal of  interest in spaces of  Lorentz type, which 
some authors have started to call spaces of  Lorentz--Marcinkiewicz. These spaces 
are defined in the following way: given a non-negative function w on (0, o~), the 
space Aq(w), 0 < q < - ~ ,  consists of  those functions defined on a a-finite measure 
space M, fixed from now on, for which 

1 (1.1) 

is finite; here f*(s)  denotes the non-increasing rearrangement of  f .  Notice that 
this definition is a little different from the one used by other authors, since we use 
the measure ds instead of ds/s; we have done this for the sake of aesthetic beauty 
in our final results. 

When w -  1, Aq(w) coincides with the Lebesgue space t q. When w(s) =s (1/p)-[I/q), 
1 ~p<~o,  we find that A~(w) is the familiar Lorentz space L p'q. With other weight 
functions, such as, for example, w(s)=s(1/~')-o/q)(l+llog (s)l) ~, a~R, Aq(w) be- 
comes a space of "Orlicz" type, which is sometimes a good substitute for end point 
results for the boundedness of  operators. 

The spaces defined by (1.1) have been extensively studied recently because of  
their connection to the method of  real interpolation with a function parameter. In 
this method a pair (A0, A0 of  compatible quasi-Banach spaces are given together 
with a function q~EB 0 and intermediate spaces, denoted by (A0, AO~,,q, 0 <q ~o ~ ,  are 
defined. (For the precise definitions see Section 2.) This theory has been developed 
in [6J, [11], [12] and [13J, and in particular if ~0 (t)= t o one obtains the classical real 
method of  interpolation developed by J. L. Lions and J. Peetre (see [1], Chapter 3). 

* The first author was supported by a Fulbright/MEC fellowship and his research was done 
during a delightful stay at the Mathematical Sciences Research Institute in Berkeley. 
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The usual properties of  the intermediate spaces are proved in this context. For now 
we shall only mention the result 

(1.2) (L 1, L~)~,, = Aq(w), 1 <= q <_-- ~,  

where w(s)=s(1-o/q))/~o(s), which can be found in [6], Lemma 3.1. Using the re- 
iteration theorem and (1.2), it is easy to identify the intermediate spaces of the 
spaces Aq(w) when q=>l. (See [12] for details.) 

When we consider interpolation by the complex method of A. P. Calder6n [2], 
this question has not been treated. This is the problem we are going to address in 
this paper. 

There are two ways to attack this problem. The first one is to find a relation 
between the real interpolation method with a function parameter and the complex 
interpolation method o fA .  P. Calder6n. (See [1], page 102, for a relation of this type 
when we consider the classical real interpolation method.) This relation is as fol- 
lows: given a pair of  compatible Banach spaces A0, A1 and a pair of functions ~00, 
91 in fl , ,  we prove the equality 

0 .3)  [(Ao, A1),o,qo, (Ao, AO,,,q,]O = (Ao, A1)(p,q 
1 1 - 0  0 

with equivalent norms, where q~(s)=[~oo(s)]l-~ ~ - - =  - + - -  and [ ,]o 
q q0 ql 

denotes the intermediate space at level 0 in the complex method of interpolation. 
Using (1.3) and (1.2) we obtain, for q0~ 1, ql => 1, 

(1.4) [A qo (Wo), A ql (wl)]0 = A q (w) 

where w(s)=[Wo(s)]l-~ ~ 1 1 - 0  0 - - =  + - -  and w o, w~ satisfy s(1-~ 
q qo ql 

j--O, 1. In fact 

[AqO(Wo), Aq~(w,)]o = [(L ~, L~)~0,q0, (L ~, L~)o~,q~]o = (D, L~)~,.q - Aq(w). 

The other approach is based on an idea of  Calder6n [3] : to interpolate Lorentz 
spaces by the complex method of  interpolation one can use a pair of  inequalities 
due to Hardy, namely 

{.f; , ,  . l l / q  <__{ f ;  
r 

(1.5) 
and 

(1.6) 
r 

for q=>l, 1">0 and f ~ 0  (see [7], Chapter IX). If we define the operator SJ ( t ) -  

l f t  f(s)ds, inequality (1.5) can be restated as sayin~ that S is bounded on 
t , ' 0 "  
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.~q(s--(r /q)-( l /q)  + 1), q ~ 1, r >0 ;  here A ~ (w (s)) denotes the space of all f defined on 
(0, ~o) such that ][ fW][L~<Oo for a non-negative function w on (0, o~). Similarly (1.6) 

that the dual of S, S * f ( t ) = f f f ! ;  ) -  ds is bounded on 2:q(s('/q)-~ q=>l, says 

r>0 .  Hence (1.5) and (1.6) are weighted inequalities for the operators S and S* 
respectively. All pairs of weights (u, v) for which S is bounded from Gad(u) to 
.Laq(v), l~q<=oo, have been characterized by B. Muckenhoupt in [14]. The result 
is that 

(1.7) f ? V q "i l/q (Im/(,)l .(s)) d~l. _~ c { f ~  (If(s)lu(s))"ds} ~/' 

if and only if  

(1.8) sup ( f ? s-q[v(s)]qds) 1/q ( s  [.(s)] -q' ds) 1/q" : K < oo. 
r : > 0  

Similarly there is a result for S*: 

(1.9) {L: c {fo Oz(')l"('))'"s} 
if  and only if  

(1.10) q l lq ds)l/q" sup {f;  [v(~)] ( f 7  , - q l u ( , ) l  = K < 
r  

If  u = v ~ w  and (1.7), or equivalently (1.8), holds, we write wEIr(S)  and 
similarly wEWq(S*) when (1.9), or equivalently (1.10), holds. We will denote by 
C(S; q, w) the infimum of the constants C that appear on (1.7), and we shall use 
C(S*; q, w) for the smallest constant that could be used in (1.9) (here u=v=-w). 

Using non-negative functions wEWq(S)nVv~(S*), we can identify the inter- 
mediate spaces of  Aq(w) in the complex method of interpolation. The result is 

(1.11) [Aq0(w0), Aq~(wl)]o -- Aq(w) 1 :~ qo, ql < 

1 1 - 0  0 
where w(s)=[wo(s)]l-~ ~ a n d - - = - - + - -  when u,j~WqflS)c~WqflS*), 

q q0 ql 
.]=0, 1. Details can be found in Section 3. qbe idea of using generalized Hardy 
inequalities in connection with interpolation has appeared also in [8] and [16]. 

There is a discrepancy between the parameters used in (1.4) and (1.11). The 
result in (1.11) is more general than that of (1.4), since we will prove in Section 4 
that if qoCB o, w(s)=s(1-(1/q))/qo(s)6H~(S)r~I~(S*), l~q<o~ .  Of course the im- 
portant result in Section 2 is (1.3) and not (1.4). 

All of the above mentioned results are proved in the context of the "St. Louis 
intermediate spaces", that is, the complex method of interpolation for families of 
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Banach spaces developed in [4]. A summary of this method is given in Section 2. 
The CaIder6n method of  interpolation is a particular case of  this more general 
method. 

We call the reader's attention to the fact that some of the methods used here 
are valid only for Banach spaces, so that we only treat the interpolation of  the spaces 
in the ease l_<-q~oo. The case 0 < q < l  requires other techniques which will be 
the object of  a forthcoming paper. 

2. A reiteration theorem 

A relation between the real interpolation theory with a function parameter 
and the complex method of interpolation for families of Banach spaces is proved in 
this section (see Theorem 2.6). For the reader's convenience we start by reviewing 
the methods of  interpolation used below. 

The complex method of interpolation 

We describe the complex method of  interpolation for families of Banach spaces 
as given in [4]. Let T={zEC:  [z[=l}; to simplify notation we shall write OET 
instead of ei~ Let {B(O)}oe T be a family of Banach spaces. We say that this 
family is an interpolation family of Banach spaces (or interpolation family, for 
short) if 

i) each B(O) is continuously embedded in a Banach space (U, I[ ]iv), 
ii) the function O~[Ib[]n(o) is measurable for each bE(qoExB(O), 
and if  

= {bE N B(0): f ~  log+[lblF,to)dO < o~} 
0 E T  

we have 
iii) ][b[[v<=k(O)[Ib][~(o) for all bE~, with log + k(O)ELa(T). 

The space ~ is called the log-intersection space of the given family and U is called the 
containing space. 

We let N + ( ~ )  be the space of all ~-valued analytic functions of the form 
Z - -  m g( ) - -~=lz ib j  for which [[gIl=:sup0 I[g(0)[]B(0)-<o% where z S N  + and bjE~, 

j = l , 2  . . . . .  m. (U + denotes the positive Nevalinna class for D--{zEC: [z[<_-l}.) 
The completion of  the space N + ( ~ )  with respect to ]l If= is denoted by ~-(~).  
For zED, the space [B(0)L will consist of all elements of the formJ(z) for f E ~ ( ~ ) .  
A Banach space norm is defined on [B(0)]~ by [[v][~ = i n f  {[] f][ = : fE ~ (~r f(z) = v}, 
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vE[B(O)L, z~D. It can be proved that ([B(0)L, Ii II~) is a Banach space and ~ is 
dense in each [B(0)]~. Other properties of these spaces, such as the interpolation 
property and reiteration can be found in [4] and [5]. The only one we shall need in 
this paper is the following subharmonicity property, which is contained in prop- 
osition (2.4) of [4] : 

Proposition 2.1. For each JE ,~ (~ )  and each z6 D, 

< f [logllf(0)lIBc0)]P_(0)d0 IIf(z)ll~ -- exp r 

1 l + ze -i~ ] 
where P~(0)=Re 2re 1 - z e  -i---------~) is the Poisson Kernel o l D  Jor evaluation at z. 

Another type of subharmonicity property ~hich will be used in the sequel 
is the "fundamental inequality" of [9] (Proposition 3.1) ~hich we state below. 

Suppose that the function p: D~[1, ~]  is such that lip(z) is harmonic on D. 
A measurable function F: T X M ~ R  is called p-admissible if 

f iiv(o, .)k,,o, P (O) aO < 

for some zC D (and hence for all z). 

Proposition 2.2. For a p-admissible function F we have 

log IluF(z, �9 )IIL,(=) <= f (log !I F(O, �9 )ilL,,o,)P-_(O)dO 

where ur (z ,x )=ex  p [ f r ( log  lF(O,x)l)a=(O)dO], zEO, and a~(o) is the analytic 
function whose real part is P~(O) and H,(0)=Pz(0). 

The real method of interpolation with a function parameter 

The class B 0 consists of all continuously differentiable functions (p: R + ~ R  + 

such that O<~ . . - i n f  t~o'(t) t~o'(t) ~sup  =-p~<l.  We mav assume, without loss 
~" ,>o ~p(t) ,>o ~p(t) 

of generality, that ~p(1)=l. We notice that if 0<=0<1, t~162 and %=fl,p=O. 
Given a pair of compatible Banach spaces (A0, AI), ~p~B o and q~[1, ~], we 

define the space (Ao, Aa)~,q-~A~o,q as the set of all a~Ao-Aa  such that 

']a,'~,q ~ ( f :  [9( t ) - l  K(t, a)]q d-~--/ ) 1/q < ~  

where K(a, t) is the K-functional used in the classical real method of interpola- 
tion (see [1]). Notice that when ~o(t)=t ~ 0 < 0 <  1, (A0, A1)~,q=(Ao, AOo, q. Several 
properties of these intermediate spaces can be found in [6], [11], [12] and [13]. 
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In what follows we shall need several properties of the class B o . It turns out that 
B~, is contained in a class of functions B K introduced by T. F. Kalugina in I11] (see [6]). 
The class B~ consists of all continuous and non-decreasing functions ~o: R + ~ R  + 

such that Co(s)=sup (p(st)<~ for every s. and 
t>o 9 ( 0  

f ?  min (1, 1 )  CO(t) @ < ~ .  

Properties of the functions in B K ~ B  o are recorded in the following proposition: 

Proposition 2.3. ([6].) U PC BK we have 

0 )  q,(t) ~ CO(t) - ~ ;  

(2) CO(st) ~= CO(s)CO(t), s, tCR + (CO is subnndtiplicative) ; 

::[ {+)1"- (3) min 1, CO(t) - '7 -<  

(4) cp(s) = 1~co(l/s), where ~o(s) = inf ~o(st), 
- - , > o  q~(t)' 

--5-e(s) (fo[ t ]P _~)l/p ~ [ s  tt___~ ) !  ]p _~)l/p, p '  :> 0," (5) 

(:: .,':" 
(6) ~0(s) 1 , ~"P ___< [CO(0]'--7-- J , p > 0," 

(7) i f  9 ( B  r then there is a function g~.Bo such that ~o and g are "equivalent" in 
the sense that there are two positive constants cz and co_ such that clg(t)<-q)(t)<= 
c2g(t), t>O. 

We shall now give some properties of the spaces .4~.q which we shall use below 
and which cannot be found in the literature. 

Proposition 2.4, Let qo~Bo, a~Ao+ A~ and l ~ q : - ~ .  Then 

{:: IIallAO+al ~ K(1, a) ~ [(p(s) -1 rain (1, s)] q Ilalt,, ~. 

Proof. Since min (l ,  t )  KU, a)<:K(s,a),  wehave 

[::[ ( ,-II' ..)" 
[[aHe,q>=K(t,a) ~o(s)-~min 1, t : l  s ) " 
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A change of variables and the definition of ~ imply 

t -x 

Property (4) given in Proposition 2.3 and a chan~/e of variables imply 

K(t, a) _ 1 -1 
[[a[[~,q =>--~0(t) { s  [qo {z-7) mm {1, --~sJl]]q-~-'-~ ,du  ]l/q 

_ K( t ,  a) [ f [  q~(t) [O(u)-Z min (1' u)I" ~ )  '/"' 

from where the result follows by taking t= l .  | 

ProI~sifion2.5. Let ~oEB o and l < = q ~ .  Then for each aE Ar and Jor all 
a>0, there exists a sequence {u , } cAoaA  1 such that a = ~ = _  u,, with con- 
vergence in Ao + Az and 

J(2", u,) N 3(1+e)K(2", a) nv.Z 

where J(2", u,)=max {l[u, llao, 2 n/u, Lla,}. 

Proof. Since ~p(t)<~max(t%, ta~) ([6]) and K(t,a)'--:Cqo(t)tal!~,q, we obtain 

interpolation theory (Chapter 3 of [1]) to obtain the result. I 

Proposition 2.6. Let ~oEBo and l<=q<=r Then Jor aCA~,q and an), decom- 
position of  a of  the form a =~,. u,,, u,E Ao c~ A1, with convergence in Ao-" A~, we have 

(1) ,lal,~,,<= c [ f [  ~(s)min (1, l l d s l r ~ ' ~  ( ^"~"'-~J'2" 
s s = s . . . .  I t , " . ) )q ' "" .  

<~o Then Jor aE Ao, ~ we have Let q~EB, and l _ q =  . 

(2) lalj~,,  >= [log (2)/3(2)1 [ ~ = _  = (~0 (2")-'K(2", a))"] x/". 

The proof is the same as in the case of qo(t)=t ~ 0 < 0 <  1, so that details are left to 
the reader. Observe that (1) and (2) of Proposition 2.6 can be used to obtain discrete 
characterizations of .4~,,~. 
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Main result and consequences 

In this section we shall deal with functions F: T X R  + ~ R  + such that F(O, t) = _ 
F0(t) is measurable on 0 for every t > 0  and Fo6B~ for every 0ET. Given q: T-+[1, ~ )  
measurable, the basic assumption on F is the following condition S: 

(2.1) f : ' log+[ f?[ .o ( t )  min[l, ll]q(~176 T J j  T )  dO < oo 

(2.2) f : ' l og{ f? [ .o ( t )m in ( l ,  +)] d-~:}dO<oo 

,, (fS . . . .  dt ]-l/q(o) (2.3) fs tog + _ _  [(F0(t))-' min (1, 1)] 4`"' --7--J dO < oo. 

Theorem 2.7. Let (Ao, A1) be a pair of compatible Banach spaces and F and q as 
above satisfying condition S. Set A(O)=(Ao, AOeo, q(o). Then {A(O)}oeT is an inter- 
polation family of Banach spaces and [A (0)L = (Ao, A1)F~,q(z ), with equivalent norms, 
where F~(t)=exp {fT[log P(O, t)lP~(O)dO} and (I/q(z))= f r (1/q(O))P~(O)dO. 

Note. As in Proposition 2.1, P~(0) denotes the Poisson kernel of D for evalua- 
tion at z. Observe that if F(O, t )=  t ~(~ where ~ is a measurable function from T 
to (0,1), F~(t)=t "(~) with ~(z) the harmonic extension of ~(0). 

Proof. We begin by showing that F~B0 for all zC.D so that it makes sense to 
write (Ao, AOF=,~(~). For FoEB~, we set Go(t)=(tFo(t))/Fo(t) so that a simple 
exercise in ordinary differential equations sho~s 

(2.4) F0(t) = exp [fl  (Go(s)/s)ds). 

Thus 

F~( 0 = exp {fx [f~ (Go(s)/s)ds) P~(O)dO} - exp  {f~ (Gz(s)/s)ds} 

where Gz(s)=_G(z, s) is the Poisson integral of G(.,  s). Hence Gz(t)=(tF~(t)/Fz(t)). 
The maximum principle and the continuity of F(O, .) show that supt>o (G,(t))< 
supt>0 supoE T Go(t)< 1 and similarly inft>o G=(t)>0. This shows that F:EB 0, as 
we wanted. 

Our next step is to prove that {A(O)}oET is an interpolationJamily. To see this, 
observe that A(O)c-~Ao+A1 and by Proposition 2.4. tla]J.4o+A<-k(O)[Ia[la(o), with 

k(O) = ( f :  [(Fo(s))-l min (l, s)]~(~ d-~-f } -1/'~~ 

so that by (2.3), log + k(O)ELI(T), which is all we needed to show. 
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We now come to the main part of  the proof. We first prove the inclusion 

(2.5) [A(0)lz c (A0, A1)~,q(=) 

and the corresponding norm inequality. 
Let aE[A(O)]~ and take e>0.  We can find f E ~ ( A )  with J(z)=a such that 

(2.6) I f l ~  -<- I[al[~(1 +~). 

By the subharmonicity of  log K(t,f(z)) (see Lemma 4.1 of [10]) and the definition 
of  F~(t), we obtain: 

I]a[lr=,q(~) = ( s  [Fz(t)-lK( t, f(z))] '(:) _~_)l/,(z) 

_< {f? [F~(t)-I exp (f~ log K(t, f(O))]e(O)ao}l '(~, d~) 1'~`~, 

= [~ [exp (fT log [F0( t ) - lg ( t ,  f (0))]  .ez(O)dO)] q`z, 5)l/q,z,. 

Using Proposition 2.2 and the inequality (2.6), we deduce 

la][v"q(~)<= exp (f r log [(J~0 [F~176 ~)t/q(O)] Pz(O) dO} 

= exp (fT tlog If(O)ll~o,q(o)]P~(O) dO) ~ Ilfl[~ -<- Ilal,(1 +~). 

The inclusion (2.5) now follows with norm less than or equal to 1 upon letting e ~0.  
In order to prove the inclusion 

(2.7) [Z (0)]~ D (A0, Aa)r,,q(~) 

and the corresponding norm inequality, we need the following lemma: 

Lemma 2.8. Under condition S, A 0 n A 1 c  d ,  where ~ denotes the log-inter- 
section space of the family { A ( O ) } o E  T . 

Proof. Since K(t, a )~min  (1, t)lalaonA,, we deduce 

.,o, (so Ilall=o,q(o) <-- Ilallaona~ [Fo(t)-lt] q(O) -[- [Fe(t)-z] ~(e) �9 
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Using (5) and (6) of Proposition 2.3 with s =  1 xxe obtain 

,,a,.o... (::[ :+s: "' 

=,a qC~ [f:lFo(t)min(1,1]] q(~ i AortA t t II t )" 

The desired result now follows from condition (2.1). I 

To prove (2.7) let a~(A0, A1)F=,q(z ) and e>0. By Proposition2.5 there is a 
representation of a of the form a = ~ ' ,  u, (convergence in Ao+AO with u, EAo n Ax 
such that 

(2.8) J(2", u,,) <- 3(1+e)K(2", a), n~N. 

Fix t > 0  and let (7(~, t), {ED, be the harmonic conjugate of G(.,  t) normalized by 
G(z, t )=0 .  Similarly let (l/q({))- be the harmonic conjugate of  l/q({) such that 
(1/q(z)) ~ =0. Set W({, t )=G(~,  t)+iG({, t), ~ED, and (1/s({))=(1/q({))+ 

tH'  (~, t) 
i(1/q(~)) ~ , ~ED. Let H(~, t) be so that W(~, t ) = - - ,  that is, H(~, t)= 

~(~,t) 

exp d s .  Define 
S 

H({, 2") J(2", u.) 1-1+(q(--)/.(r 
A , ( ~ ) -  g(2") [ ~ J , ,,EZ. 

We are going to show that A,, is bounded for every n. In fact, 

f2" G(~, s) ds) <= 2", IH(r exp 1 s 

since G(~, s)-<l, and 

t ~ = t g ( 2 . )  

6(2") 
max j(2", u.) O, t 6(2") " 

These two estimates give the desired result. 
N Set now gN(~)=z~s ~ED, where f , (~ )=u , .  A,(~)EAonA: so that 

by Lemma 2.8 and the boundedness of A, we have gNEN+(A) for all positive 

integers N. Write C ( O ) = C f o  Fo(s) min l, - -  with C as in the first part of  
S 
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Proposition 2.6. Using this proposition and the definition of  A,, we obtain 

[tgN(O)llFo,q(o) ~ C(O)(Zx=_ ~, [Fo(2")-~ S(2'*, f,(O))]q(~ I/q(~ 

= C ( 0 ) ( ~ = - N  [F~ (2")-1J(2 ", u,)]q(')) a;q(~ 

Using (2.8) we obtain 

II gN (0) tl co,,(0) <- 3 (1 + e) C (0) (~ '~:  _ N [F. (2")-~K(2", a)]"(:)) ~/q(~ 

Proposition 2.1 now implies 

( Z , :  _ ~,- [~  (2")-~ X(2", a)J"(:>)l/'(~), Ilgs(z)ll= ~ 3(1 +~) exp [ f r  [log C(O)]P.(O) dO} u 

where C(z)=exp  ( f r  [log C(O)]~(O)dO) is finite due to (2.2) of condition S, the 
only property we had not used so far. 

Notice that lira gN(Z) coincides formally with ~'~=_= u,,=a (convergence in 

Ao+Ax) so that a density argument will give llall:~k(l+e)C(z)llalle:,q(z), after 
using the second part of Proposition 2.6. The details of this density argument are 
similar to the ones ~iven on page 89 of [10] and, therefore, omitted. The inclusion 
(2.7) follows upon letting e~0,  and hence Theorem 2.7 is proved. I 

Corollary 2.9. Let q: T ~ [ 1 , ~ )  and w: T / R + ~ R  -~ be measurable functions 
on T such that ~oo(t)=t(1-(1/q(~ belongs to Bo for every O6T and sati,fy 
condition S given before Theorem 2.7. Then {Aq(~ "))}0eT is an interpolation 
family of Banach spaces and [ a q(~ (w(0, .))]. = A q(:) (w(z, .)), with equivalent norms, 
where 

1 1 
= e:(o) dO and w(z, s) = exp f iT  llog W(0, S)] P~(0) dO}. 

Proof Use (1.2), that is, (L ~, L=)oo,q(o)= Aq(~ .)), and Theorem 2.7. | 

We now show that (1.3) can be deduced from Theorem 2.7. To prove this we 
need to observe that for any pair B 0 and B 1 of Banach spaces, if 

then 

(2.9) 

(see [5]). Take 

q(~) _- {qo 
ql 

B0 if 0_-<~<(1-0)2~z  

B ( r  B1 if (1 -0 )2~z=<~<2r r  

[Bo, B1]o = [B(~)] o 

if 0 < = ~ < ( 1 - 0 ) 2 ~ r  [qgo(s ) if 0 ~ { < ( 1 - 0 ) 2 r t  
Fe(s) "t 

if ( 1 - 0 ) 2 2 - - - ~ < 2 ~ z ,  - [~ol(s ) if ( 1 - 0 ) 2 ~ = < ~ < 2 r c  
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and observe that FO(S)----[~O0(S)]I--O[~OI(S)]O=(O(S ) 

Hence, using (2.9) and theorem (2.7) we obtain 

and 
1 1 - 0  0 1 

q(O) qo ql q 

[(Ao, A1)r (A0, A1)r : [(A0, A1)F~,q(~)]o = (A0, al)Fo,q[o ) : (ao ,  A1)~,q. 

A similar argument shows that (1.4) can be deduced from Corollary 2.9. In 
fact, with q(r as above and 

IWo(S) if  0 < = ~ < ( l - 0 ) 2 r c  

w(~, s) = [wa(s) if (1-0)2re <- ~ < 2re 

1 1 - 0  0 1 
we have ~ =  + - - =  and w(O,s)=wo(s)t-~176 Hence, using 

q(0) q0 ql q 
(2.9) and Corollary 2.9 we obtain: 

[A~~ Aql(wl)]o = [Aq(e)(w(~,. ))]o = Aq(~ ")) = AS(w) - 

3. Weighted inequalities for the Hardy operator and interpolation 

In this section we shall identify the intermediate spaces of  the family 
{A~(~ O, .))}e~w using weighted inequalities for the Hardy operator and its dual. 
We first summarize a method of  interpolation for families of  Banach lattices which 
was introduced in [9] and prove some results needed in the sequel. 

The Calder6n product for families of Banach lattices 

A subclass X of  a class of  measurable functions on a a-finite measure space 
(M, dx) is called a Banach lattice if  there exists a norm II IIx on Xsuch that (X, 11 Hx) 
is a Banach space and if  fCX and g is a measurable function such that Ig(x)]-<-If(x)l 

almost everywhere on M, then gCX and Ilgllx-~l]fllx. 
Let {X(O)}o~ T be a family of Banach lattices on (M, dx). For z~D we define 

IX(0)] z to be the class of  measurable functions f o n  M for which there exists 2 > 0  
and a measurable function F: T •  M-~ R with ]l F(0, .)l[ x(o) <-- 1 almost everywhere 
such that 

]f(x)] <= 2 exp {fx  [log IF(0, x)[] P. (0) dO}. 

We let I[/11 z -  11 flItx(0)l= be the infimum of  the values of  2 for which such an inequal- 
ity holds. Several properties of  the spaces [X(0)] ~ can be found in [9]. 
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The Banach lattices we are interested in here are the following: for qE[1, ~o] 
and w=>0 on (0, co), Xq(w) will denote the class o f f u n c t i o n s f o n  (0, oo) such that 

(3.1) ]]fl]xqo~ = { f  o [w(s)lf(s)l]~ ds} z/~ < ~" 

Proposition 3.1. Let q: T~[1,  oo) and w: T X R + ~ R  + be measurable func- 
tions. I f  w(z, s)--exp { fT  [log w(O, s)]P~(O)dO} we have [X~o~Ov(O, .))]~= 
X~C~(w(z, .)), with equal norms, where (1/q(z))= f x (1/q(O))P~(O)dO. 

Proos c .  Given f~[Xq~o~(w(O,.))]~ an ~>0,  the definition of  []~ allows 
us to choose F(O, .)~Xq~o~(w(O, .)) with IIF(0,.)llx~co~r162 ~<=1 and 

If(s)l <-- (1 +~)llfll ~ exp { J r  [log IF(O, s)l]e~(o) dO}. 

We use this inequality together with the fundamental inequality of  [9] (Proposi- 
tion 3.1) to obtain 

]]f[lxq,,,o~(~,.,, ~- (1 +e)lift]-" [ s  w(z,s)q(~'exp{q(z)L[loglF(O,s)l]P~(O)dO}ds]Z/q(:' 

~_ (1 +~)llfll ~ exp {fT [log 11F(O,. )llxo,o~(~(0, m]P~(0) dO} <-- (1 +~)Ilflt". 

The desired inclusion follows upon letting e approach 0. 
~ .  Take fEXq~(w(z, .)) and write 

If(s)I = ]]fllx,,,,r162 .~ {[(ff(s)l)/w(z, s)] [(w(z, s))/llfilx,,,_,r 

The term inside the brackets coincides with 

exp { f r  [log (.w(z, s)w(O, s)-Xlf(s)l )]  e~(O)dO} 
and the norm, in the space .l'q(0~(w(0, .)), of  the term inside the parentheses in this 
last expression is 1. By definition of  [ y  we have fC[Xq(o~(w(O, .))]~ and the in- 
clusion norm is less than or equal to 1. This finishes the proof of  Proposition 3.1. II 

Let (M, dx) be a measure space and define f**( t )=(I / t )supf~]f(x) ldx ,  
where O<t<oo, f~L~oc(M) and the supremum is taken over all measurable sets E 
in M such that [El<=t. If  X is a Banach lattice on (0, ~ )  we denote by X* the 
class of  measurable functions f on M such that f**CY and write II fllx *= II f**Hx. 
We shall prove that under some conditions on M and on w, Aq(w) is a particular 
case of  an X* space. 

Proposition 3.2. Let (M, dx) be a non-atomic measure space, 1 <=q<_oo and 
wEW~(S). Then Aq(w)=(Xq(w)) *, with equivalent norms. 
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Proof. The proof is based on the equality 

1 t 
(3.2) f**(t) = ~ f ' 0  f*(s) ds = S(f*)(t) 

which holds for non-atomic measure spaces and can be found in [15]. Let fE(Xq(w))*. 
Since f *  is non-increasing, (3.2) implies f**(t)~=f*(t) and hence 

< {So t ) = tlfll(,<.(~,,, Ilfll~.(w) = w(s)f**(s)] qds '/q 

so that we have proved one inclusion. To prove the other one take f~ Aq(w) and use 
0.2) to write 

Ilfll(x~(w))* = {fo [w(s)S(f*)(s)]. ds) llq. 

Since wE I~(S) we deduce 

Ilfll(x.(>.))* <= Cq (w) (fo [w (s)f* (s)] q ds) llq ---- Cq (w)IIflIA.(~) 

so that Proposition 3.2 is proved. 1 

M a i n  result  and consequences  

Theorem 3.3. Let q: T-+[ l ,~ )  and iv: TXR+-+R + bemeasurablefunctions, l f  

(*) f~  [log + (./'ol [w(0, s)l-, ''~ as) l'q''~ ] dO < ~o, 

the family {A "@) (w (0,.))}0 ~ r is an interpolation Jamily of Uanach spaces. Moreover" 
i f  w(O,.)~ Wq<o)(S) ~Wq(o)(S*) and 

(**) f~ [IogC(S; q(O), w(O,.))] dO < ~, f~ [logC(S*; q(O), w(O,.))] dO < ~  

we have [Aq(~ .))]z: Aq(Z)(w(z, .)), with equivalent norms, where 

q ~ ) -  P=(O)dO and w(z,s)=exp{fT[log(w(O,s))]P~(O)dO }. 

Proof. We start by proving that {Aq@)(w(O, .))}0eT is an interpolation family 
of  Banach spaces. We take L~+L ~ as the containing space and for generic q and 
w we shall prove Aq(w)cLl+L% finding an upper bound for the inclusion norm. 
For fEAq(w), let 

{f(0 x) if , f ( x ) l> f* ( l ) [  
g (x) = otherwise J 
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and h ( x ) = f ( x ) - g ( x ) .  Then, (see [16]), 

g*(s) < ; h*(s) ~ ,, . 
= if s > l  / J  (s) if s >  

Thus g~L 1 since 

f?  lg(~)l as ~= f2 f* (s) ds <= {f2 [w(s)f* (s)]~ ds)l'~ {f2 tw(s)]-"' as) '/~' 

<= {flo "~ 

Also hEL ~ since 

f l f*(s)ds <= IlfllAq(.,, ( f2 [w(s)]-~' as)'< lh(s)l <=f*(1) ~ 0 

It follows from here that (*)is the right condition for {Aq(~ .))}0~r to be an 
interpolation family of  Banach spaces. 

We now prove the equality of  the spaces. By Proposition 3.2 we have 
Aq(~ .))=(X~(o)(w(O, .)))* and by theorem (9.2) of  [9] we obtain 

[A~(~ .))]~ = ([X,(o,(w(O,-))]9" 

(observe that (**) is the hypothesis we need to apply this theorem). It follows from 
here and Proposition 3.1 that [A~ .))]'=(Xq(z)(W(Z, .)))*. Using Proposi- 
tion 2.2 we deduce w(z, .)~Wq(~)(S) and hence Proposition 3.2 shows 

(3.3) [A "(~ (w (0, . ) ) ] "  = A q(') (w (z,-)).  

Since q ( 0 ) < ~ ,  we also have q ( z ) < ~  and, by (3.3), [Aq(~ .))]z has the 
dominated convergence property needed to apply Theorem 6.1 of [9]. Upon applying 
this theorem and using (3.3) we obtain [Aq(~ .))]==A'(')(w(z, .)), which is 
the desired result, i 

Notice that (1.11) follows from Theorem 3.3 by an argument similar to the 
one given at the end of  Section 2. 

Corollary 3.4. (Proposition9.4 of[9].) Let p: T~[1,o~) and q: T~[1,  o~) be 
two measurable functions on T such that 

(3.4) frtlogp(O)]ao <~o ~na f~ log p(0) - - I  

Then {L p(~ q(0)} is an interpolation family oJ Banach spaces and [L p(~176 L = L p(')'q('), 
with equivalent norms, where 

l = f x  q-~P.(O)dO and ~ l  f r  
q(z) ~ p(z) " 
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Proof. We apply Theorem 3.3 with w(O, s)=s ~176176 Since 

flo [w(O, s)]-q'(~ ,is -- p'(O)/q'(O), 

(*) follows from (3.4). We now find the constants C(S;q(O), w(O, .)) and 
C(S*;  q(O), w(O, .)) for this particular choice of  w. We start by finding the value 
of  K in (1.8) : 

~,2Vo (f? S -q(O) s(q(O,/p(O,)-I ds)X/q(~ (f~ s-'q"o)/p(o))+'cl"(o)/q(o" ds)a/r176 

= p'(O)[1/q(O)]~/q(o)[I/q'(O)] ~'r 

There is an inequality between C of (1.7) an d K of ( I. 8), namely K ~  C <= K(q) TM (q')~/q' 
(see [14], Theorem 1). Using this, we obtain C (S; q (0), w (0,.)) ~p'(O) =p (O)/(p ( 0 ) -  1) 
and hence the first part of  (**) follows from (3.4). Similarly, 

sup (f~ s(#),,(o,-, ds) l/q`O) Qj~r s-r s-(r162 ds)'/r176 

= p (0) [ 1/q (0)]1/'(~ 1/q' (0)] '/r176 

and hence C(S*;  q(O), w(O, .))<=p(O). The second part of  (**) now follows from 
(3.4) and therefore Theorem 3.3 can be applied to prove the corollary. II 

4. Final result 

We shall prove that Theorem 3.3 is more general than Corollary 2.9. This is 
contained in the following result: 

Theorem 4.1. I f  l = < q < ~  and ~oEB~ then w(s)=s(1-(alq))/cp(s)CWq(S)nW~(S*). 

Proof. We shall prove that if cpCBt( then wCW~(S)c~Wq(S*), and since Bq, cBK 
Theorem 4.1 will follow (this is not a great improvement since B,  and BK are equiv- 
alent classes of  functions in the sense of  (7), Proposition 2.3). We have 

I = sup (./7, , - ' [w(s)l"ds)"(f~ [w(s)]-r as) ~/r 
r=~-O 

= , > o  [~ (~)]''-7-j sup t~o(s) J s ) L o 

(i: [ ,  r ,,.I" = sup b75Y t ~0(r) j . ) ~ ( ' )  
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From (6) of  Proposition 2.3 we obtain 

(f:[~(S)]rl--~'l/q(f: ~11]'" I ~ j [~(s)],' , 

which is finite by O) of  Proposition 2.3. Similarly, but using (5) instead of  (6) of  
Proposition 2.3 we obtain 

sup (f2 [w (s)l, d~)~" ( ~  s-.'[w(s)l." ds}" 

{f: [-'~5-1-~) ( s  ] lq'ds'~l/q'/ , , 1,, r  s)l 

= sup L-7- ,  - 7 ,  

(f: (f: , - ,1: ,  [ s lq ds)  TM [ tp(rs) l aSl tp(r) 
= sup,>o t'~-J-)-J - 7 - )  ts~o(,) J s ) r 

<_ ~ [ r -Tdsf/'~[C~162162 ' 

which is finite by (3) of  Proposition 2.3. I 

The converse of  Theorem 4.1 is not true in the sense that there exists wE t ~ ( S ) n  
Wq(S*), l < q < . o ,  such that for all (pEBo, w is not equivalent to t~/q'/q~(t) (see 
(7), Proposition 2.3). This function w is defined by 

t ag 
w ( t ) =  I I - t ) "  

( t - l )  ~ 
1 

i f  0 < t-< 1/2 
if 1 / 2 <  t_~ 1 
if l < t ~ _ 2  
if t > 2  

where 0<0~<l/q ' .  Observe that w(1)=0  while 9(1)=-1. The conditions on 
is what is required to show that wE Wq(S)nWq(S*), 1 < q < ~ , .  

In view of  the above result we conjecture that a theory of  real interpolation 
with a function parameter wEW,~(S)nWq(S*) for all qE[1, ,,~) could be developed. 
This theory would be more general than the existing ones. 
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