Spaces of Lorentz type and complex interpolation

Eugenio Herndndez* and Javier Soria

1. Introduction

Lately there has been a great deal of interest in spaces of Lorentz type, which
some authors have started to call spaces of Lorentz—Marcinkiewicz. These spaces
are defined in the following way: given a non-negative function w on (0, <), the
space A?(w), O<=g=co, consists of those functions defined on a o-finite measure
space M, fixed from now on, for which

(1.1) 1 gaewy = ([ D) f*()10dls)

is finite; here f*(s) denotes the non-increasing rearrangement of f. Notice that
this definition is a little different from the one used by other authors, since we use
the measure ds instead of ds/s; we have done this for the sake of aesthetic beauty
in our final results.

When w=1, A%(w) coincides with the Lebesgue space LY. When w(s)=s"/? - /9,
I1=p=<o, we find that A%(w) is the familiar Lorentz space L. With other weight
functions, such as, for example, w(s)=sY?~AD(1+[log (5))*, a€R, A%w) be-
comes a space of “Orlicz” type, which is sometimes a good substitute for end point
results for the boundedness of operators.

The spaces defined by (1.1) have been extensively studied recently because of
their connection to the method of real interpolation with a function parameter. In
this method a pair (4,, 4,) of compatible quasi-Banach spaces are given together
with a function ¢¢ B, and intermediate spaces, denoted by (A4,, 4,), 4, 0=<g=<, are
defined. (For the precise definitions see Section 2.) This theory has been developed
in [6], [11], [12] and [13], and in particular if ¢(r)=1° one obtains the classical real
method of interpolation developed by J. L. Lions and J. Peetre (see [1], Chapter 3).

* The first author was supported by a Fulbright/ MEC fellowship and his research was done
during a delightful stay at the Mathematical Sciences Research Institute in Berkeley.
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The usual properties of the intermediate spaces are proved in this context. For now
we shall only mention the result

(1.2) LY L)y, = A% (W), 1=g = o,

where w(s)=s""/p(s), which can be found in [6], Lemma 3.1. Using the re-
iteration theorem and (1.2), it is easy to identify the intermediate spaces of the
spaces A%(w) when g=1. (See [12] for details.)

When we consider interpolation by the complex method of A. P. Calderén [2],
this question has not been treated. This is the problem we are going to address in
this paper.

There are two ways to attack this problem. The first one is to find a relation
between the real interpolation method with a function parameter and the complex
interpolation method of A. P. Calderon. (See [1], page 102, for a relation of this type
when we consider the classical real interpolation method.) This relation is as fol-
lows: given a pair of compatible Banach spaces A4,, 4; and a pair of functions ¢,
¢ in B, we prove the equality

(13) [(AO’ Al)(oo,qo, (Aoa Al)(pl,ql]ﬂ = (AOS Al)(p,q

. . 1 1-6 @
with equivalent norms, where @ (s)=[@y(s)]'" [0 ()], —= +—q— and [, ],
9o 1
denotes the intermediate space at level 6 in the complex method of interpolation.

Using (1.3) and (1.2) we obtain, for g,=1, ¢, =1,

(1.4) [A%(wy), A% (w)]g = AT(w)

1-6 6 .
+— and wy, wy satisfy s 4D ()€B,,
9o U

where w(s)=[wo(s)I*~[w ()], éz
j=0, 1. In fact
[A% (wo), A% (w))ly = [(LY, L™) gy, gp5 (L' L7)gy )0 = (L2 L), = AT(W).

The other approach is based on an idea of Calderdn [3]: to interpolate Lorentz
spaces by the complex method of interpolation one can use a pair of inequalities
due to Hardy, namely

(1.5) {7 ([, f@dsyer—rars = L [sispns—r—2dsp
and
(1.6) {7 rds) r-ran = %{ [7 oA (1es 2 ds)

for g=1, r=>0 and f=0 (see [7], Chapter IX). If we define the operator Sf(r)=

1
n f ; f(8)ds, inequality (1.5) can be restated as saying that S is bounded on



Spaces of Lorentz type and complex interpolation 205

LUs~ -0+ g=1, r=>0; here £?(w(s)) denotes the space of all f defined on
(0, <o) such that || fw| ;<<= for a non-negative function w on (0, =). Similarly (1.6)

says that the dual of S, S*f(t):fj 2AQ) ds is bounded on Z(s"/V-VD) g=1,
s

r=0. Hence (1.5) and (1.6) are weighted inequalities for the operators S and S*
respectively. All pairs of weights (v, v) for which S is bounded from Z%(u) to
L(v), 1=g=c-, have been characterized by B. Muckenhoupt in [14]. The result
is that

(1.7) {7 (s @)y dsf = {7 (/@ u@)dsf

if and only if

(1.8) sup (f r°° s fo(s)1eds) " ([ [w()] 7 ds)"" = K < o.
Similarly there is a result for $*:

(1.9) {f; (s /@@)ydsf = c{f, (/@lus)ds}™

if and only if

(1.10) sup ([ iords)( f r°° s~V [u(s)) 7 ds)"" = K < <.

If u=v=w and (1.7), or equivalently (1.8), holds, we write weW;(S) and
similarly we€W,(S*) when (1.9), or equivalently (1.10), holds. We will denote by
C(S;q,w) the infimum of the constants C that appear on (1.7), and we shall use
C(S*;q,w) for the smallest constant that could be used in (1.9) (here u=v=w).

Using non-negative functions weW,(SYNW,(S*), we can identify the inter-
mediate spaces of A%(w) in the complex method of interpolation. The result is

(1.11) (A% (wo), AT (w)]p = A%(w) T = qo, g1 = =

1 1-6 6
where  w(s)=[wo()]*"[wy()])® and —= +— when w;EW, (S)N, (S7),
q 90 91 ’ ’
j=0,1. Details can be found in Section 3. The idea of using generalized Hardy

inequalities in connection with interpolation has appeared also in [8] and [16].
There is a discrepancy between the parameters used in (1.4) and (1.11). The
result in (1.11) is more general than that of (1.4), since we will prove in Section 4
that if @€B,, w(s)=s""DVp ()W (S)NW,(S™). 1=g<e. Of course the im-
portant result in Section 2 is (1.3) and not (1.4).
All of the above mentioned results are proved in the context of the “St. Louis
intermediate spaces”, that is, the complex method of interpolation for families of
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Banach spaces developed in (4]. A summary of this method is given in Section 2.
The Calderén method of interpolation is a particular case of this more general
method.

We call the reader’s attention to the fact that some of the methods used here
are valid only for Banach spaces, so that we only treat the interpolation of the spaces
in the case 1=g=c. The case 0<g=1 requires other techniques which will be
the object of a forthcoming paper.

2. A reiteration theorem

A relation between the real interpolation theory with a function parameter
and the complex method of interpolation for families of Banach spaces is proved in
this section (see Theorem 2.6). For the reader’s convenience we start by reviewing
the methods of interpolation used below.

The complex method of interpolation

We describe the complex method of interpolation for families of Banach spaces
as given in [4). Let T={z€C: |z]=1}; to simplify notation we shall write 6¢T
instead of €cT. Let {B(0)},cr be a family of Banach spaces. We say that this
family is an interpolation family of Banach spaces (or interpolation family, for
short) if

1) each B(#) is continuously embedded in a Banach space (U, ]| |lp),
ii) the function 6-[b] g, is measurable for each b€y B(6),
and if

B = {bEOQT B©): [ j 10g* Bl 5oy 40 < ==}

we have
i) |blly=k(0))1b] 5@, for all beB, with log*t k(6)< L*(T).

The space 4 is called the log-intersection space of the given family and U is called the
containing space.

We let N+(#) be the space of all #-valued analytic functions of the form
8()=27_, x;b; for which |g|.=sup,|lg(6)|pe=o=. where 7,6N* and b;c4,
J=1,2,...,m. (N* denotes the positive Nevalinna class for D={z€C: |z|=1}.)
The completion of the space N*(£) with respect to || | is denoted by F (£).
For z€D, the space [B(0)], will consist of all elements of the form f{(z) for fe€.F (#).
A Banach space norm is defined on [B(8)], by |v].=inf{|| fl=: fEF (B), f(2)=1},
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v¢[B(0)],, z€D. It can be proved that ([B(6)],, i |I;) is a Banach space and # is
dense in each [B(#)],. Other properties of these spaces, such as the interpolation
property and reiteration can be found in [4] and [5]. The only one we shall need in
this paper is the following subharmonicity property, which is contained in prop-
osition (2.4) of [4]:

Proposition 2.1. For each fc % (#) and each z¢D,
12N, = exp [ _[log | f(O)l5(0)] P-(0)d

1 14ze ¥y | _ ) )
where P.(8)=Re (— ~———) is the Poisson Kernel of D for evaluation at z.
27 1—-ze %
Another type of subharmonicity property which will be used in the sequel
is the “fundamental inequality” of [9] (Proposition 3.1) which we state below.
Suppose that the function p: D-{1, ] is such that 1/p(z) is harmonic on D.

A measurable function F: TXM —R is called p-admissible if
fT HF(G, N )HLP(O)_PZ(G)dG = o0

for some z€D (and hence for all z).

Proposition 2.2. For a p-admissible function F we have
logljup(z, o = [ (l0g|E D, -)jreor) B(0)d0

where ug(z, x)=exp [ [ (log |F(0, x)|)H.(6)d0], z€D, and H.(0) is the analytic
Sfunction whose real part is P,(0) and H_.(0)=P,(0).

The real method of interpolation with a function parameter

The class B, consists of all continuously differentiable functions ¢: R* -R*

such that O<o,=inf ad (t)ésu '’ (1)

>0 () >0 @)

of generality, that ¢(1)=1. We notice that if 0=0<1, °¢B, and «,=f,=0.

Given a pair of compatible Banach spaces (4,. 4,). ¢€B, and g¢fl, =], we
define the space (Ay, 4;),, =4, , as the set of all a€A,+ 4, such that

=p,<!. We may assume, without loss

laloa = ([} o) K0, 1 e

where K(a, t) is the K-functional used in the classical real method of interpola-
tion (see [1]). Notice that when ¢(£)=1% 0<0<1, (4, 4), ,=(Ao, A1y, Several
properties of these intermediate spaces can be found in [6], [11], [12] and [13].
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In what follows we shall need several properties of the class B,,. It turns out that
B, is contained in a class of functions By introduced by T. F. Kalugina in [11] (see [6]).
The class B consists of all continuous and non-decreasing functions ¢: RT -R*

1
such that @(s)=sup oGt
t>0 qD(

<o for every s, and

N min(l, i) s .

0 t t

Properties of the functions in By > B, are recorded in the following proposition:
Proposition 2.3. ([6].) If p€ By we have

(D) @) = (1) <=,

2) @(st) = @()P(t), s, t€R™ (@ is subnudtiplicative);

3) f: [min(l, %) @(t)]p i‘;’_ <o forall p=0;

@) o) =1/3(l/s), where ¢(s)= inf iﬂp((i;)

o = lsel ) = (T -

© oo [ = (LworL)”. »=o

(7) if @By then there is a function g€R, such that ¢ and g are “‘equivalent” in
the sense that there are two positive constants ¢, and ¢, such that c;g(t)=¢(t)=
(294 (t), t=0.

We shall now give some properties of the spaces A, , which we shall use below
and which cannot be found in the literature.
Proposition 2.4. Let ¢€B,, ac Ay+ A4, and 1=q=-. Then
o . ds Y4
lalas i = K0, @ = ({7 100 min(1, 97 %) " al.,.

s
Proof. Since min (), —;—) K(1, a) = K(s,a), we have

ol = K7 o617 min 1, 2] 2]
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A change of variables and the definition of ¢ imply

ezl o) el 2]

- 260 ) 2"

Property (4) given in Proposition 2.3 and a change of variables imply

lall,,, = %t(})i) [f: [qﬁ (%]—1 - [1’ _L]l_] datu_]l/q

_ K(t,0)
0]

from where the result follows by taking r=1. ||

[f: [@ ()" min (1, u)]4 %)w )

Proposition 2.5. Let ¢¢B, and 1=qg=c. Then for each acA
e>0, there exists a sequence {u,}C Ayn A, such that a=2.
vergence in Ay+ A, and

0.q and for all
u,, with con-

n=—oo

J(2%u,)=3(14+e)K(?2" a) ncl
where J(2", u,)=max {|lu,] , , 2" lleaall 4 }-
Proof. Since ¢(t)=max (%, <) ([6]) and K(t, a)=Co(t)}al, ,, We obtain
min (1, -—i—] K(t,a)~0 as t—-0 or «=. We can then apply the fitndamental lemma of
interpolation theory (Chapter 3 of [1]) to obtain the result. |

Proposition 2.6. Ler ¢¢B, and 1=q=cc. Then for acA, , and any decom-
position of a of the form a=2 u,, u,€ Ayn A, with convergence in A,-+ Ay, we have

(1) lalg, ,=C {f: @ (s) min (1, Sl] %i] [Z:":_w (p(2)~1J (2", )Y

Let @p€B, and 1=q=co. Then for acA,, we have

o)) lalls,,, = Hog /eI 2 _ . (@207 KQ", a))]"e.

The proof is the same as in the case of ¢(r)=1% 0<0<1. so that details are left to
the reader. Observe that (1) and (2) of Proposition 2.6 can be used to obtain discrete
characterizations of 4, ,.
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Main result and consequences

In this section we shall deal with functions F: TXR*—~R* such that F(0, )=
Fy(?) is measurable on 6 for every t>0 and Fy€ B, for every 0€T. Given g: T—[1, o)
measurable, the basic assumption on F is the following condition S:

2.1 f log* [f [Fe(l) min 1 — m) dt ]I/q(e)d0<oo
2.2) fj" log [ N [F,,(t) mm ]d0<oo
2.3 f fog* [f [(Fo(9) " min (1, n]*® ) /q(}

Theorem 2.7. Let (Ay, A;) be a pair of compatible Banach spaces and F and q as
above satisfying condition S. Set A(0)=(Ao, A, q9)- Then {AOVocy is an inter-
polation family of Banach spaces and [A(G)]zk(A(,, ADF, 4z with equivalent norms,
where F,(t)=exp {[r[log F(6, 1)]P.(6)d6} and (1/q(z)) [+ (1/9(9) P.(6)db.

Note. As in Proposition 2.1, P,(6) denotes the Poisson kernel of D for evalua-
tion at z. Observe that if F(8, 1)=r*®, where « is a measurable function from T
to (0,1), E,(¢)=#® with a(z) the harmonic extension of x(0).

Proof. We begin by showing that F.¢B, for all zeD so that it makes sense to

write (4y, A1)g_ o). For F€B, we set Gy(t)=(tF4(1))/Fo(t) so that a simple
exercise in ordinary differential equations shows

2.4) Fy(f) = exp [ f : (Go(s)/s) a’s] .
Thus
E.(1) = exp {fT (flr (Go(s)/s) ds) P(©) df)} = exp {.[1[ (G.(s)/s) ds}

where G,(s)=G(z, s) is the Poisson integral of G(.,s). Hence G,(t)=(tF,(t)/F.(1)).
The maximum principle and the continuity of F(0,.) show that sup,s,(G,(¢))<
SUD; 5o SUPgt Go(f)<1 and similarly inf,.q G.(t)>0. This shows that F.€B,, as
we wanted.

Our next step is to prove that {4(0)}scy is an interpolation family. To see this,
observe that A4(6)<~A4,+4; and by Proposition 2.4, Nall 4yt a, =k(0)llall 49y, With

—1/4(8)

k(9) = (f [(Fo(5))~* min (1, 5)]*® ] ;

so that by (2.3), log* k(6)c L (T'), which is all we needed to show.



Spaces of Lorentz type and complex interpolation 211

We now come to the main part of the proof. We first prove the inclusion

(2.5) [A(B)]. < (4o, 4D, q0)

and the corresponding norm inequality.
Let a€[A4(6)], and take &=0. We can find f¢ZF (4) with f(z)=a such that

(2.6) 1/l = llall.(1+8).

By the subharmonicity of log K(#, f(z)) (see Lemma 4.1 of [10]) and the definition
of F,(t), we obtain:

lalls, oz = ( f: [E.()~ K (1, f(2)]< ft‘t‘ )1/‘1(2)

= (f: [Fz(T)—l exXp [fT [IOg K(t, f(o))]Pz(()) do]]q(z) —dt—t-)llq(Z)

B (f: [exp (f, log [Fo( K (1, /(6))] B.(6) @6)|*” ‘i—t ]vm{

Using Proposition 2.2 and the inequality (2.6), we deduce

lalir,, e = exp [fr log [(f: [F,,(t)—lK(t, f(O))]q(o) %]1/4(0)] 2O dB]

=exp (110810l 5,40 B(6)d6) = | f]l = la].(1+e).

The inclusion (2.5) now follows with norm less than or equal to 1 upon letting £--0.
In order to prove the inclusion

(2'7) [A (6)]2 - (AOs Al)F,,q(z)
and the corresponding norm inequality, we need the following lemma:

Lemma 2.8. Under condition S, Ayn A,C of, where o denotes the log-inter-
section space of the family {A()}ycr.

Proof. Since K(t,a)=min (1, ¢)|a]] 4,045 WE deduce

1 dt o0 dt
a0 = halihe, (] a0 10 L [ 1Ry 160 a.

4]
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Using (5) and (6) of Proposition 2.3 with s=1 we obtain

; w [ F,(1) J2@ dt 1o dt
(8)
et = i (/7 [L2]™ Lt 2 R0 £

= a5 4, [ IR [Fa(t) min (1, %)]qw) —dti] .

The desired result now follows from condition (2.1). |}

To prove (2.7) let ac(4,, A)f, 4 and e=>0. By Proposition 2.5 there is a
representation of a of the form a=__, u, (convergence in A,+A4,) with #,€A4,n A4,
such that

(2.8) J2" u,) =3(1+¢)K(2" a), neN.

Fix =0 andlet G(¢, t), £€D, be the harmonic conjugate of G(., t) normalized by
G(z, t)=0. Similarly let (1/g(£))” be the harmonic conjugate of 1/g(¢) such that
(1/9(2))" =0. Set W( 1)=G( )+iG(, 1), ¢€D, and (1/s(2)=(1/g($)+

i(1/g(&))" . &eD. Let H(&, 1) be so that W(¢, t):w, that is, H(&, t)=

H(E, 1
exp [ f : W(f,s) ds]. Define

n n —1+(g(2)/s(¢))
A = HE2) [ 10w

@) | Eo i

We are going to show that A, is bounded for every n. In fact,

(e, 2y = exp [ EED ) = v

1
since G(¢, s)=1, and

l J(2", u”) —1+(q(2)/5(§))' _ [](2", u,) —1+(q(2)/9(8))

) TE@2)

= 7oy ] )

These two estimates give the desired result.
Set now gy()=2" _ (), €D, where f,(&)=u,. 4,()€4ynA4; so that
by Lemma 2.8 and the boundedness of A4, we have gy€N 7(4) for all positive

. . o . Iyds .
integers N. Write C(l9)=Cf0 F,(s) min (1, _)T with C as in the first part of
s)
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Proposition 2.6. Using this proposition and the definition of A4,, we obtain

lenOlieg a0 = CO(ST__, [ 172", £,(6))]4@)®

4(®)Y1/a(6)
J(2, u,,)] J

= C(G) [Z:,=~N [FO(Qn)—l H(8,2") [ J(2" u,) ]—1+(4(2)/S(0)]

E(27) F(27)
= CONZ,._y [EQ@)T (@ )i @) @,
Using (2.8) we obtain
lgx (O] £0.q0r = 3(1+8)CO)S__y [E(2D7K(2", @)y,
Proposition 2.1 now implies
lgn (@ = 3(1+¢)exp ( f L [log C(O)].(0) d0) (3 IE@) K@, a)@)e,

where C(z)=exp (fT[log C(0))P.(6)df) is finite due to (2.2) of condition S, the
only property we had not used so far.
Notice that I%im gn(2z) coincides formally with

=3

- _ . 4,=a (convergence in
Ay+A,) so that a density argument will give jlaiizék(l+s)C(z)||a|]F:,q(z), after
using the second part of Proposition 2.6. The details of this density argument are
similar to the ones given on page 89 of {10} and, therefore, omitted. The inclusion

(2.7) follows upon letting ¢—0, and hence Theorem 2.7 is proved. ||

Corollary 2.9. Let q: T—[1,~) and w: TXR* -~R™ be measurable functions
on T such that @4(t)=1"—M9OD )y, (1) belongs to B, for every 6<T and satisfy
condition S given before Theorem 2.7. Then {A*®(w(6, .))}sc1 is an interpolation
Samily of Banach spaces and [ A% (w(®, .))].= A*®(w(z, .)), with equivalent norms,
where

1 1
= | ——P(0d0 and w(z,s)=exp [log w(8, 5)] P,(8)d0}.
q(2) J: q(9) U )
Proof. Use (1.2), that is, (LY, L%), ,4=A4"(w(0,.)), and Theorem2.7. |

We now show that (1.3) can be deduced from Theorem 2.7. To prove this we
need to observe that for any pair B, and B, of Banach spaces, if
B, if 0=¢<(1-0)2n

B©) = {B1 if (1—-0)2r=¢<2n
then

2.9 [Bo, Bily = [B(D]o

(see [5]). Take

qo if 0=¢<(1-0)2n ( {q)o(s) if 0=¢<(1-0)2r
\S) =

1= {eh if (1-0)27 =& < 2r, ei(s) it (102 = <2n
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1 1-6 6 1
and observe that Fy(s)=[¢,()]'*[o:(5)’=0(s) and ——= f—=—
g0 d @ 4

Hence, using (2.9) and theorem (2.7) we obtain

[(Aoa Al)zpo,qo! (Ao, A1)¢1,q1]a = [(Ao’ Al)Fg,q(s‘)]O = (Ao’ Al)Fo.q(O) = (Am A1)¢.q-

A similar argument shows that (1.4) can be deduced from Corollary 2.9. In
fact, with ¢(&) as above and

Wwols) if 0=¢=(1-06)2n
Wit 5) = {wl(s) if (1-0)2n=¢<2n

1-6 6 1
=—— 4 —=— and w(0, s)=wo(s)'"?wy(s)’=w(s). Hence, using
9 @ 4
(2.9) and Corollary 2.9 we obtain:

we have

[A%(wo), A% (wy)]p = [Aq(é)(w(éa . ))]0 = Aq(o)(W(o: ) = A1w).

3. Weighted inequalities for the Hardy operator and interpolation

In this section we shall identify the intermediate spaces of the family
{A%®O(w(8, ))}scr using weighted inequalities for the Hardy operator and its dual.
We first summarize a method of interpolation for families of Banach lattices which
was introduced in [9] and prove some results needed in the sequel.

The Calderdn product for families of Banach lattices

A subclass X of a class of measurable functions on a o-finite measure space
(M, dx) is called a Banach lattice if there exists anorm | ||y on X such that (X, || [x)
is a Banach space and if f€ X and gis a measurable function such that [g(x)|=]f(x)|
almost everywhere on M, then gcX and |glx=|flx-

Let {X(0)}scx be a family of Banach lattices on (M, dx). For z¢ D we define
[X(0))* to be the class of measurable functions f on M for which there exists >0
and a measurable function F: TXM—R with |F(6,.)lxe=1 almost everywhere
such that

/00l = Aexp{ llog |F(®, x)I] E:(0) a6}

We let || flI*=l fllx(y- be the infimum of the values of A for which such an inequal-
ity holds. Several properties of the spaces [X(0)]* can be found in [9].
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The Banach lattices we are interested in here are the following: for g€[l, ]
and w=0 on (0, ), X (w) will denote the class of functions fon (0, <) such that

3.1 I xgom = {f] WO @I1ds)" < o=

Proposition 3.1. Let g: T—[1,o) and w: TXR*->R* be measurable func-
tions. If w(z, s)=exp { [ [log w(b, 5)1P,(6)d6} we have [X, @w@, )=
Xow(w(2,.)), with equal norms, where (1/q(2))= [+ (1/q(0))P,(0)d6.

Proof. . Given f¢[Xy(w(0,.))]* an £>0, the definition of [ * allows
us to choose  F(B, .)€ X, 4 (w(6, .)) with |F(0, Mx, g e =1 and

fs)] = 1+l f 17 exp{f llog|F (@, )] E.(6) a6} .

We use this inequality together with the fundamental inequality of [9] (Proposi-
tion 3.1) to obtain

1 Ty, = A+ [ w(z 5% exp{g(2) [ llog |1 (0, ) B.(6) a6} ds] **
= (149171 exp {f_10g I F O, lxypyiwio, I B (0) d0} = (1+2) 117

The desired inclusion follows upon letting £ approach 0.
. Take fe€X,,,(w(z,.)) and write

O = 1 lxscorowe. » LIS w2 )] [0z D)1 Ixeerowz. 0]}

The term inside the brackets coincides with

exp [, [1og [2& 2@ 92O )] 5 g )

(V) PRI

and the norm, in the space X, (w(8, .)), of the term inside the parentheses in this
last expression is 1. By definition of [ ¥ we have f&[X,4,(w(,.))]° and the in-
clusion norm is less than or equal to 1. This finishes the proof of Proposition 3.1. |}

Let (M,dx) be a measure space and define [**(r)=(1/7)sup [|f(x)dx,
where O<?<ee, feL, (M) and the supremum is taken over all measurable sets E
in M such that |E|=¢. If X is a Banach lattice on (0, ) we denote by X* the
class of measurable functions f on M such that f**¢X and write || fly*=]/"*x.
We shall prove that under some conditions on M and on w, A%(w) is a particular
case of an X space.

Proposition 3.2. Let (M, dx) be a non-atomic measure space, 1=g=e and
WEW(S). Then A%(w)=(X,(W))*, with equivalent norms.
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Proof. The proof is based on the equality

32 £ =+ [ 16 ds = SO

which holds for non-atomic measure spaces and can be found in [15]. Let f€ (Xq(w))*.
Since f* is non-increasing, (3.2) implies f**(¢)=f*(¢) and hence

1 sy = (f Do/ 1 ds)" = 1 g

so that we have proved one inclusion. To prove the other one take f€ A%(w) and use
(3.2) to write

1Al = (f Dr@S s ds)™.
Since weW,(S) we deduce
1l cxrgonre = Caw) ([ Do)/ *(91%ds)"* = CoWf s

so that Proposition 3.2 is proved. |}

Main result and consequences
Theorem 3.3. Let g: T—[1, ) and w: TXRT >R+ be measurable functions. If

© [, [log* (" (w0, )1+ © ds)4 @) b <,

the family {A*®(w(0,.))}ger is an interpolation family of Banach spaces. Moreover’
if w0, )W, 6)(S) "W, 5,(S*) and

") [ [logC(S: q0),w(@, -)]d8 <=, [ [logC(S*; q(6), w(0,-))] 0 <o=

we have [A*P(w(8, .))], =A% (w(z, .)), with equivalent norms, where

q(lz) = fT q(lg) P(0)d9 and w(z,s) = exp {fT [log (w(8, )] £.(6) d0}.

Proof. We start by proving that {A%®(w(6,.))}scr is an interpolation family
of Banach spaces. We take L'+ L= as the containing space and for generic ¢ and
w we shall prove A¢(w)cL'+L=, finding an upper bound for the inclusion norm.
For fc A%(w), let

fx i = 1)
glx) = { }

0  otherwise
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and h(x)=f(x)—g(x). Then, (see [16]),

. frs) if 0=s<1) | A i s=1
g(S)é{ . }; h (s)é{f*(s) . s>1}'

Thus g€L' since

[T ie@ds = [ yds = (f or)s o ds) (f, b)) sy’

if s=>1

. 1 , ,
= 1/ gy (f, (1 ).
Also h€L™ since

B = 50 = [ 56 ds = 1S asc ([, D)1 s}

It follows from here that (*) is the right condition for {A%®(w(8, .))}scr to be an
interpolation family of Banach spaces.

We now prove the equality of the spaces. By Proposition 3.2 we have
A1 (w(8, .))=(X,0,(w(8, .)))* and by theorem (9.2) of [9] we obtain

[4%2 (w0, )] = ([Xawr(w (0, D)

(observe that (**) is the hypothesis we need to apply this theorem). It follows from
here and Proposition 3.1 that [A%P(w(0, .))]*=(X,q,(w(z, .)))*. Using Proposi-
tion 2.2 we deduce w(z, .)€W,,,(S) and hence Proposition 3.2 shows

3.3) [42®(w(0, -))]* = 412 (w(z, -)).

Since g(f)<e, we also have g(z)<eo and, by (3.3), [4“®(w(6,.))]* has the
dominated convergence property needed to apply Theorem 6.1 of [9]. Upon applying
this theorem and using (3.3) we obtain [A4®(w(8, .))].=A4%®(w(z,.)), which is
the desired result. [

Notice that (1.11) follows from Theorem 3.3 by an argument similar to the
one given at the end of Section 2.

Corollary 3.4. (Proposition 9.4 of [9].) Ler p: T—[l,) and q: T—[1,) be
two measurable functions on T such that

1
(3.4) [, llogp(@)1db <o ana [ [log _ISTB)TI] df < oo

Then {LP®-9®) s an interpolation family of Banach spaces and [LP®+4®)], = [P()-4=),
with equivalent norms, where

i 1 1 ;
q(2) :f'r 9(6) P(6)d6 and FI6) =fT @ P.(6)d0.
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Proof. We apply Theorem 3.3 with w(8, 5) =s3/PEN -0/ Since

[olw (@, 9)1-7@ ds = p'(0)/4(0),

(*) follows from (3.4). We now find the constants C(S;¢(6), w(6,.)) and
C(S*; q(6), w(b, .)) for this particular choice of w. We start by finding the value
of K'in (1.8):

7 0
sup ( f §—9(0) o(a(@)/p(8))— 1ds]”"“” U‘ 5—@(©)/p(0)) + (¢(0)/q(8)) ds]W()

r>0

= P OO [1/q OF .

There is an inequality between C of (1.7) and K of (1.8), namely K=C=K(q)"4(¢")"*
(see [14], Theorem 1). Using this, we obtain C(S; ¢(6), w(®, .))=p'(0)=p(6)/(p(6)—1)
and hence the first part of (**) follows from (3.4). Similarly,

sup f sta@yp@en-1 4. 1/4(9)({”” 2O g~ (@ (O)/PO))+ (& (0>/q(e))ds)1/ﬂ°)

r>0

= p(O)[1/g(O)]4O[1/q" (B)]1®

and hence C(S™; q(8), w(8, .))=p(6). The second part of (**) now follows from
(3.4) and therefore Theorem 3.3 can be applied to prove the corollary. |

4. Final result

We shall prove that Theorem 3.3 is more general than Corollary 2.9. This is
contained in the following result:

Theorem 4.1. If 1=g<o and ¢€B, then w(s)=s'"UD]p(s)eW;(S) W,(S™).

Proof. We shall prove that if ¢€By then weW,(S)nW,(S*), and since B, C By
Theorem 4.1 will follow (this is not a great improvement since B, and By are equiv-
alent classes of functions in the sense of (7), Proposition 2.3). We have

I=sup (fj sTw()]* ds)”" (f(: Wi ds)l/"'

= swp ([~ [ ]2) (fweor 2

r>0

-Gl ) s )"
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From (6) of Proposition 2.3 we obtain

1= (L or L) (feor 27,

which is finite by (3) of Proposition 2.3. Similarly, but using (5) instead of (6) of
Proposition 2.3 we obtain

sup (f; D@1 s} (f s pwo)+ ds)'™

= (1 e U (=)
- Srli]g (f [qo(s) ]" = )1"’( 1 [;0([)(65; q,-?viJW ‘/’5’)
<F 2] 2 1y )

which is finite by (3) of Proposition 2.3. J

The converse of Theorem 4.1 is not true in the sense that there exists wel,(S)n
W,(S*), 1<g<eo, such that for all ¢cB,, w is not equivalent to ¥/p(t) (see
(7), Proposition 2.3). This function w is defined by

1 if O0<t=1/2

Ja—oe it 1p<t=1
WO =N 1 i 1<t=2
1 if t=2

where O<a<1/g’. Observe that w(1)=0 while ¢(1)=1. The conditions on «
is what is required to show that weW,(S)nW(S*), 1<g<ee.

In view of the above result we conjecture that a theory of real interpolation
with a function parameter wéW,(SYnW,(S*) for all g€[1, ) could be developed.
This theory would be more general than the existing ones.
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