Duality of space curves and their tangent surfaces in characteristic $p>0$

Masaaki Homma

0. Introduction

Let X be a nondegenerate complete irreducible curve in projective N-space \mathbf{P}^{N} over an algebraically closed field k of characteristic p. Let $\pi: \tilde{X} \rightarrow X$ be the normalization of X and \mathfrak{G} the linear system on \tilde{X} corresponding to the subspace $V_{\mathfrak{5}}=$ Image $\left[H^{0}\left(\mathbf{P}^{N}, \mathcal{O}(1)\right) \rightarrow H^{0}\left(\tilde{X}, \pi^{*} \mathcal{O}_{X}(1)\right)\right]$. Let \tilde{P} be a point on \tilde{X}. Since X is nondegenerate, there are $N+1$ integers $\mu_{0}(\widetilde{P})<\ldots<\mu_{N}(\widetilde{P})$ such that there are $D_{0}, \ldots, D_{N} \in \mathscr{F}$ with $v_{\tilde{P}}\left(D_{i}\right)=\mu_{i}(\tilde{P})(i=0, \ldots, N)$, where $v_{\tilde{P}}\left(D_{i}\right)$ is the multiplicity of D_{i} at \widetilde{P}. When $p=0$, the sequence $\mu_{0}(\widetilde{P}), \ldots, \mu_{N}(\tilde{P})$ coincides with $0,1, \ldots, N$ except for finitely many points. On the contrary, this is not always valid in positive characteristic. However, F. K. Schmidt [12] (when \mathfrak{G} is the canonical linear system) and other authors [8], [9], [10], [13] (for any linear systems) showed that there are $N+1$ integers $b_{0}<\ldots<b_{N}$ such that $\mu_{0}(\tilde{P}), \ldots, \mu_{N}(\widetilde{P})$ coincides with b_{0}, \ldots, b_{N} except for finitely many points.

From now on, we denote by $B(6)$ the set of integers $\left\{b_{0}, \ldots, b_{N}\right\}$. Since we take an interest in the invariant $B(\mathbb{G})$, we always assume that $p>0$.

What geometric phenomena does the invariant $B(5)$ reflect? Roughly speaking, this invariant reflects the duality of osculating developables of X. Let Y be a closed subvariety of \mathbf{P}^{N}. We define the conormal variety $C(Y)$ of Y by the Zariski closure of

$$
\left\{\left(y, H^{*}\right) \in Y \times \check{\mathbf{P}}^{N} \mid y \text { is smooth, } T_{y}(Y) \subset H\right\}
$$

where $\breve{\mathbf{P}}^{N}$ is the dual N-space of \mathbf{P}^{N} and $T_{y}(Y)$ is the (embedded) tangent space at y to Y. The image of the second projection $C(Y) \rightarrow \breve{\mathbf{P}}^{\lambda}$ is denoted Y^{*}, which is called the dual variety of Y. The original variety Y is said to be reflexive if $C(Y) \rightarrow$ Y^{*} is generically smooth (The Monge-Segre-Wallace criterion; see [6, page 169]). In the previous paper [5], we proved the following theorem.

Theorem 0.0 [5; Theorem 3.3]. Let v be an integer with $0 \leqq v \leqq N-2$, Assume that $b_{v+1} \not \equiv 0 \bmod p$. Then the v-th osculating developable of X is reflexive if and only if $b_{v+2} \neq 0 \bmod p$.

In the present paper, we prove a more precise theorem on this line for space curves, i.e., nondegenerate curves in \mathbf{P}^{3}.

For a space curve X, one has the following five possibilities:
(RR) $\quad p>3$ and $B(\mathfrak{G})=\{0,1,2,3\}$;
(RN) $p>2$ and $B(\sqrt{5})=\{0,1,2, q\}$;
$\left(\mathrm{NR}_{1}\right) \quad B(\mathfrak{G})=\{0,1, q, q+1\} ;$
$\left(\mathrm{NR}_{\mathrm{II}}\right) \quad p>2$ and $B(\mathfrak{G})=\{0,1, q, 2 q\} ;$
(NN) $B(\mathfrak{G})=\left\{0,1, q, q^{\prime} q\right\}$,
where q and q^{\prime} are powers of p (see proposition 1.2 below). Moreover, any case can be shown to occur (see example 2.6 below). Our theorem is as follows.

Theorem 0.1. Let X be a nondegenerate space curve and $\operatorname{Tan} X$ be the tangent surface of X.
(i) $B(\mathfrak{G})$ is of type (RR) $\Leftrightarrow X$ and $\operatorname{Tan} X$ are reflexive.
(ii) $B(\mathfrak{G})$ is of type $(\mathrm{RN}) \leftrightarrow X$ is reflexive and $\operatorname{Tan} X$ is nonreflexive.
(iii) $B\left((\mathfrak{5})\right.$ is of type $\left(\mathrm{NR}_{\mathrm{l}}\right) \leftrightarrow X$ is nonreflexive and $\operatorname{Tan} X$ is ordinary.
(iv) $B(\mathfrak{5})$ is of type $\left(\mathrm{NR}_{\mathrm{II}}\right) \Leftrightarrow X$ is nonreflexive and $\operatorname{Tan} X$ is semiordinary (of reflexive type).
(v) $B(\mathfrak{G})$ is of type (NN$) \Leftrightarrow X$ and $\operatorname{Tan} X$ are nonreflexive.

The main tool of our proof of the theorem is the Hessian criterion of reflexivity obtained by Hefez-Kleiman [2].

1. Type of $B(\mathfrak{F})$

We will use some knowledge of the theory of Weierstrass points in positive characteristic. Surveys of this theory can be found in [3; §§1-2] and/or [13; §1].

This section is a sort of elementary number theory. Let p be a prime number. Then a nonnegative integer u can be written uniquely as $u=\sum_{i \geq 0} u_{i} p^{i}$, where u_{i} are integers with $0 \leqq u_{i}<p$. We denote by $u>p v$ (or $v<u$) if $u>v$ and $u_{i} \geqq v_{i}$ for all $i \geqq 0$.

Lemma 1.0. Let u, v be nonnegative integers with $u_{p} v$. If $u \in B(\mathfrak{G})$, then $v \in B(G)$.

Proof. See [11; Satz 6] or [13; Cor. 1.9].
Corollary 1.1 (cf. [1; Prop.2]). Let $B(\mathfrak{5})=\left\{b_{0}<b_{1}<b_{2}<b_{3}\right\}$ and $i_{0}=\operatorname{Max}\left\{i \mid b_{i}=i\right\}$. Then
(0) $i_{0} \geqq 1$, i.e., $b_{0}=0$ and $b_{1}=1$.

Moreover, we assume that $i_{0}<3$. Then we have that
(i) $b_{i_{0}+1} \equiv 0 \bmod p$,
(ii) if $i_{0}<p$, then $b_{i_{0}+1}$ is a power of p.

Proof. (0) The condition $b_{0}=0$ is valid for any linear system. Since the morphism corresponding to 6 coincides with $\pi: \tilde{X} \rightarrow X$ which is birational (hence separable), we have $b_{1}=1$.
(i) Write $b_{i_{0}+1}=a p+r$ with $0 \leqq r<p$. If $r>0$, then $b_{i_{0}+1}-1<b_{i_{0}+1}$. This implies $b_{i_{0}+1}-1 \in B(\mathfrak{b})$ by (1.0). Hence we have $b_{i_{0}+1}-1=b_{i_{0}}=i_{0}$, which contradicts to the choice of i_{0}.
(ii) From the above, we may write as $b_{i_{0}+1}=u p^{m}$ with $m>0$ and ($\left.u, p\right)=1$. If $u>1$, then $(u-1) p^{m}<b_{i_{0}}$. Hence $(u-1) p^{m} \in B(\mathfrak{F})$ by (1.0). Hence we have $(u-1) p^{m} \leqq$ $b_{i_{0}}=i_{0}<p$, which is a contradiction.

The next proposition is the main purpose of this section.
Proposition 1.2. The invariant $B(\sqrt{b})$ of a space curve over a field of characteristic $p>0$ must be one of the following 5-types:
(RR) $\quad p>3$ and $B(\mathfrak{b})=\{0,1,2,3\}$;
(RN) $p>2$ and $B(G)=\{0,1,2, q\}$;
$\left(\mathrm{NR}_{\mathrm{I}}\right) \quad B(\boldsymbol{6})=\{0,1, q, q+1\} ;$
$\left(\mathrm{NR}_{\mathrm{II}}\right) \quad p>2$ and $B(\mathfrak{W})=\{0,1, q, 2 q\}$;
(NN) $B(\mathfrak{b})=\left\{0,1, q, q^{\prime} q\right\}$,
where q and q^{\prime} are powers of p.
Proof. We know that $b_{0}=0$ and $b_{1}=1$. First we assume that $p>2$ and $b_{2}=2$. If $B(\mathfrak{G})$ is not of type (RR), then b_{3} is a power of p by (1.1). This case is of type (RN).

Next we assume that $b_{2}>2$ or $p=2$. In this case, b_{2} is a power of p, say q, by (1.1). Write $b_{3}=a q+r$ with $0 \leqq r<q$. Since $b_{3}>b_{2}=q$, we have $a \geqq 1$. Since $r<a q+r$, we have $r \in B(6)$. Hence $r=0$ or 1 . If $r=1$, then $a q<a q+1$. Hence
$a q \in B\left((\mathfrak{5})\right.$ and hence $b_{2}=a q$. So we have $a=1$. This case is of type $\left(\mathrm{NR}_{\mathrm{I}}\right)$. Next we consider the case $r=0$. Write $a=u p^{m}$ with $(u, p)=1$. If $u=1$, then this case is of type (NN). Suppose that $u>1$. Write $u=u^{\prime} p+u u^{\prime \prime}$ with $0 \leqq u^{\prime \prime}<p$. Since $(u, p)=1$, we have $u^{\prime \prime}>0$. Hence we have

Hence $u^{\prime} p^{m+1} q+\left(u^{\prime \prime}-1\right) p^{m} q \in B(\sqrt[5]{ })$. Since $u^{\prime} p^{m+1} q+\left(u^{\prime \prime}-1\right) p^{m} q \equiv 0 \bmod q$, this must coincide with b_{2}. Hence we have

$$
u^{\prime} p^{m+1} q+\left(u^{\prime \prime}-1\right) p^{m} q=q
$$

and hence we have $u^{\prime}=0, u^{\prime \prime}=2$, i.e., $b_{3}=2 q$. This completes the proof.
Remark 1.3. In the next section, we will show that for each type of $B(5)$ described in (1.2), there is a nondegenerate space curve whose $B(6)$ has the assigned type.

2. Some properties of $B(\boldsymbol{G})$

Let $\operatorname{Reg} X$ be the open set of smooth points of X. We will identify $\operatorname{Reg} X$ with $\pi^{-1}(\operatorname{Reg} X)$. Let $P \in \operatorname{Reg} X$ be a general point. Choose a plane section G_{0} of X such that $P \notin \operatorname{Supp} G_{0}$. Let $\widetilde{G}_{0} \in\left(5\right.$ corresponding to G_{0} via the isomorphism

$$
\begin{equation*}
H^{0}\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(1)\right) \simeq V_{\mathfrak{G}} \subset H^{0}\left(\tilde{X}, \pi^{*} \mathcal{O}_{X}(1)\right) \tag{1}
\end{equation*}
$$

Then we have the commutative diagram:
2.0. A characterization of $B(\mathfrak{F})$. Let $t \in \mathcal{O}_{X, P}$ be a local parameter at P. Identifying the field of fractions of $\hat{\mathcal{O}}_{X, P}$ with $k((t))$ and viewing $k(X) \subset k((t))$ via this identification, we can define iterative derivations $\left\{D_{t}^{(v)} \mid v=0,1,2, \ldots\right\}$ on $k(X)$ such that $D_{t}^{(v)}\left(t^{m}\right)=\binom{m}{v} t^{m-v}$ (see, [5; appendix]). Let f_{0}, \ldots, f_{3} be a basis of $L\left(\tilde{\mathfrak{G}} ; \tilde{\boldsymbol{G}}_{0}\right)$. Then the sequence $\left\{b_{0}<b_{1}<b_{2}<b_{3}\right\}$ coincides with the minimal element of

$$
\left\{\mu_{0}<\mu_{1}<\mu_{2}<\mu_{3} \mid \operatorname{det}\left(D_{t}^{\left(\mu_{i}\right)} f_{j}\right)_{(i, j)} \neq 0\right\}
$$

by lexicographic order (see [3; §1] or [13; page 5]).

Remark 2.1. Let us consider the vector space $\bigoplus^{\frac{t}{k}} k(X)$ over $k(X)$ and denote by V_{m} the subspace generated by

$$
\left\{\left(D_{t}^{(v)} f_{0}, D_{t}^{(v)} f_{1}, D_{t}^{(v)} f_{2}, D_{t}^{(v)} f_{3}\right) \mid 0 \leqq v \leqq m\right\}
$$

Then we have

$$
\begin{equation*}
V_{0} \subseteq V_{1}=\ldots=V_{b_{2}-1} \subseteq V_{b_{2}}=\ldots=V_{b_{3}-1} \subseteq V_{b_{3}}=\stackrel{4}{\oplus} k(X) \tag{3}
\end{equation*}
$$

by the preceding characterization of $B(\mathbb{G})$.
2.2. Standard coordinates on \mathbf{P}^{3} with respect to P. It is obvious that we can choose a basis $x_{0}, x_{1}, x_{2}, x_{3}$ of $L\left(6 ; \tilde{G}_{0}\right)$ such that

$$
0=v_{P}\left(x_{0}\right)<v_{P}\left(x_{1}\right)<v_{P}\left(x_{2}\right)<v_{P}\left(x_{3}\right),
$$

where v_{P} is the valuation of $\mathcal{O}_{X, P}$. Note that since P is a general point, this sequence is nothing but $\left\{b_{0}<b_{1}<b_{2}<b_{3}\right\}$. The sections X_{0}, \ldots, X_{3} of $H^{0}\left(\mathbf{P}^{3}, \mathcal{O}(1)\right)$ corresponding to x_{0}, \ldots, x_{3} via isomorphisms (1) and (2) are called standard coordinates on \mathbf{P}^{3} with respect to P.

Remark 2.3. With the above notations,
(a) the plane section $X_{0}=0$ on X is G_{0};
(b) the rational function on X obtained by X_{i} / X_{0} is x_{i}.

Remark 2.4. Let X_{0}, \ldots, X_{3} be standard coordinates on P^{3} with respect to a general point P of X and x_{i} be the restriction of X_{i} / X_{n} to $X(i=0, \ldots, 3)$. Since $1=b_{1}=v_{P}\left(x_{1}\right)$, we may consider x_{1} itself as a local parameter at P. Moreover replacing, if necessary, X_{2} and X_{3} by $c_{2} X_{2}$ and $c_{3} X_{3}$ for suitable $c_{2}, c_{3} \in k^{\times}, x_{0}, \ldots, x_{3}$ can be expanded by $t=x_{1}$ as:

$$
\left\{\begin{array}{l}
x_{0}=1 \tag{4}\\
x_{1}=t \\
x_{2}=t^{b_{2}}+(\text { higher order terms }) \\
\left.x_{3}=\quad t^{b_{3}}+\text { (higher order terms }\right)
\end{array}\right.
$$

Lemma 2.5. Under the above notations, suppose that $b_{2}>2$. Then we have

$$
D_{t}^{(v)} x_{2}=0 \quad \text { and } \quad D_{t}^{(v)} x_{3}=0 \quad \text { for } \quad 2 \leqq \forall v<b_{2} .
$$

Proof. From (3) in remark 2.1, we have that the rank of

$$
\left(\begin{array}{llll}
D_{t}^{(0)} x_{0} & D_{t}^{(0)} x_{1} & D_{t}^{(0)} x_{2} & D_{t}^{(0)} x_{3} \\
D_{t}^{(1)} x_{0} & D_{t}^{(1)} x_{1} & D_{t}^{(1)} x_{2} & D_{t}^{(1)} x_{3} \\
D_{t}^{(v)} x_{0} & D_{t}^{(v)} x_{1} & D_{t}^{(v)} x_{2} & D_{t}^{(v)} x_{3}
\end{array}\right)
$$

is 2 , if $2 \leqq v<b_{2}$. Since

$$
\left(D_{t}^{(i)} x_{j}\right)_{j=0,1, v}^{j=0,1,2,3}, ~=\left(\begin{array}{cccc}
1 & x_{1} & * & * \\
0 & 1 & * & * \\
0 & 0 & D_{t}^{(v)} x_{2} & D_{t}^{(v)} x_{3}
\end{array}\right)
$$

by (4), we have $D_{t}^{(v)} x_{2}=D_{t}^{(v)} x_{3}=0$ if $2 \leqq v<b_{2}$.
Example 2.6. Let us consider the morphism

$$
\pi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{3} \text { with homogeneous coordinates } Y_{0}, \ldots, Y_{3}
$$

with

$$
t \mapsto\left(1: t: t^{u}: t^{v}\right)
$$

$$
2 \leqq u<v
$$

and let us denote by X the image of π. Then $\pi: \mathbf{P}^{1} \rightarrow X$ is the normalization of X. Let $\left(\mathbb{F}\right.$ be the linear system on \mathbf{P}^{1} corresponding to the plane sections on X. Let $c \in \mathbf{P}^{1}$ be a general point. Let $s=t-c$. Then the coordinate functions $y_{i}\left(=\left.\left(Y_{i} / Y_{0}\right)\right|_{X}\right)$ can be expressed by using s as follows;
(5)

$$
\left\{\begin{array}{l}
y_{0}=1 \\
y_{1}=c+s \\
y_{2}=(c+s)^{u} \\
y_{3}=(c+s)^{v} .
\end{array}\right.
$$

Let q be a power of p. If $u=2$ and $v=q$, then (5) is rewritten as

$$
\begin{aligned}
& y_{0}=1 \\
& y_{1}-c y_{0}=s \\
& y_{2}-c^{2} y_{0}-2 c\left(y_{1}-c y_{0}\right)=s^{2} \\
& y_{3}-c^{q} y_{0}=s^{q} .
\end{aligned}
$$

Let $\tilde{G}_{0}=q \cdot \infty$ on \mathbf{P}^{1}. Then $\tilde{G}_{0} \in \mathscr{G}$ and

$$
L\left(\mathscr{G} ; \tilde{G}_{0}\right)=\left\langle y_{0}, y_{1}-c y_{0}, y_{2}-c^{2} y_{0}-2 c\left(y_{1}-c y_{0}\right), y_{3}-c^{q} y_{0}\right\rangle .
$$

Hence we have $B(\mathfrak{b})=\{0,1,2, q\}$.
By arguments similar to that of the above case, we can show that

$$
\begin{aligned}
& \text { if } u=2, \quad v=3, \quad \text { then } B(\mathfrak{b})=\{0,1,2,3\} ; \\
& \text { if } u=q, \quad v=q+1 \text {, then } B(\mathfrak{5})=\{0,1, q, q+1\} \text {; } \\
& \text { if } u=q, v=2 q, \quad \text { then } B(\sqrt{5})=\{0,1, q, 2 q\} \text {; } \\
& \text { if } u=q, \quad v=q^{\prime} q, \quad \text { then } B(\mathscr{G})=\left\{0,1, q, q^{\prime} q\right\},
\end{aligned}
$$

where q and q^{\prime} are powers of p.

Note that $B(5)$ is not always $\{0,1, u, v\}$, which is the "gap sequence" at the origin (properly speaking, $\{1,2, u+1, v+1\}$ is the gap sequence at the origin). The origin may be a $\mathfrak{\sigma}$-Weierstrass point. For example, if $u=2, v=q+1$, then $B(\overline{5})=\{0,1,2, q\}$.

3. Tangential properties of a space curve

First we review the Hessian criterion of reflexivity of projective varieties (for details, see [2;3.2] or [6; page 176]).

Let Y be a closed subvariety of dimension $n, C(Y)$ the conormal variety of Y and Y^{*} the dual variety of Y.

Let $P \in \operatorname{Reg} Y$ and t_{1}, \ldots, t_{n} a system of local parameters of $\mathcal{O}_{Y, P}$. Let H be a hyperplane with $T_{P}(Y) \subset H$ and $h \in \mathcal{O}_{Y, P}$ a local equation of H at P.

The Hessian rank at $\left(P, H^{*}\right) \in C(Y)^{0}$ is defined as the rank of the matrix $\left(\frac{\partial^{2} h}{\partial t_{i} \partial t_{j}}(P)\right)_{(i, j)}$, where $C(Y)^{0}=C(Y) \cap(\operatorname{Reg} Y) \times Y^{*}$. Since the Hessian rank is lower semicontinuous on $C(Y)^{0}$, we may define the Hessian rank h_{Y} of Y by the Hessian rank at a general point $\left(P, H^{*}\right) \in C(Y)^{0}$.

The duality codefect c_{Y} of Y is defined by

$$
c_{Y}=\operatorname{dim} Y+\operatorname{dim} Y^{*}-(N-1)
$$

Note that the inequality $h_{\boldsymbol{Y}} \leqq c_{\boldsymbol{Y}}$ holds.
Hessian criterion (Hefez-Kleiman). Y is reflexive if and only if $h_{Y}=c_{Y}$.
When Y is a hypersurface, the matrix $\left(\frac{\partial^{2} h}{\partial t_{i} \partial t_{j}}(P)\right)$ is an $(N-1) \times(N-1)$ matrix. Hence $h_{Y} \leqq N-1$. If $h_{Y}=N-1, Y$ is said to be ordinary. In this case, Y is reflexive and Y^{*} is a hypersurface, since $c_{Y}=\operatorname{dim} Y^{*} \leqq N-1$. If $h_{Y}=N-2, Y$ is said to be semiordinary. If Y is semiordinary, then
(i) Y is reflexive $\Leftrightarrow \operatorname{dim} Y^{*}=N-2$
(ii) Y is nonreflexive $\Leftrightarrow \operatorname{dim} Y^{*}=N-1$.

When the first case occurs, Y is said to be semiordinary of reflexive type. When the second case occurs, Y is said to be semiordinary of nonreflexive type.

Now let us return to that problem of space curves. Our result can be summarized in the following table.

Table 3.0. Let X be a nondegenerate space curve, \mathfrak{F} the linear system on \tilde{X} corresponding to the plane sections of X and $\operatorname{Tan} X$ the tangent surface of X.

Type of $B(\mathfrak{G})$	Reflexivity of X	$h_{\operatorname{Tan} x}$	$\operatorname{dim}(\operatorname{Tan} X)^{*}$	Reflexivity of Tan X
(RR)	Reflexive	1	1	Reflexive
(RN)	Refiexive	0	1	Nonreflexive
$\left(\mathrm{NR}_{\mathbb{1}}\right)$	Nonrefexive	2	2	Reflexive
$\left(\mathrm{NR}_{\mathrm{II}}\right)$	Nonreflexive	1	1	Reflexive
(NN)	Nonreflexive	0	1	Nonreflexive

3.1. Notes to accompany table 3.0.
(0) Table 3.0 with Proposition 1.2 implies our main theorem (Theorem 0.1).
(i) Since $\operatorname{Tan} X$ is a surface in P^{3}, the duality codefect of $\operatorname{Tan} X$ coincides with $\operatorname{dim}(\operatorname{Tan} X)^{*}$. Therefore the last column in the table follows from the preceding two columns.
(ii) The first two rows and the column of reflexivity of X result from the previous paper (see theorem 0.0 and [5; (3.1)]). Therefore, to complete the table, it suffices to show the following theorem.

Theorem 3.2. Notations are same as in (3.0).
(i) If $B\left((\mathfrak{5})\right.$ of X is of type $\left(\mathrm{NR}_{1}\right)$, then $h_{\operatorname{Tan} X}=2$ and $\operatorname{dim}(\operatorname{Tan} X)^{*}=2$.
(ii) If $B(\mathfrak{G})$ of X is of type $\left(\mathrm{NR}_{\mathrm{II}}\right)$, then $h_{\operatorname{Tan} X}=1$ and $\operatorname{dim}(\operatorname{Tan} X)^{*}=1$.
(iii) If $B(\mathfrak{5})$ of X is of type (NN), then $h_{\operatorname{Tan} X}=0$ and $\operatorname{dim}(\operatorname{Tan} X)^{*}=1$.

This theorem will be proved in the next section.

4. Proof of theorem 3.2.

In this section, we give a proof of theorem 3.2. Let X be a space curve whose $B(\mathfrak{6})$ is of type $\left(\mathrm{NR}_{\mathrm{I}}\right)$ or $\left(\mathrm{NR}_{\mathrm{II}}\right)$ or (NN).

Choose a general point Q of $\operatorname{Tan} X$. We may assume that there is a point $P \in \operatorname{Reg}^{0}(X)$ with $Q \in T_{P}(X)$, where $\operatorname{Reg}^{0}(X)=\left\{P \in \operatorname{Reg} X \mid \mu_{i}(P)=b_{i}(0 \leqq \forall i \leqq 3)\right\}$.

Let G_{0} be a hyperplane section of X such that $\operatorname{Supp} G_{0} \nexists P, Q$ and let \tilde{G}_{0} be the divisor on \tilde{X} corresponding to G_{0} (cf. § 2).

Choose $x_{0}, x_{1}, x_{2}, x_{3} \in L\left(\tilde{G} ; \tilde{G}_{0}\right)$ such that $x_{0}=1, x_{1}=t$ is a local parameter at P and

$$
\left\{\begin{array}{l}
x_{2}=t^{q}+\sum_{i>q} x_{i} t^{i} \tag{6}\\
x_{3}=t^{b_{3}} \div \sum_{i>b_{3}} \beta_{i} t^{i}
\end{array}\right.
$$

in $\hat{\mathscr{O}}_{X, P}=k[[t]]$ (cf. 1.3 and 1.5). The system of coordinates of \mathbf{P}^{3} corresponding to x_{0}, \ldots, x_{3} via a natural isomorphism $L\left(\left(\mathfrak{G} ; \tilde{G}_{0}\right) \cong H^{0}\left(\mathbf{P}^{3}, \mathcal{O}(1)\right)\right.$ (cf. 2.2) will be denoted X_{0}, \ldots, X_{3}.

Lemma 4.0. In the expression (6), if $\alpha_{i} \neq 0$ or $\beta_{i} \neq 0$, then $i \equiv 0$ or $1 \bmod q$.
Proof. Let i be a positive integer with $i \neq 0,1 \bmod q$. Hence we may write as $i=a q+r$ with $2 \leqq r<q$. Letting $D_{t}^{(r)}$ operate on x_{2}, we have

$$
D_{t}^{(r)} x_{2}=\ldots+\binom{a q+r}{r} \alpha_{i} i^{a q}+\ldots
$$

in $\hat{\mathcal{O}}_{X, P}=k[[t]]$. Since $D_{t}^{(r)} x_{2}=0$ (by 2.5) and $\binom{a q+r}{r}=1 \bmod p$, we have $\alpha_{i}=0$. Similarly, we have $\beta_{i}=0$ if $i \not \equiv 0,1 \bmod q$.

Choose an open subset V of X such that
(a) $P \in V \subset \operatorname{Reg}^{0}(X)$,
(b) $t_{\mid V}: V \rightarrow t(V)\left(\subset \mathbf{P}^{1}\right)$ is an étale covering,
(c) x_{1}, x_{2}, x_{3} are regular on V.

Then the morphism

$$
\begin{gather*}
\psi=\psi_{\mathrm{P}}: V \times \mathbf{A}^{1} \rightarrow \operatorname{Tan} X \cap\left\{X_{0} \neq 0\right\} \subset \mathbf{A}_{\left(X_{1} / X_{0}, X_{2} / X_{0}, X_{3} / X_{0}\right)} \subset \mathbf{P}^{3} \tag{7}\\
(\eta, c) \mapsto \vec{x}(\eta)+y(c) D_{t}^{(1)} \vec{x}(\eta)
\end{gather*}
$$

is well-defined and generically surjective, where $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and y is a coordinate function of \mathbf{A}^{1} (cf. [5; § 2]).

Since $X_{0}(Q) \neq 0$ and $Q \in T_{P}(X)$, there is a point $c \in \mathbf{A}^{1}$ such that $Q=\psi(P, c)=$ ($c, 0,0$).

Put $s=y-c \in \mathcal{O}_{A^{1}, c}$. Then we have

$$
\hat{\boldsymbol{O}}_{V \times \mathbf{A}^{1},(P, c)}=k[[s, t]] .
$$

Let us consider the functions on $\operatorname{Tan} X$

$$
\begin{aligned}
& \left.z_{1}=\left(\frac{X_{1}}{X_{0}}-c\right) \right\rvert\, \operatorname{Tan} X \\
& \left.z_{2}=\frac{X_{2}}{X_{0}} \right\rvert\, \operatorname{Tan} X \\
& \left.z_{3}=\frac{X_{3}}{X_{0}} \right\rvert\, \operatorname{Tan} X .
\end{aligned}
$$

Since the maximal ideal of $\mathcal{O}_{\mathrm{P}^{3}, Q}$ is generated by $\frac{X_{1}}{X_{0}}-c, \frac{X_{2}}{X_{0}}, \frac{X_{3}}{X_{0}}$, that of $\mathcal{O}_{\operatorname{Tan} X, Q}$ is generated by z_{1}, z_{2}, z_{3}.

Lemma 4.1. Let

$$
\psi^{*}: \hat{\mathcal{O}}_{\operatorname{Tan} X, Q} \rightarrow \hat{\mathcal{O}}_{V \times \mathbf{A}^{1},(P, c)}=k[[s, t]]
$$

be the homomorphism induced by ψ_{P}. Then

$$
\begin{aligned}
& \psi^{*} z_{1}=t+s \\
& \psi^{*} z_{2}=t^{q}+\sum_{k \geq 2} \alpha_{k q} t^{k q}+\sum_{k \geqq 1} \alpha_{k q+1}(t+s+c) t^{k q} \\
& \psi^{*} z_{3}=\left\{\begin{array}{c}
(t+s+c) t^{q}+\sum_{k \geq 2} \beta_{k q} t^{k q}+\sum_{k \geq 2} \beta_{k q+1}(t+s+c) t^{k q} \\
\text { if } B(5) \text { is of } t y p e\left(\mathrm{NR}_{\mathrm{I}}\right) \\
t^{2 q}+\sum_{k \geqq 3} \beta_{k q} t^{k q}+\sum_{k \geqq 2} \beta_{k q+1}(t+s+c) t^{k q} \\
\text { if } B(5) \text { is of } t y p e\left(\mathrm{NR}_{11}\right) \\
t^{q^{\prime q}}+\sum_{k>q^{\prime}} \beta_{k q} t^{k q}+\sum_{k \geqq q^{\prime}} \beta_{k q+1}(t+s+c) t^{k q} \\
\text { if } B(5) \text { is of type (NN). }
\end{array}\right.
\end{aligned}
$$

Proof. By definitions of z_{1}, z_{2}, z_{3} and ψ, we have

$$
\begin{aligned}
& \psi^{*} z_{1}=x_{1}+y D_{t}^{(1)} x_{1}-c \\
& \psi^{*} z_{2}=x_{2}+y D_{i}^{(1)} x_{2} \\
& \psi^{*} z_{3}=x_{3}+y D_{i}^{(1)} x_{3}
\end{aligned}
$$

Using the expression (6) and lemma 4.0, we get the expression of $\psi^{*} z_{1}, \psi^{*} z_{2}$ and $\psi^{*} z_{3}$ as above.

Put

$$
\left\{\begin{array}{l}
u=t+s \tag{8}\\
v=t^{q}
\end{array}\right.
$$

Then the expressions of $\psi^{*} z_{1}, \psi^{*} z_{2}, \psi^{*} z_{3}$ may be rewritten as:
(9) $\left\{\begin{array}{l}\psi^{*} z_{1}=u \\ \psi^{*} z_{2}=\left(1+\alpha_{q+1} c\right) v+\left(\alpha_{2 q}+\alpha_{2 q+1} c\right) v^{2}+\alpha_{q+1} u v+(\text { higher order terms on } u \& v) \\ \psi^{*} z_{3}= \begin{cases}c v+\left(\beta_{2 q}+\beta_{2 q+1}\right) v^{2}+u v+(\text { higher order terms on } u \& v), \\ & \text { if } B(\mathfrak{G}) \text { is of type }\left(\mathrm{NR}_{1}\right) \\ \left(1+\beta_{2 q+1} c\right) v^{2}+(\text { higher order terms on } u \& v), \\ v^{q}+(\text { higher order terms on } u \& v), & \text { if } B(\mathfrak{G}) \text { is of type }\left(\mathrm{NR}_{11}\right)\end{cases} \end{array}\right.$

Lemma 4.2. If Q was chosen as sufficiently general, then $\hat{\mathcal{O}}_{\text {Tan } X, Q} \simeq k[[u, v]]$ via ψ^{*}.

Proof. There is the tower of rings;

$$
k[[s, t]] \supset k[[u, v]] \supset \psi^{*} \hat{\mathcal{O}}_{\operatorname{Tan} X, Q} \supset k\left[\left[\psi^{*} z_{1}, \psi^{*} z_{2}\right]\right] .
$$

Since Q is sufficiently general, we may assume that $1+\alpha_{q+1} c \neq 0$. Hence, in the expression (9), the linear terms of $\psi^{*} z_{1}$ and $\psi^{*} z_{2}$ are linearly independent over k. Hence we have $k[[u, v]]=k\left[\left[\psi^{*} z_{1}, \psi^{*} z_{2}\right]\right]$ (see [14; VII cor. 2 to lemma 2]). Hence $\psi^{*}: \hat{\mathcal{O}}_{\text {Tan } X, Q} \rightarrow k[[u, v]]$ is surjective. Since both sides are formal power series rings over k of two variables, this is an isomorphism.

From now on, we assume that Q was chosen as sufficiently general and identify $\hat{\mathcal{O}}_{\text {Tan } X, Q}$ with $k[[u, v]]$ via ψ^{*}.

The following lemma is elementary.
Lemma 4.3. Let Y be a surface in $\mathbf{A}_{\left(\mathrm{z}_{1}, z_{2}, z_{3}\right)}^{3}$ with a smooth point at the origin O and $\{u, v\}$ a system of local parameters of $\hat{\mathcal{O}}_{Y, o}$. Let z_{1}, z_{2}, z_{3} be images in $\hat{\mathcal{O}}_{Y, o}$ of coordinate functions Z_{1}, Z_{2}, Z_{3}, respectively and let

$$
\begin{aligned}
& z_{1}=p_{1}(u, v) \\
& z_{2}=p_{2}(u, v) \\
& z_{3}=p_{3}(u, v)
\end{aligned}
$$

in $k[[u, v]]=\hat{0}_{Y, o}$.
If $h\left(Z_{1}, Z_{2}, Z_{3}\right)=0$ is an equation of the tangent plane to Y at O, then we have

$$
h\left(z_{1}, z_{2}, z_{3}\right)=\gamma\left|\begin{array}{ccc}
z_{1} & z_{2} & z_{3} \\
\frac{\partial p_{1}}{\partial u}(0) & \frac{\partial p_{2}}{\partial u}(0) & \frac{\partial p_{3}}{\partial u}(0) \\
\frac{\partial p_{1}}{\partial v}(0) & \frac{\partial p_{2}}{\partial v}(0) & \frac{\partial p_{3}}{\partial v}(0)
\end{array}\right|
$$

in $\hat{\mathcal{O}}_{Y, o}=k[[u, v]]$, where $\gamma \in k^{\times}$.
Let us return to our proof.
Let $h\left(Z_{1}, Z_{2}, Z_{3}\right)=0$ be an equation of the tangent plane to $\operatorname{Tan} X$ at Q.

Using (9), we have

$$
\begin{aligned}
& \frac{\partial z_{1}}{\partial u}(0)=1, \quad \frac{\partial z_{1}}{\partial v}(0)=0, \\
& \frac{\partial z_{2}}{\partial u}(0)=0, \quad \frac{\partial z_{2}}{\partial v}(0)=1+\alpha_{q+1} c, \\
& \frac{\partial z_{3}}{\partial u}(0)=0, \quad \frac{\partial z_{3}}{\partial v}(0)== \begin{cases}c & \text { if } \\
0 & B((\mathbb{6}) \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Hence, by lemma 4.3, we may assume that

$$
h\left(z_{1}, z_{2}, z_{3}\right)=\left\{\begin{array}{cl}
-c z_{2}+\left(1+\alpha_{q+1} c\right) z_{3} & \text { if } B(\mathfrak{G}) \text { is of type }\left(\mathrm{NR}_{\mathrm{I}}\right) \\
z_{3} & \text { otherwise }
\end{array}\right.
$$

Now, we compute the Hessian rank of Tan X.
Put

$$
H=\left(\begin{array}{ll}
\frac{\partial^{2} h}{\partial u^{2}}(0) & \frac{\partial^{2} h}{\partial u \partial v}(0) \\
\frac{\partial^{2} h}{\partial u \partial v}(0) & \frac{\partial^{2} h}{\partial v^{2}}(0)
\end{array}\right)
$$

Case 1. B(G) is of type $\left(\mathrm{NR}_{\mathrm{I}}\right)$.
Since

$$
\begin{aligned}
h(z)= & \left\{\left(1+\alpha_{q+1} c\right)\left(\beta_{2 q}+\beta_{2 q+1}\right)-c\left(\alpha_{2 q}+\alpha_{2 q+1} c\right)\right\} v^{2} \\
& +u v+(\text { higher order terms on } u \& v),
\end{aligned}
$$

we have $H=\left(\begin{array}{ll}0 & 1 \\ 1 & *\end{array}\right)$. Therefore $h_{\operatorname{Tan} X}=2$.
Case 2. $B(\mathfrak{G})$ is of type $\left(\mathrm{NR}_{\mathrm{II}}\right)$.
In this case,

$$
h(z)=\left(1+\beta_{2 q} c\right) v^{2}+(\text { higher order terms on } u \& v)
$$

Hence we have $H=\left(\begin{array}{cc}0 & 0 \\ 0 & 2\left(1+\beta_{2 q} c\right)\end{array}\right)$. Since Q is general and $p>2$, we have $\operatorname{rank} H=1$, i.e., $h_{\operatorname{Tan} X}=1$.

Case 3. $B(5)$ is of type (NN).
Since

$$
h(z)=v^{q^{\prime}}+(\text { higher order terms on } u \& v)
$$

and q^{\prime} is a power of p, we have rank $H=0$.
When the first case occur, $\operatorname{Tan} X$ is ordinary. Hence $\operatorname{dim}(\operatorname{Tan} X)^{*}=2$.

When one of the remaining two cases occur, the tangent planes to Tan X along the line $T_{P}(X)$ are constant, equal to the plane $X_{3}=0$. Therefore, a general fibre of $q: \operatorname{Tan} X \rightarrow(\operatorname{Tan} X)^{*}$ has positive dimension. This means $\operatorname{dim}(\operatorname{Tan} X)^{*} \leqq 1$. Since $\operatorname{Tan} X$ is not a plane (because X is nondegenerate), $\operatorname{dim}(\operatorname{Tan} X)^{*} \geqq 1$. Hence we have $\operatorname{dim}(\operatorname{Tan} X)^{*}=1$. This completes the proof.

5. Miscellaneous remarks

The first remark is concerned with example 2.6.
Remark 5.1. Example 2.6 can be generalized as follows. Let

$$
A=\left\{a_{0}<a_{1}<\ldots<a_{N}\right\}
$$

be a set of nonnegative integers with $a_{0}=0$ and $a_{1}=1$. Let X be the image of

$$
\begin{aligned}
\mathbf{P}^{1} & \rightarrow \mathbf{P}^{N} \\
t & \mapsto\left(t^{a_{0}}: t^{a_{1}}: \ldots: t^{a_{N}}\right) .
\end{aligned}
$$

Then the invariant $B(5)$ of X coincides with A if and only if A has the following property: Let u, v be nonnegative integers with $u_{p} v$. If $u \in A$, then $v \in A$.

This can be proved by using a characterization of $B(5)$ similar to (2.0).
Remark 5.2. We give here examples of smooth curves in $\mathbf{P}^{\mathbf{3}}$ whose invariants have the assigned type.
(a) The invariant $B(\mathfrak{5})$ of a smooth curve X in \mathbf{P}^{3} with $\operatorname{deg} X<p$ is of type (RR).
(b) (Schmidt [12]) Let $p=5$ and X be the smooth model of the plane curve $y^{5}+y-x^{3}=0$, which is nonhyperelliptic of genus 4 . Hence X can be embedded in \mathbf{P}^{3} by means of the canonical linear system Ω. Then $B(\Omega)=\{0,1,2,5\}$, which is of type (RN).
(c) Invariants $B(5)$ of the curves described in [4] are of type $\left(\mathrm{NR}_{1}\right)$.
(d) (Komiya [7]) Let $p=2$ and X be the complete intersection of $Y_{1} Y_{2}-Y_{0} Y_{3}=0$ and $\lambda Y_{0}^{3}+Y_{1}^{3}+Y_{2}^{3}+Y_{3}^{3}=0$ in \mathbf{P}^{3}, where $\lambda \neq 0,1$. This curve is smooth of genus 4 and the linear system $(5$ of line sections is canonical. Then we have $B(\mathfrak{G})=\{0,1,2,4\}$, which is of type (NN).

Recently, Hajime Kaji (private communication, April, 1989) gave an example of a smooth curve of type ($\mathrm{NR}_{\mathrm{II}}$).

Example 5.3. (Kaji) Assume that $p>3$ and $q=p^{e}(e>0)$. Let $g: \mathbf{P}^{\mathbf{1}} \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{\mathbf{1}}$ be the graph morphism of the Frobenius morphism of degree q. Consider the
morphism

$$
\begin{aligned}
\varphi: \mathbf{P}^{1} \times \mathbf{P}^{1} & \rightarrow \mathbf{P}^{3} \\
(s: t) \times(u: v) & \mapsto s\left(3 u^{2}: 2 u v: v^{2}: 0\right)+t\left(0: u^{2}: 2 u v: 3 v^{2}\right) .
\end{aligned}
$$

Let X be the image of $\varphi \circ g$. Then X is smooth of type $\left(\mathrm{NR}_{\mathrm{II}}\right)$.
Proof. Since $p_{2} \circ g: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ is purely inseparable, the Zariski tangent space $\mathscr{T}_{g(s: t)}\left(g\left(\mathbf{P}^{1}\right)\right)$ coincides with $\mathscr{T}_{g(s: t)}\left(\mathbf{P}^{1} \times\left(s^{A}: t^{q}\right)\right)$ in $\mathscr{T}_{g(s: t)}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}\right)$. Since the morphism $\varphi_{\mid \mathbf{P}^{1} \times(u: v)}: \mathbf{P}^{\mathbf{1}} \times(u: v) \rightarrow \mathbf{P}^{3}$ is an embedding, $d(\varphi \circ g)_{(s: t)} \neq 0$.

On the other hand, if $\left(u_{1}: v_{1}\right) \neq\left(u_{2}: v_{2}\right)$, then $\varphi\left(\mathbf{P}^{1} \times\left(u_{1}: v_{1}\right)\right) \cap \varphi\left(\mathbf{P}^{1} \times\left(u_{2}: v_{2}\right)\right)=\emptyset$. To prove this, we consider the twisted cubic

$$
\psi: \mathbf{P}^{1} \ni(u: v) \mapsto\left(u^{3}: u^{2} v: u v^{2}: v^{3}\right) \in \mathbf{P}^{3}
$$

Then we have $T_{\psi(u: v)}(C)=\varphi\left(\mathbf{P}^{1} \times(u: v)\right)$, where $C=\psi\left(\mathbf{P}^{1}\right)$. If $T_{\psi\left(u_{1}: v_{1}\right)}(C) \cap$ $T_{\psi\left(u_{2}: v_{2}\right)}(C) \neq \emptyset$, then there is a plane $H \subset \mathbf{P}^{3}$ with $H \supset T_{\psi\left(u_{i}: v_{i}\right)}(C)(i=1,2)$. Then we have $(H . C) \geqq 4$, which is a contradiction.

In particular, the morphism $\varphi \circ g$ is injective. Hence $\varphi \circ g$ is an embedding.
From the arguments of the previous paragraphs, we have $T_{\varphi \circ g(s: i)}(X)=$ $\varphi\left(\mathbf{P}^{1} \times\left(s^{q}: t^{q}\right)\right)$. Hence we have $\operatorname{Tan} X=\varphi\left(\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{1}\right)$. Since $\varphi\left(\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{1}\right)=\operatorname{Tan} C$ and C is of type (RR), $\varphi\left(\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{\mathbf{1}}\right)$ is reflexive and its dual is of dimension 1 (cf. [5; (4.2)]). Therefore $\operatorname{Tan} X$ is semiordinary.

Since for a general point $(s: t) \in \mathbf{P}^{1}$

$$
i\left(X \cdot T_{\varphi \circ g(s: t)}(X) ; \varphi \circ g(s: t)\right)=i\left(g\left(\mathbf{P}^{1}\right) \cdot \mathbf{P}^{1} \times\left(s^{q}: t^{q}\right) ; g(s: t)\right)=\operatorname{deg}_{p_{2}} \circ g=q
$$

X is nonreflexive. This completes the proof.
Concerning the example in (5.2.c), the referee posed the following problem.
Problem 5.4. Is the tangent surface of a (smooth) rational curve of type (NR_{1}) always a quadric surface?

Remark 5.5. It is easy to show that if $p>2$ and if X is a nonreflexive smooth curve on a smooth quadric surface, then X is one of the curves discribed in (5.2.c).

Acknowledgement. The author thanks Professor H. Kaji for many helpful conversations and the referee for valuable comments and suggestions.

References

1. Garcia, A., Voloch, J. F., Wronskians and linear independence in fields of prime characteristic, Munuscripta Math. 59 (1987), 457-469.
2. Hefez, A., Kleiman, S. L., Notes on duality of projective varieties, Geometric today, Birkhäuser, Prog. Math. 60 (1985), 143-183.
3. Homma, M., Funny plane curves in characteristic $p>0$, Comm. Algebra 15 (1987), 14691501.
4. Homma, M., Smooth curves with smooth dual varieties. Comm. Algebra 16 (1988), 15071512.
5. Homma, M., Reflexivity of tangent varieties associated with a curve, Ann. Mat. Pura Appl. (IV) 156 (1990), 195-210.
6. Kleiman, S. L., Tangency and duality, Proc. 1984 Vancouver Conf. in Algebraic Geometry. CMS Proc. 6 (1986), 163--226.
7. Komrya, K., Algebraic curves with non-classical types of gap sequences for genus three and four, Hiroshima Math. J. 8 (1978), 371-400.
8. Laksov, D., Weierstrass points on curves, Astérisque 87/88 (1981), 221-247.
9. Laksov, D., Wronskians and Plücker formulas for linear systems on curves, Ann. Scient. Ec. Norm. Sup. 17 (1984), 45-66.
10. Matzat, B. H., Ein Vortrag über Weierstrasspunkte, Karlsruhe, 1975.
11. Schmidt, F. K., Die Wronskisch Determinante in belebigen differenzierbaren Funktionenkörpern, Math. Z. 45 (1939), 62-74.
12. Schmidt, F. K., Zur arithmetischen Theorie der algebraischen Funktionen II - Allgemeine Theorie der Weierstrass punkte, Math. Z. 45 (1939), 75-96.
13. Stöhr, K. O. and Voloch, J. F., Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), 1-19.
14. Zariski, O. and Samuel, P., Commutative algebra II, Von Nostrand, Princeton, 1960.

Received May 30, 1989
in revised form December 1, 1989

Masaaki Homma
Department of Mathematics
Ryukyu University
Okinawa 903-01
Japan
(Current address)
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi 753
Japan

