Duality of space curves and their tangent surfaces in characteristic p>0

Masaaki Homma

0. Introduction

Let X be a nondegenerate complete irreducible curve in projective N-space \mathbf{P}^N over an algebraically closed field k of characteristic p. Let $\pi: \tilde{X} \to X$ be the normalization of X and \mathfrak{G} the linear system on \tilde{X} corresponding to the subspace $V_{\mathfrak{G}}=$ Image $[H^0(\mathbf{P}^N, \mathcal{O}(1)) \to H^0(\tilde{X}, \pi^* \mathcal{O}_X(1))]$. Let \tilde{P} be a point on \tilde{X} . Since X is nondegenerate, there are N+1 integers $\mu_0(\tilde{P}) < \ldots < \mu_N(\tilde{P})$ such that there are $D_0, \ldots, D_N \in \mathfrak{G}$ with $v_{\tilde{P}}(D_i) = \mu_i(\tilde{P})$ ($i=0, \ldots, N$), where $v_{\tilde{P}}(D_i)$ is the multiplicity of D_i at \tilde{P} . When p=0, the sequence $\mu_0(\tilde{P}), \ldots, \mu_N(\tilde{P})$ coincides with $0, 1, \ldots, N$ except for finitely many points. On the contrary, this is not always valid in positive characteristic. However, F. K. Schmidt [12] (when \mathfrak{G} is the canonical linear system) and other authors [8], [9], [10], [13] (for any linear systems) showed that there are N+1 integers $b_0 < \ldots < b_N$ such that $\mu_0(\tilde{P}), \ldots, \mu_N(\tilde{P})$ coincides with b_0, \ldots, b_N except for finitely many points.

From now on, we denote by $B(\mathfrak{G})$ the set of integers $\{b_0, ..., b_N\}$. Since we take an interest in the invariant $B(\mathfrak{G})$, we always assume that p>0.

What geometric phenomena does the invariant $B(\mathfrak{G})$ reflect? Roughly speaking, this invariant reflects the duality of osculating developables of X. Let Y be a closed subvariety of \mathbf{P}^N . We define the conormal variety C(Y) of Y by the Zariski closure of

 $\{(y, H^*) \in Y \times \check{\mathbf{P}}^N | y \text{ is smooth}, T_y(Y) \subset H\},\$

where $\check{\mathbf{P}}^N$ is the dual N-space of \mathbf{P}^N and $T_y(Y)$ is the (embedded) tangent space at y to Y. The image of the second projection $C(Y) \rightarrow \check{\mathbf{P}}^N$ is denoted Y^* , which is called the dual variety of Y. The original variety Y is said to be reflexive if $C(Y) \rightarrow$ Y^* is generically smooth (The Monge—Segre—Wallace criterion; see [6, page 169]). In the previous paper [5], we proved the following theorem. **Theorem 0.0** [5; Theorem 3.3]. Let v be an integer with $0 \le v \le N-2$. Assume that $b_{v+1} \ne 0 \mod p$. Then the v-th osculating developable of X is reflexive if and only if $b_{v+2} \ne 0 \mod p$.

In the present paper, we prove a more precise theorem on this line for space curves, i.e., nondegenerate curves in P^3 .

For a space curve X, one has the following five possibilities:

(RR) p > 3 and $B(\mathfrak{G}) = \{0, 1, 2, 3\};$ (RN) p > 2 and $B(\mathfrak{G}) = \{0, 1, 2, q\};$ (NR_I) $B(\mathfrak{G}) = \{0, 1, q, q+1\};$ (NR_{II}) p > 2 and $B(\mathfrak{G}) = \{0, 1, q, 2q\};$ (NN) $B(\mathfrak{G}) = \{0, 1, q, q'q\},$

where q and q' are powers of p (see proposition 1.2 below). Moreover, any case can be shown to occur (see example 2.6 below). Our theorem is as follows.

Theorem 0.1. Let X be a nondegenerate space curve and Tan X be the tangent surface of X.

(i) $B(\mathfrak{G})$ is of type (RR) $\Leftrightarrow X$ and Tan X are reflexive.

(ii) $B(\mathfrak{G})$ is of type (RN) $\Leftrightarrow X$ is reflexive and Tan X is nonreflexive.

- (iii) $B(\mathfrak{G})$ is of type (NR₁) $\Leftrightarrow X$ is nonreflexive and Tan X is ordinary.
- (iv) $B(\mathfrak{G})$ is of type $(NR_{\mathfrak{n}}) \Leftrightarrow X$ is nonreflexive and $\operatorname{Tan} X$ is semiordinary (of reflexive type).
- (v) $B(\mathfrak{G})$ is of type (NN) $\Leftrightarrow X$ and Tan X are nonreflexive.

The main tool of our proof of the theorem is the Hessian criterion of reflexivity obtained by Hefez-Kleiman [2].

1. Type of $B(\mathfrak{G})$

We will use some knowledge of the theory of Weierstrass points in positive characteristic. Surveys of this theory can be found in $[3; \S 1-2]$ and/or $[13; \S 1]$.

This section is a sort of elementary number theory. Let p be a prime number. Then a nonnegative integer u can be written uniquely as $u = \sum_{i \ge 0} u_i p^i$, where u_i are integers with $0 \le u_i < p$. We denote by $u \ge v$ (or v < u) if u > v and $u_i \ge v_i$ for all $i \ge 0$.

Lemma 1.0. Let u, v be nonnegative integers with $u \ge v$. If $u \in B(\mathfrak{G})$, then $v \in B(\mathfrak{G})$.

Duality of space curves and their tangent surfaces in characteristic p > 0

Proof. See [11; Satz 6] or [13; Cor. 1.9].

Corollary 1.1 (cf. [1; Prop. 2]). Let $B(\mathfrak{G}) = \{b_0 < b_1 < b_2 < b_3\}$ and $i_0 = \max\{i | b_i = i\}$. Then

(0) $i_0 \ge 1$, *i.e.*, $b_0 = 0$ and $b_1 = 1$.

Moreover, we assume that $i_0 < 3$. Then we have that

- (i) $b_{i_0+1} \equiv 0 \mod p$,
- (ii) if $i_0 < p$, then b_{i_0+1} is a power of p.

Proof. (0) The condition $b_0=0$ is valid for any linear system. Since the morphism corresponding to \mathfrak{G} coincides with $\pi: \tilde{X} \to X$ which is birational (hence separable), we have $b_1=1$.

(i) Write $b_{i_0+1} = ap + r$ with $0 \le r < p$. If r > 0, then $b_{i_0+1} - 1 < b_{i_0+1}$. This implies $b_{i_0+1} - 1 \in B(\mathfrak{G})$ by (1.0). Hence we have $b_{i_0+1} - 1 = b_{i_0} = i_0$, which contradicts to the choice of i_0 .

(ii) From the above, we may write as $b_{i_0+1} = up^m$ with m > 0 and (u, p) = 1. If u > 1, then $(u-1)p^m < b_{i_0}$. Hence $(u-1)p^m \in B(\mathfrak{G})$ by (1.0). Hence we have $(u-1)p^m \le b_{i_0} = i_0 < p$, which is a contradiction. \Box

The next proposition is the main purpose of this section.

Proposition 1.2. The invariant $B(\mathfrak{G})$ of a space curve over a field of characteristic p>0 must be one of the following 5-types:

- (RR) p > 3 and $B(\mathfrak{G}) = \{0, 1, 2, 3\};$
- (RN) p > 2 and $B(G) = \{0, 1, 2, q\};$
- (NR_I) $B(\mathfrak{G}) = \{0, 1, q, q+1\};$
- $(NR_{II}) p > 2 and B(\mathfrak{G}) = \{0, 1, q, 2q\};$
- (NN) $B(\mathfrak{G}) = \{0, 1, q, q'q\},\$

where q and q' are powers of p.

Proof. We know that $b_0=0$ and $b_1=1$. First we assume that p>2 and $b_2=2$. If $B(\mathfrak{G})$ is not of type (RR), then b_3 is a power of p by (1.1). This case is of type (RN).

Next we assume that $b_2>2$ or p=2. In this case, b_2 is a power of p, say q, by (1.1). Write $b_3=aq+r$ with $0 \le r < q$. Since $b_3>b_2=q$, we have $a \ge 1$. Since r < aq+r, we have $r \in B(\mathfrak{G})$. Hence r=0 or 1. If r=1, then aq < aq+1. Hence

 $aq \in B(\mathfrak{G})$ and hence $b_2 = aq$. So we have a=1. This case is of type (NR_I). Next we consider the case r=0. Write $a=up^m$ with (u, p)=1. If u=1, then this case is of type (NN). Suppose that u>1. Write u=u'p+u'' with $0 \le u'' < p$. Since (u, p)=1, we have u''>0. Hence we have

$$b_3 = aq = up^m q = u'p^{m+1}q + u''p^m q > u'p^{m+1}q + (u''-1)p^m q.$$

Hence $u'p^{m+1}q + (u''-1)p^mq \in B(\mathfrak{G})$. Since $u'p^{m+1}q + (u''-1)p^mq \equiv 0 \mod q$, this must coincide with b_2 . Hence we have

$$u'p^{m+1}q + (u''-1)p^mq = q,$$

and hence we have u'=0, u''=2, i.e., $b_3=2q$. This completes the proof.

Remark 1.3. In the next section, we will show that for each type of $B(\mathfrak{G})$ described in (1.2), there is a nondegenerate space curve whose $B(\mathfrak{G})$ has the assigned type.

2. Some properties of $B(\mathfrak{G})$

Let Reg X be the open set of smooth points of X. We will identify Reg X with $\pi^{-1}(\operatorname{Reg} X)$. Let $P \in \operatorname{Reg} X$ be a general point. Choose a plane section G_0 of X such that $P \notin \operatorname{Supp} G_0$. Let $\tilde{G}_0 \in \mathfrak{G}$ corresponding to G_0 via the isomorphism

(1)
$$H^{0}(\mathbf{P}^{3}, \mathscr{O}_{\mathbf{P}^{3}}(1)) \simeq V_{\mathfrak{G}} \subset H^{0}(\widetilde{X}, \pi^{*}\mathscr{O}_{X}(1)).$$

Then we have the commutative diagram:

2.0. A characterization of $B(\mathfrak{G})$. Let $t \in \mathcal{O}_{X,P}$ be a local parameter at P. Identifying the field of fractions of $\widehat{\mathcal{O}}_{X,P}$ with k((t)) and viewing $k(X) \subset k((t))$ via this identification, we can define iterative derivations $\{D_t^{(v)}|v=0, 1, 2, ...\}$ on k(X) such that $D_t^{(v)}(t^m) = {m \choose v} t^{m-v}$ (see, [5; appendix]). Let $f_0, ..., f_3$ be a basis of $L(\mathfrak{G}; \widetilde{\mathcal{G}}_0)$. Then the sequence $\{b_0 < b_1 < b_2 < b_3\}$ coincides with the minimal element of

$$\{\mu_0 < \mu_1 < \mu_2 < \mu_3 | \det (D_t^{(\mu_i)} f_j)_{(i,j)} \neq 0\}$$

by lexicographic order (see [3; § 1] or [13; page 5]).

Duality of space curves and their tangent surfaces in characteristic p > 0

Remark 2.1. Let us consider the vector space $\oplus^4 k(X)$ over k(X) and denote by V_m the subspace generated by

$$\{(D_t^{(\nu)}f_0, D_t^{(\nu)}f_1, D_t^{(\nu)}f_2, D_t^{(\nu)}f_3)|0 \le \nu \le m\}.$$

Then we have

(3)
$$V_0 \subseteq V_1 = \ldots = V_{b_2-1} \subseteq V_{b_2} = \ldots = V_{b_3-1} \subseteq V_{b_3} = \bigoplus k(X)$$

by the preceding characterization of $B(\mathfrak{G})$.

2.2. Standard coordinates on \mathbf{P}^3 with respect to P. It is obvious that we can choose a basis x_0 , x_1 , x_2 , x_3 of $L(\mathfrak{G}; \tilde{\mathcal{G}}_0)$ such that

$$0 = v_{\mathbf{P}}(x_0) < v_{\mathbf{P}}(x_1) < v_{\mathbf{P}}(x_2) < v_{\mathbf{P}}(x_3),$$

where v_P is the valuation of $\mathcal{O}_{X,P}$. Note that since P is a general point, this sequence is nothing but $\{b_0 < b_1 < b_2 < b_3\}$. The sections $X_0, ..., X_3$ of $H^0(\mathbf{P}^3, \mathcal{O}(1))$ corresponding to $x_0, ..., x_3$ via isomorphisms (1) and (2) are called standard coordinates on \mathbf{P}^3 with respect to P.

Remark 2.3. With the above notations,

- (a) the plane section $X_0=0$ on X is G_0 ;
- (b) the rational function on X obtained by X_i/X_0 is x_i .

Remark 2.4. Let $X_0, ..., X_3$ be standard coordinates on \mathbf{P}^3 with respect to a general point P of X and x_i be the restriction of X_i/X_0 to X (i=0,...,3). Since $1=b_1=v_P(x_1)$, we may consider x_1 itself as a local parameter at P. Moreover replacing, if necessary, X_2 and X_3 by c_2X_2 and c_3X_3 for suitable $c_2, c_3 \in k^{\times}, x_0, ..., x_3$ can be expanded by $t=x_1$ as:

(4)
$$\begin{cases} x_0 = 1 \\ x_1 = t \\ x_2 = t^{b_2} + (\text{higher order terms}) \\ x_3 = t^{b_3} + (\text{higher order terms}). \end{cases}$$

Lemma 2.5. Under the above notations, suppose that $b_2 > 2$. Then we have

$$D_t^{(v)} x_2 = 0$$
 and $D_t^{(v)} x_3 = 0$ for $2 \le \forall v < b_2$

Proof. From (3) in remark 2.1, we have that the rank of

$$\begin{pmatrix} D_t^{(0)} x_0 & D_t^{(0)} x_1 & D_t^{(0)} x_2 & D_t^{(0)} x_3 \\ D_t^{(1)} x_0 & D_t^{(1)} x_1 & D_t^{(1)} x_2 & D_t^{(1)} x_3 \\ D_t^{(v)} x_0 & D_t^{(v)} x_1 & D_t^{(v)} x_2 & D_t^{(v)} x_3 \end{pmatrix}$$

is 2, if $2 \le v < b_2$. Since

$$(D_t^{(i)} x_j)_{\substack{i=0,1,\nu\\j=0,1,2,3}}^{i=0,1,\nu} = \begin{pmatrix} 1 & x_1 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & D_t^{(\nu)} x_2 & D_t^{(\nu)} x_3 \end{pmatrix}$$

by (4), we have $D_t^{(v)} x_2 = D_t^{(v)} x_3 = 0$ if $2 \le v < b_2$. \Box

Example 2.6. Let us consider the morphism

$$\pi: \mathbf{P}^1 \to \mathbf{P}^3$$
 with homogeneous coordinates Y_0, \dots, Y_3
 $t \mapsto (1:t:t^u:t^v)$

with

$$2 \leq u < v$$
,

and let us denote by X the image of π . Then $\pi: \mathbf{P}^1 \to X$ is the normalization of X. Let \mathfrak{G} be the linear system on \mathbf{P}^1 corresponding to the plane sections on X. Let $c \in \mathbf{P}^1$ be a general point. Let s = t - c. Then the coordinate functions $y_i(=(Y_i/Y_0)|_X)$ can be expressed by using s as follows;

(5)
$$\begin{cases} y_0 = 1 \\ y_1 = c + s \\ y_2 = (c + s)^u \\ y_3 = (c + s)^v. \end{cases}$$

Let q be a power of p. If u=2 and v=q, then (5) is rewritten as

$$y_{0} = 1$$

$$y_{1} - cy_{0} = s$$

$$y_{2} - c^{2} y_{0} - 2c(y_{1} - cy_{0}) = s^{2}$$

$$y_{3} - c^{q} y_{0} = s^{q}.$$

Let $\tilde{G}_0 = q \cdot \infty$ on \mathbb{P}^1 . Then $\tilde{G}_0 \in \mathfrak{G}$ and

$$L(\mathfrak{G}; \hat{G}_0) = \langle y_0, y_1 - cy_0, y_2 - c^2 y_0 - 2c(y_1 - cy_0), y_3 - c^q y_0 \rangle.$$

Hence we have $B(\mathfrak{G}) = \{0, 1, 2, q\}.$

By arguments similar to that of the above case, we can show that

if u = 2, v = 3, then $B(\mathfrak{G}) = \{0, 1, 2, 3\};$ if u = q, v = q+1, then $B(\mathfrak{G}) = \{0, 1, q, q+1\};$ if u = q, v = 2q, then $B(\mathfrak{G}) = \{0, 1, q, 2q\};$ if u = q, v = q'q, then $B(\mathfrak{G}) = \{0, 1, q, q'q\},$

where q and q' are powers of p.

226

Note that $B(\mathfrak{G})$ is not always $\{0, 1, u, v\}$, which is the "gap sequence" at the origin (properly speaking, $\{1, 2, u+1, v+1\}$ is the gap sequence at the origin). The origin may be a \mathfrak{G} -Weierstrass point. For example, if u=2, v=q+1, then $B(\mathfrak{G})=\{0, 1, 2, q\}$.

3. Tangential properties of a space curve

First we review the Hessian criterion of reflexivity of projective varieties (for details, see [2; 3.2] or [6; page 176]).

Let Y be a closed subvariety of dimension n, C(Y) the conormal variety of Y and Y^* the dual variety of Y.

Let $P \in \operatorname{Reg} Y$ and t_1, \ldots, t_n a system of local parameters of $\mathcal{O}_{Y,P}$. Let H be a hyperplane with $T_P(Y) \subset H$ and $h \in \mathcal{O}_{Y,P}$ a local equation of H at P.

The Hessian rank at $(P, H^*) \in C(Y)^0$ is defined as the rank of the matrix $\left(\frac{\partial^2 h}{\partial t_i \partial t_j}(P)\right)_{(i,j)}$, where $C(Y)^0 = C(Y) \cap (\operatorname{Reg} Y) \times Y^*$. Since the Hessian rank is lower semicontinuous on $C(Y)^0$, we may define the Hessian rank h_Y of Y by the Hessian rank at a general point $(P, H^*) \in C(Y)^0$.

The duality codefect $c_{\mathbf{Y}}$ of Y is defined by

$$c_{\mathbf{Y}} = \dim \mathbf{Y} + \dim \mathbf{Y}^* - (N-1).$$

Note that the inequality $h_{y} \leq c_{y}$ holds.

Hessian criterion (Hefez-Kleiman). Y is reflexive if and only if $h_y = c_y$.

When Y is a hypersurface, the matrix $\left(\frac{\partial^2 h}{\partial t_i \partial t_j}(P)\right)$ is an $(N-1) \times (N-1)$ matrix. Hence $h_Y \leq N-1$. If $h_Y = N-1$, Y is said to be ordinary. In this case, Y is reflexive and Y* is a hypersurface, since $c_Y = \dim Y^* \leq N-1$. If $h_Y = N-2$, Y is said to be semiordinary. If Y is semiordinary, then

- (i) Y is reflexive $\Leftrightarrow \dim Y^* = N 2$
- (ii) Y is nonreflexive $\Leftrightarrow \dim Y^* = N 1$.

When the first case occurs, Y is said to be semiordinary of reflexive type. When the second case occurs, Y is said to be semiordinary of nonreflexive type.

Now let us return to that problem of space curves. Our result can be summarized in the following table.

Table 3.0. Let X be a nondegenerate space curve, \mathfrak{G} the linear system on \tilde{X} corresponding to the plane sections of X and Tan X the tangent surface of X.

Type of $B(\mathfrak{G})$	Reflexivity of X	$h_{\mathrm{Tan}X}$	$\dim (\operatorname{Tan} X)^*$	Reflexivity of Tan X
(RR)	Reflexive	1	1	Reflexive
(RN)	Reflexive	0	1	Nonreflexive
(NR _I)	Nonreflexive	2	2	Reflexive
(NR ₁₁)	Nonreflexive	1	1	Reflexive
(NN)	Nonreflexive	0	1	Nonreflexive

3.1. Notes to accompany table 3.0.

(0) Table 3.0 with Proposition 1.2 implies our main theorem (Theorem 0.1).

(i) Since Tan X is a surface in \mathbb{P}^3 , the duality codefect of Tan X coincides with dim (Tan X)^{*}. Therefore the last column in the table follows from the preceding two columns.

(ii) The first two rows and the column of reflexivity of X result from the previous paper (see theorem 0.0 and [5; (3.1)]). Therefore, to complete the table, it suffices to show the following theorem.

Theorem 3.2. Notations are same as in (3.0).

(i) If $B(\mathfrak{G})$ of X is of type (NR₁), then $h_{\operatorname{Tan} X} = 2$ and dim (Tan X)*=2.

(ii) If $B(\mathfrak{G})$ of X is of type (NR_{II}), then $h_{\operatorname{Tan }X} = 1$ and dim (Tan X)^{*} = 1.

(iii) If B(\mathfrak{G}) of X is of type (NN), then $h_{\text{Tan }X}=0$ and dim (Tan X)*=1.

This theorem will be proved in the next section.

4. Proof of theorem 3.2.

In this section, we give a proof of theorem 3.2. Let X be a space curve whose $B(\mathfrak{G})$ is of type (NR₁) or (NR₁) or (NN).

Choose a general point Q of Tan X. We may assume that there is a point $P \in \operatorname{Reg}^0(X)$ with $Q \in T_P(X)$, where $\operatorname{Reg}^0(X) = \{P \in \operatorname{Reg} X | \mu_i(P) = b_i \ (0 \le \forall i \le 3)\}$.

Let G_0 be a hyperplane section of X such that Supp $G_0 \not\ni P, Q$ and let \tilde{G}_0 be the divisor on \tilde{X} corresponding to G_0 (cf. § 2).

Choose $x_0, x_1, x_2, x_3 \in L(\mathfrak{G}; \tilde{G}_0)$ such that $x_0=1, x_1=t$ is a local parameter at P and

(6)
$$\begin{cases} x_2 = t^q + \sum_{i>q} \alpha_i t^i \\ x_3 = t^{b_3} + \sum_{i>b_3} \beta_i t^i \end{cases}$$

in $\hat{\theta}_{X,P} = k[[t]]$ (cf. 1.3 and 1.5). The system of coordinates of \mathbf{P}^3 corresponding to $x_0, ..., x_3$ via a natural isomorphism $L(\mathfrak{G}; \tilde{G}_0) \cong H^0(\mathbf{P}^3, \mathcal{O}(1))$ (cf. 2.2) will be denoted $X_0, ..., X_3$.

Lemma 4.0. In the expression (6), if $\alpha_i \neq 0$ or $\beta_i \neq 0$, then $i \equiv 0$ or $1 \mod q$.

Proof. Let *i* be a positive integer with $i \neq 0, 1 \mod q$. Hence we may write as i=aq+r with $2 \leq r < q$. Letting $D_t^{(r)}$ operate on x_2 , we have

$$D_t^{(r)} x_2 = \dots + \binom{aq+r}{r} \alpha_i t^{aq} + \dots$$

in $\hat{\emptyset}_{x, P} = k[[t]]$. Since $D_t^{(r)} x_2 = 0$ (by 2.5) and $\binom{aq+r}{r} \equiv 1 \mod p$, we have $\alpha_i = 0$. Similarly, we have $\beta_i = 0$ if $i \not\equiv 0, 1 \mod q$. \Box

Choose an open subset V of X such that

- (a) $P \in V \subset \operatorname{Reg}^{0}(X)$,
- (b) $t_{|V}: V \rightarrow t(V)(\subset \mathbf{P}^1)$ is an étale covering,
- (c) x_1, x_2, x_3 are regular on V.

Then the morphism

(7)
$$\psi = \psi_P \colon V \times \mathbf{A}^1 \to \operatorname{Tan} X \cap \{X_0 \neq 0\} \subset \mathbf{A}^3_{(X_1/X_0, X_2/X_0, X_3/X_0)} \subset \mathbf{P}^3$$
$$(\eta, c) \mapsto \vec{x}(\eta) + y(c) D_t^{(1)} \vec{x}(\eta)$$

is well-defined and generically surjective, where $\vec{x} = (x_1, x_2, x_3)$ and y is a coordinate function of A¹ (cf. [5; § 2]).

Since $X_0(Q) \neq 0$ and $Q \in T_P(X)$, there is a point $c \in A^1$ such that $Q = \psi(P, c) = (c, 0, 0)$.

Put $s=y-c\in \mathcal{O}_{\mathbf{A}^1,c}$. Then we have

$$\hat{\theta}_{V\times\mathbf{A}^{1},(P,c)}=k[[s,t]].$$

Let us consider the functions on Tan X

$$z_1 = \left(\frac{X_1}{X_0} - c\right) |\operatorname{Tan} X$$
$$z_2 = \frac{X_2}{X_0} |\operatorname{Tan} X$$
$$z_3 = \frac{X_3}{X_0} |\operatorname{Tan} X.$$

Since the maximal ideal of $\mathcal{O}_{\mathbf{P}^3, Q}$ is generated by $\frac{X_1}{X_0} - c$, $\frac{X_2}{X_0}$, $\frac{X_3}{X_0}$, that of $\mathcal{O}_{\mathrm{Tan} X, Q}$ is generated by z_1, z_2, z_3 .

Lemma 4.1. Let

$$\psi^* \colon \hat{\mathcal{O}}_{\operatorname{Tan} X, Q} \to \hat{\mathcal{O}}_{V \times A^1, (P, c)} = k \left[[s, t] \right]$$

be the homomorphism induced by $\psi_{\mathbf{P}}$. Then

$$\begin{split} \psi^* z_1 &= t + s \\ \psi^* z_2 &= t^q + \sum_{k \ge 2} \alpha_{kq} t^{kq} + \sum_{k \ge 1} \alpha_{kq+1} (t + s + c) t^{kq} \\ \psi^* z_3 &= \begin{cases} (t + s + c) t^q + \sum_{k \ge 2} \beta_{kq} t^{kq} + \sum_{k \ge 2} \beta_{kq+1} (t + s + c) t^{kq} \\ if & B(\mathfrak{G}) & is \ of \ type \ (\mathrm{NR}_{\mathrm{I}}) \end{cases} \\ t^{2q} + \sum_{k \ge 3} \beta_{kq} t^{kq} + \sum_{k \ge 2} \beta_{kq+1} (t + s + c) t^{kq} \\ if & B(\mathfrak{G}) \quad is \ of \ type \ (\mathrm{NR}_{\mathrm{I}}) \end{cases} \\ t^{q'q} + \sum_{k > q'} \beta_{kq} t^{kq} + \sum_{k \ge q'} \beta_{kq+1} (t + s + c) t^{kq} \\ if & B(\mathfrak{G}) \quad is \ of \ type \ (\mathrm{NR}_{\mathrm{I}}) \end{cases} \end{split}$$

Proof. By definitions of z_1 , z_2 , z_3 and ψ , we have

$$\psi^* z_1 = x_1 + y D_t^{(1)} x_1 - c$$

$$\psi^* z_2 = x_2 + y D_t^{(1)} x_2$$

$$\psi^* z_3 = x_3 + y D_t^{(1)} x_3.$$

Using the expression (6) and lemma 4.0, we get the expression of $\psi^* z_1$, $\psi^* z_2$ and $\psi^* z_3$ as above.

Put

(8)
$$\begin{cases} u = t + s \\ v = t^q. \end{cases}$$

Then the expressions of $\psi^* z_1$, $\psi^* z_2$, $\psi^* z_3$ may be rewritten as:

(9)
$$\begin{cases} \psi^* z_1 = u \\ \psi^* z_2 = (1 + \alpha_{q+1}c)v + (\alpha_{2q} + \alpha_{2q+1}c)v^2 + \alpha_{q+1}uv + (\text{higher order terms on } u \& v), \\ \psi^* z_3 = \begin{cases} cv + (\beta_{2q} + \beta_{2q+1})v^2 + uv + (\text{higher order terms on } u \& v), \\ (1 + \beta_{2q+1}c)v^2 + (\text{higher order terms on } u \& v), \\ (1 + \beta_{2q+1}c)v^2 + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher order terms on } u \& v), \\ \psi^{\prime\prime} + (\text{higher$$

Lemma 4.2. If Q was chosen as sufficiently general, then $\hat{\mathbb{O}}_{\text{Tan X},Q} \simeq k[[u, v]]$ via ψ^* .

Proof. There is the tower of rings;

$$k[[s, t]] \supset k[[u, v]] \supset \psi^* \widehat{\mathcal{O}}_{\operatorname{Tan} X, Q} \supset k[[\psi^* z_1, \psi^* z_2]].$$

Since Q is sufficiently general, we may assume that $1 + \alpha_{q+1}c \neq 0$. Hence, in the expression (9), the linear terms of $\psi^* z_1$ and $\psi^* z_2$ are linearly independent over k. Hence we have $k[[u, v]] = k[[\psi^* z_1, \psi^* z_2]]$ (see [14; VII cor. 2 to lemma 2]). Hence $\psi^*: \hat{\mathcal{O}}_{\text{Tan } X, Q} \rightarrow k[[u, v]]$ is surjective. Since both sides are formal power series rings over k of two variables, this is an isomorphism.

From now on, we assume that Q was chosen as sufficiently general and identify $\hat{U}_{Tan X, Q}$ with k[[u, v]] via ψ^* .

The following lemma is elementary.

Lemma 4.3. Let Y be a surface in $A^3_{(Z_1, Z_2, Z_3)}$ with a smooth point at the origin O and $\{u, v\}$ a system of local parameters of $\hat{O}_{Y,O}$. Let z_1, z_2, z_3 be images in $\hat{O}_{Y,O}$ of coordinate functions Z_1, Z_2, Z_3 , respectively and let

$$z_1 = p_1(u, v)$$
$$z_2 = p_2(u, v)$$
$$z_3 = p_3(u, v)$$

in $k[[u, v]] = \hat{O}_{Y, O}$.

If $h(Z_1, Z_2, Z_3) = 0$ is an equation of the tangent plane to Y at O, then we have

$$h(z_1, z_2, z_3) \approx \gamma \begin{vmatrix} z_1 & z_2 & z_3 \\ \frac{\partial p_1}{\partial u}(0) & \frac{\partial p_2}{\partial u}(0) & \frac{\partial p_3}{\partial u}(0) \\ \frac{\partial p_1}{\partial v}(0) & \frac{\partial p_2}{\partial v}(0) & \frac{\partial p_3}{\partial v}(0) \end{vmatrix}$$

in $\hat{\theta}_{\gamma,o} = k[[u,v]]$, where $\gamma \in k^{\times}$.

Let us return to our proof.

Let $h(Z_1, Z_2, Z_3)=0$ be an equation of the tangent plane to Tan X at Q.

Using (9), we have

$$\frac{\partial z_1}{\partial u}(0) = 1, \quad \frac{\partial z_1}{\partial v}(0) = 0,$$

$$\frac{\partial z_2}{\partial u}(0) = 0, \quad \frac{\partial z_2}{\partial v}(0) = 1 + \alpha_{q+1}c,$$

$$\frac{\partial z_3}{\partial u}(0) = 0, \quad \frac{\partial z_3}{\partial v}(0) = \begin{cases} c & \text{if } B(\mathfrak{G}) \text{ is of type (NR_1)} \\ 0 & \text{otherwise.} \end{cases}$$

Hence, by lemma 4.3, we may assume that

$$h(z_1, z_2, z_3) = \begin{cases} -cz_2 + (1 + \alpha_{q+1}c)z_3 & \text{if } B(\mathfrak{G}) & \text{is of type (NR_I)} \\ z_3 & \text{otherwise.} \end{cases}$$

Now, we compute the Hessian rank of Tan X. Put

$$H = \begin{pmatrix} \frac{\partial^2 h}{\partial u^2}(0) & \frac{\partial^2 h}{\partial u \partial v}(0) \\ \frac{\partial^2 h}{\partial u \partial v}(0) & \frac{\partial^2 h}{\partial v^2}(0) \end{pmatrix}.$$

Case 1. $B(\mathfrak{G})$ is of type (NR_I). Since

$$h(z) = \{(1 + \alpha_{q+1}c)(\beta_{2q} + \beta_{2q+1}) - c(\alpha_{2q} + \alpha_{2q+1}c)\}v^2 + uv + (\text{higher order terms on } u \& v),$$

we have $H = \begin{pmatrix} 0 & 1 \\ 1 & * \end{pmatrix}$. Therefore $h_{\operatorname{Tan} X} = 2$.

Case 2. $B(\mathfrak{G})$ is of type (NR_{II}).

In this case,

$$h(z) = (1 + \beta_{2u}c)v^2 + (\text{higher order terms on } u \& v).$$

Hence we have $H = \begin{pmatrix} 0 & 0 \\ 0 & 2(1+\beta_{2q}c) \end{pmatrix}$. Since Q is general and p > 2, we have rank H=1, i.e., $h_{\text{Tan }X}=1$.

Case 3. B(6) is of type (NN). Since

 $h(z) = v^{q'} + (\text{higher order terms on } u \& v)$

and q' is a power of p, we have rank H=0.

When the first case occur, $\operatorname{Tan} X$ is ordinary. Hence $\dim (\operatorname{Tan} X)^* = 2$.

232

When one of the remaining two cases occur, the tangent planes to Tan Xalong the line $T_P(X)$ are constant, equal to the plane $X_3=0$. Therefore, a general fibre of q: Tan $X \rightarrow (Tan X)^*$ has positive dimension. This means dim $(Tan X)^* \leq 1$. Since Tan X is not a plane (because X is nondegenerate), dim $(Tan X)^* \ge 1$. Hence we have dim $(Tan X)^* = 1$. This completes the proof.

5. Miscellaneous remarks

The first remark is concerned with example 2.6.

Remark 5.1. Example 2.6 can be generalized as follows. Let

$$A = \{a_0 < a_1 < \ldots < a_N\}$$

be a set of nonnegative integers with $a_0=0$ and $a_1=1$. Let X be the image of

$$\mathbf{P}^1 \to \mathbf{P}^N$$
$$t \mapsto (t^{a_0} : t^{a_1} : \dots : t^{a_N})$$

Then the invariant $B(\mathfrak{G})$ of X coincides with A if and only if A has the following property: Let u, v be nonnegative integers with $u \ge v$. If $u \in A$, then $v \in A$.

This can be proved by using a characterization of $B(\mathfrak{G})$ similar to (2.0).

Remark 5.2. We give here examples of smooth curves in P³ whose invariants have the assigned type.

(a) The invariant $B(\mathfrak{G})$ of a smooth curve X in \mathbb{P}^3 with deg X < p is of type (RR).

(b) (Schmidt [12]) Let p=5 and X be the smooth model of the plane curve $y^5 + y - x^3 = 0$, which is nonhyperelliptic of genus 4. Hence X can be embedded in **P**³ by means of the canonical linear system \Re . Then $B(\Re) = \{0, 1, 2, 5\}$, which is of type (RN).

(c) Invariants $B(\mathfrak{G})$ of the curves described in [4] are of type (NR₁).

(d) (Komiya [7]) Let p=2 and X be the complete intersection of $Y_1Y_2-Y_0Y_3=0$ and $\lambda Y_0^3 + Y_1^3 + Y_2^3 + Y_3^3 = 0$ in P³, where $\lambda \neq 0, 1$. This curve is smooth of genus 4 and the linear system 6 of line sections is canonical. Then we have $B(6) = \{0, 1, 2, 4\}$, which is of type (NN).

Recently, Hajime Kaji (private communication, April, 1989) gave an example of a smooth curve of type (NR_{Π}).

Example 5.3. (Kaji) Assume that p>3 and $q=p^e$ (e>0). Let $g: \mathbf{P}^1 \rightarrow \mathbf{P}^1 \times \mathbf{P}^1$ be the graph morphism of the Frobenius morphism of degree q. Consider the

morphism

$$\varphi \colon \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^3$$

(s:t)×(u:v) \mapsto s(3u²:2uv:v²:0)+t(0:u²:2uv:3v²).

Let X be the image of $\varphi \circ g$. Then X is smooth of type (NR_{II}).

Proof. Since $p_2 \circ g: \mathbf{P}^1 \to \mathbf{P}^1$ is purely inseparable, the Zariski tangent space $\mathscr{T}_{g(s:t)}(g(\mathbf{P}^1))$ coincides with $\mathscr{T}_{g(s:t)}(\mathbf{P}^1 \times (s^q: t^q))$ in $\mathscr{T}_{g(s:t)}(\mathbf{P}^1 \times \mathbf{P}^1)$. Since the morphism $\varphi_{|\mathbf{P}^1 \times (u:v)}: \mathbf{P}^1 \times (u:v) \to \mathbf{P}^3$ is an embedding, $d(\varphi \circ g)_{(s:t)} \neq 0$.

On the other hand, if $(u_1:v_1) \neq (u_2:v_2)$, then $\varphi(\mathbf{P}^1 \times (u_1:v_1)) \cap \varphi(\mathbf{P}^1 \times (u_2:v_2)) = \emptyset$. To prove this, we consider the twisted cubic

$$\psi: \mathbf{P}^1 \ni (u:v) \mapsto (u^3: u^2v: uv^2: v^3) \in \mathbf{P}^3.$$

Then we have $T_{\psi(u_i:v)}(C) = \varphi(\mathbf{P}^1 \times (u:v))$, where $C = \psi(\mathbf{P}^1)$. If $T_{\psi(u_i:v_i)}(C) \cap T_{\psi(u_i:v_i)}(C) \neq \emptyset$, then there is a plane $H \subset \mathbf{P}^3$ with $H \supset T_{\psi(u_i:v_i)}(C)$ (i=1, 2). Then we have $(H,C) \ge 4$, which is a contradiction.

In particular, the morphism $\varphi \circ g$ is injective. Hence $\varphi \circ g$ is an embedding. From the arguments of the previous paragraphs, we have T = (X) = (X)

From the arguments of the previous paragraphs, we have $T_{\varphi \circ g(s:t)}(X) = \varphi(\mathbf{P}^1 \times (s^q:t^q))$. Hence we have $\operatorname{Tan} X = \varphi(\mathbf{P}^1 \times \mathbf{P}^1)$. Since $\varphi(\mathbf{P}^1 \times \mathbf{P}^1) = \operatorname{Tan} C$ and C is of type (RR), $\varphi(\mathbf{P}^1 \times \mathbf{P}^1)$ is reflexive and its dual is of dimension 1 (cf. [5; (4.2)]). Therefore Tan X is semiordinary.

Since for a general point $(s:t) \in \mathbf{P}^1$

$$i(X \cdot T_{\varphi \circ g(s:t)}(X); \varphi \circ g(s:t)) = i(g(\mathbf{P}^1) \cdot \mathbf{P}^1 \times (s^q:t^q); g(s:t)) = \deg p_2 \circ g = q,$$

X is nonreflexive. This completes the proof.

Concerning the example in (5.2.c), the referee posed the following problem.

Problem 5.4. Is the tangent surface of a (smooth) rational curve of type (NR_i) always a quadric surface?

Remark 5.5. It is easy to show that if p>2 and if X is a nonreflexive smooth curve on a smooth quadric surface, then X is one of the curves discribed in (5.2.c).

Acknowledgement. The author thanks Professor H. Kaji for many helpful conversations and the referee for valuable comments and suggestions.

References

- 1. GARCIA, A., VOLOCH, J. F., Wronskians and linear independence in fields of prime characteristic, Munuscripta Math. 59 (1987), 457-469.
- HEFEZ, A., KLEIMAN, S. L., Notes on duality of projective varieties, Geometric today, Birkhäuser, Prog. Math. 60 (1985), 143-183.

Duality of space curves and their tangent surfaces in characteristic p>0

- 3. HOMMA, M., Funny plane curves in characteristic p>0, Comm. Algebra 15 (1987), 1469-1501.
- 4. HOMMA, M., Smooth curves with smooth dual varieties, Comm. Algebra 16 (1988), 1507-1512.
- 5. HOMMA, M., Reflexivity of tangent varieties associated with a curve, Ann. Mat. Pura Appl. (IV) 156 (1990), 195-210.
- 6. KLEIMAN, S. L., Tangency and duality, Proc. 1984 Vancouver Conf. in Algebraic Geometry. CMS Proc. 6 (1986), 163-226.
- KOMIYA, K., Algebraic curves with non-classical types of gap sequences for genus three and four, *Hiroshima Math. J.* 8 (1978), 371-400.
- 8. LAKSOV, D., Weierstrass points on curves, Astérisque 87/88 (1981), 221-247.
- 9. LAKSOV, D., Wronskians and Plücker formulas for linear systems on curves, Ann. Scient. Ec. Norm. Sup. 17 (1984), 45--66.
- 10. MATZAT, B. H., Ein Vortrag über Weierstrasspunkte, Karlsruhe, 1975.
- SCHMIDT, F. K., Die Wronskisch Determinante in belebigen differenzierbaren Funktionenkörpern, Math. Z. 45 (1939), 62-74.
- SCHMIDT, F. K., Zur arithmetischen Theorie der algebraischen Funktionen II Allgemeine Theorie der Weierstrass punkte, Math. Z. 45 (1939), 75–96.
- 13. STÖHR, K. O. and VOLOCH, J. F., Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), 1-19.
- 14. ZARISKI, O. and SAMUEL, P., Commutative algebra II, Von Nostrand, Princeton, 1960.

Received May 30, 1989 in revised form December 1, 1989 Masaaki Homma Department of Mathematics Ryukyu University Okinawa 903-01 Japan

(Current address) Department of Mathematics Faculty of Education Yamaguchi University Yamaguchi 753 Japan