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1. Introduction 

Suppose B is a bounded convex symmetric body in R" and let I �9 I be the Min- 
kowski norm associated with B, i.e. 

Ix] = i n f { t > O :  t-lxEB}, x~R". 
Let m~L=(O, ~). Denote by ne t the function 

m,(s)=m(ts) (t>O, s>O). 
We define operators T,,, ( t>0)  on L2(R ") by 

(T,.,f)  ̂  (r = m, (l ~ l)f(r 

If  rnCL~(O, ~) and 0<~=<1, the fractional integral of order ~. of  m is defined as 
in [5] (see also [6]). That is, we set 

[ l___~f,~(s_t)~_lm(s)ds ' if  0 <  t < a ) ,  
(l)  l~,(m)(t)=iF(~) , 

if t ~ w  ; 

and, if  0 < ~ < 1  and I~-'(m) is locally absolutely continuous for every (o>0, we 
define the fractional derivative m (~) by 

(2) m(')(t)= l im(--d llo-'rn(t)). 

Moreover, by induction over the integer part [a] of  a, we define for arbitrary a > 0  

(29 ,n~'~ (0  = - ~ , ~ P -  ~ (t), dt 
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provided this makes sense, i.e. that I z-~ o~ , m <~), ..., m (~-~) are absolutely continuous, 
where 6 = ~ -  [e]. 

Notice that for m with compact  support  in R + 

(3)  (m <~)) ~ (~) = ( -  iO~r~(~), 

where ( - i~ )  ~ is defined by the principal branch. 
We will consider the localized Riemann--Liouville spaces RL(2, ~) which are 

defined (cf. [3]) by 

1 RL(2, c~) = {mELt(0 ,  ~):  ][m]IRL~2 ,) < ~) ,  if c~ > ~-, 
where 

]l #nll Rz~2, ~) = sup [I (zm,) (~)112- 
t > 0  

Here zCCo(0,  ~ )  is an arbitrary fixed non-negative and non-trivial bump func- 
tion. It  is known [3] that the space RL(2, or) does not depend on the choice of  Z. For  

convenience we will choose Z such that 

(4) zEC~'(O,~),Z(t)>=O, s u p p z c  ,1  , and Z ( 0 = I  for ~ - < t < - - f f .  

We will also consider the space of  functions of  weak bounded variation WBVq,, in 
the case q = 2  and a > 0 .  By definition (see [7]) WBV~,~ is the space of  all mELOn 
C(0, ~ )  for which m (~] exists in the sense of  (2') and whose norm 

(5) limil: : = l im l l=+sup / [  :~ I,:m<~)(,)i'~ ~ }  '~ 
' kEZ t - - l k -  1 

is finite. F rom [3], Theorem2,  we know that for ~>1 /2  

(6) m:(2, :0 = wB~,=, 
with equivalent norms. 

Remark. I f  m is supported in a compact  interval [a, b], 0 < a < b < ~ ,  then for 

x<a/2 
O( b 

m'~' (x) = r C1 - ~ f~ ( , -  x ) -~ - lm  (,) dr, 
hence 

lm~=)(x)l -< C=Nmll~l(b-x)-=-(a- x)-= I 
and 

(f"_/~ I ()1 dx) '11 il FI1 (~t) X 2 112 < C Ftl 

These estimates easily imply that for 0 < ~ < 1 ,  there exist constants c, C>O,  de- 
pending only on ~ and a, b, such that 

I I .~ I 'l . . . ( x )  ' Cllmll~,~. ( 7 )  cilmll~,~ ~ l i " ' l t ~  i t i t  2 ~ 
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Moreover ,  if  ~>1 /2 ,  by (6) we also have 

(8) clImlIRL~2,:) <---- Ilm(')ll2 --<-- CIImlIRL~2,:).  

We denote by ~p a function on [0, co] which is non-decreasing and satisfies the fol- 
lowing condi t ion:  

(9) 1 -< ~p(2t) <_- 2~p(t) for some 2 _->= 1. 

We write th roughout  this paper  

(10) /1 = log2 2, 

where ). is smallest possible to satisfy (9). 
It is easy to see that  

{ q~(t) <= ~p(2)t ~ if t :> 1, 
(11) ~. 

~p(st)>= s~+p(t) if  t ~ O  and O < = s ~  I. 

Corresponding to q~ we define 

!k(t) = , p ( l ) + { f :  +~ ~~ ds} ~/~'" 

Then ~k is also non-decreasing and satisfies (9), possibly with a different 2, and 

4,(,) ~ 1 r 2 ~ (t). 

Given ~p, we define the space L~ by 

ZZ, = {fEL2(R"): llfllL~, < oo}, 
where 

IlSll~ = { f . .  iZ(~)l:l~(i~l)l"dr 
We shall prove the following results: 

Theorem 1. Suppose ~>1/2 ,  mE RL(2, ~). I f  jor some [~>#x and V>I  

(12) I](xm,)(~)ll2 -- O( t  ~) as t ~ 0 +, 

(13) ]l(;~mt)(')llz = O(( log 0 -;') as t -+ oo, 

where Z is a bump function as hi (4), then 

(')fl ,>0 Irr~,.fl~P -7- 2 ~ cNfllL~. 
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(14) 

Theorem2. Suppose ~>1/2,  mE RL(2, ~). I f  for some f l>p (12)holds, then 

sup ,T~,flq~ ( 1 }l 

Theorem 3. Suppose rnEWBV~,~ for all 0<~<-~  and supp m c [ ~ ,  1-]. I f  

(§ II Ih, a/~-~ = O as  ~ - .  0 +, 

which holds in particular ~ m is o f  bounded variation, then 

where 

sup I IT,.,fl o<t<l log{++ 11 q~(+} L~+L" ~--cilfIIL~, 

[]fl[LO-+L = = inf{Hg[[2+ Hh] [~ : f=  g+h}.  

A corollary of  Theorem 2 includes the result of Chen Tian-ping [4] on gen- 
eralized Bochner--Riesz means of  positive order. 

We remark that Theorem 1 has some overlapping with the results in [6], in 
particular with Theorem 1 and Theorem 4 in that paper. However, in [6] Dappa 
and Trebels are concerned with LP-estimates for maximal operators under no smooth- 
ness condition whatsoever on the function f (but in the more general context of 
quasi-radial multipliers), whereas we want to concentrate in this article on the rate 
of  convergence of T~,, f as t ~ 0  +, given f h a s  a certain degree of smoothness, mea- 
sured by some L~-norm of f .  Our main result is in fact Theorem 3, which deals with 
the critical index of smoothness a=1/2  for m. 

As to the L~-case, let us also mention some results due to Carbery in order 
to give a slightly more complete picture of what is known on the subject. 

Define D ~ by 

(DSf)" (3) = ll~.!lS](~), 

where tt �9 I] is the Euclidean norm on R". We introduce the global Bessel potential 
space L]=L2(R +) as in [1]: L] is the completion of  the C ~ functions of compact 
support in (0, ~ )  under the norm 

! I t a L y =  s ~ * ~ " ~  - ~ s Jl s ,  " 

( L _ L )  + 1 
Theorem (Carbery). Let I" [ = I[ �9 I[ be the Kuc/idean norm. I f  ~ ~ n  ~P 2 ) 



On the rate of  convergence of certain summabili ty methods 265 

[1 1 ] + 1  
for  I<p----Z o," ~ > " t 2 - - p )  p for 2<=p<=, then 

][sup t--~lZm, fll[L,(R.~ ~ c=lI[" [-~m(")I[L:IIDT"IIL,(R~). 
t > O  

Furthermore, i f  n = l  o1" n=2,  the above estimate even holds i f  2-<_p<o~ and 

Of course, Carbery's theorem implies results on the pointwise convergence of 
Bochner--Riesz means of L p functions, which will be stated later as a remark. 

Throughout this paper c will denote a constant which can take different values 
from statement to statement. 

2. Auxiliary results 

Lemma 1. Let 0 < ~ < l .  I f  mCWB~,~, then there exists a set E~(O, ~o) o f  
one-dimensional measure zero such that for any f l > l  and every uE(O, oo)\E 

1 ~f~  (s_u)~_lm(~)(s)ds_~ [(fl-- 1)uJ:' ~ m(s) (15) r e ( u )  ds. r(~) r(~)r(1-~) ~ ,o (s-,u)~(s-u) 

Proof. We first assume that m vanishes on (a, ~ )  for some O < a < ~ .  Then we 
have for uC(O, a) 

f j  [ f ,  (s-t) '-~,,,"'(,)as] at = f2  [f2 ( ' - t ) ' -~  all ,,,"'(s)as 

1 ~ 
= 7 [ "  (s--u)'m('~(s) ds. 

On the other hand, we have 

a 1 2 - ' ( m ) ( s ) ,  s > O, (16) m ( ' ) ( s )  = ds 

and I1,-'(m) is absolutely continuous on [e, a] for every 0 < e < a .  So, by plugging 
(16) into f", ,(s-u)'m~)(s)ds and integrating by parts, one obtains after some 
routine calculations 

a 

- f ~  (s-  u)" m<"(s) as = r(~) f f  re(t) at. l:x ,., u , , ' u  
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By comparison with the previous fornmla, we see that for almost every t > 0  

(17) m(t) = 1 r (:----S f s  ( ' -  ''`') (') d ,  

(Compare also [1], [7]). 
Moreover, by partial integration we get from (16) 

f ;  (S-- t) ~-lm(')(s) ds = [(fl-- 1) t]~-lll .-~(m)(flt)  

+ r ( 1 - ~ )  f ~ , ( s - t )  fs ( u - s ) - ' m ( u ) d u a s  - [(fl-1)t]'r(l_~) ~ ( s - f l t ) ' ( s - t )  

So we have proved (15) if re(t)  vanishes for t sufficiently large. 
For general m we define mN, NEN,  by 

Im(t ) ,  if 0 ~ t < =  N, 
m N ( t ) =  [0, if t > N ,  

and let m = = m .  Define 

1 
aN(t) _ .8]~, (s--  t)~-lm(~)(s)ds,  

F(a)  

with NEN or 

bN(t ) = [(fl-- 1) t] ~ f ~  raN(S) ds 
r ( ~ ) r ( 1 - ~ )  ., ~, t) ( s -  flt)~ ( s -  ' 

N=~o. Then we have 

1 fP t t ( s_ t )~_ l (m_mN)(~) ( s )ds .  a~( t ) - -aN( t  ) -- F(oO 
By definition 

d 1 o, 
( m - - m N ) ( ' ) ( s ) =  li~m~ ds r(1-~)f, ( u - s ) - ' ( m - m u ) ( u ) d u "  

For any fixed s>O with N > s  this implies 

so that 

(m--mN)(~)(s) -- F(~--:O ~ (u- -  s ) - ~ - l m ( u ) d u '  

I(m--mN)t~)fs)l ~ c]tmlloo - -  
( N -  s) ~ ' 

if N >  s. 

Therefore 

la~(t)--aN(t)l  <= cllmll~ f~' ( s - t )  ~-1 ds ~ cltmll~. 
( N  - s) ~ - 

[ ( f l  - 1 )  t] ~ 

( N -  fit) ~ ' 
if  N ~  fit. 
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On the other hand, if N>flt ,  we also have 

Im(s) l 
Ib.o(t)-bN(t)l <= c[( ]~-1) t ]~f~  N ( s - I ~ t ) ( s - t )  as <= ciPmil= [(/?-l)t]~ 

( N - / ~ t ) =  ' 

since s - t > s - l J t .  We conclude that for every t > 0  

a~ (t) + bo. (t) = lirn (as(t) + bs(t)). 

But we have proved that 

mu(t) = au(t)+b,~(t), tE(0, o~)\E~., 

where E N is a set of  one-dimensional measure zero. Let E=U~=x/ iN .  We get 

a~( t )+b~( t )  = m(t), if t6(0, ~ ) \ E .  Q.E.D. 

Lemma 2. I f  ~E(-~, 1) and m~RL(2, ~), then 

II,D.[, IT., fi II.. ~= c i1,,,11,<~(~,:) )lfl l . , .  

ProoJL Define operators P~ on LZ(R"), with s{(1, 3), by 

( \ d (4s)'(r : IwJ m(sl~l)f(~). 

By Plancherel's theorem we have 

3 3 ^ 2 ~ " 2 3 

f ,<. f; 1(4f)(x)l" a, ax = f ;  JR. 1(4/) (r ac ds = JR~ If(r f ;  Imf~?(s)l: as ar 
From (5) and (6) we see that for t > 0  

(18) 

f :  lm(,:)(s)i:a'= f;~'lt'm(:'(~)i ~" a" -< 'f;'i ~ <~" = c s ' m ( : ) ( s ) t ' - -  ~ cl!mli~ : ~- c l lmt l~u~, , ) .  
l S ' 

This shows that P, is well-defined for a.e. s{(1, 3). Now for s{(1,2)  we define 
two operators as follows: 

1 (u__s)~_lpj.du ' A ~ f - -  F(7-----ff 

( 3 - s )  ~ ; ~  T,.,, f 
B , f  = dlt. 

F(e )F(1 - -~ )  J a  ( u - 3 ) : ( u - s )  

Since ~>1/2  we have 

sup iAJ i  ~ c  sup ~ ( u - s )  '~=-2 du}'/2 S/f ~ ie,,fr > a,,} '/~. 
1 < s < 2  l < s < 2  



268 D. Mfiller and Wang Kun-yang 

So, using (18), we get 

(19) IllSUp< ia,stlt, <= ciimlIRL<~..,itfll,. 

On the other hand we have 

(2o) 1l,<~<2sup in:sill: = <  f ~  0 , -  3)=(,, - 2) du ~ c[Imll~[If[12- 

For ~ 0  and sC(1,2) one has 

I -  1 ( . l ~ f ( t _ s l ~ t ) ~ _ , m . ~ ( 0 d U ( ~ )  ' A~f  ( ~) = "F-~.'  ~I~I 

~ "  (3-s)~l~l= f37r m(t)dt f(s 
& f ( r  r ( ~ ) r ( 1 - ~ )  (t-31r - 

3 
If  we write u=s[~[ and f l = - - > l ,  then by Lemma I, for every u ~ ( O , ~ ) \ E ,  

s 

for each I~[El[(0,  oo) \E]  and s~.(1,2) 
s 

(Tin, f ) "  (~.) = A~f(~) + B~f(~). 
This shows that 

T,. =A~+B~,  

i.e. 

and so the estimate in Lemma 2 follows from (19) and (20). 
Q.E.D. 

l_emma 3. Suppose ~E(~-, t) and m~RL(2,  ~). I f  supp mc[1 ,  2], the,, 

sup IT,,,fl~p ( + ) [ ~  cJlm~)lhHf[lL~. 
1 > 0  2 

Proof We have 

(1)= 
sup IT,,,fl~0 < c { ~ = _ =  [ sup IT,,,vflq~( )] } -. 
t > O  1 < t < 2  

For jEZ define f j  by 

/f(~),  if 2 - j - a  < I~1 < Z-J+' ,  
(21) fj(~) 

(0 , otherwise. 

Since supp mc[1 ,  2] we see that 

Tm,vf = T m , j j  for I < t < 2. 
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So, by Lemma 2 and (8) we get 

sup (--/-)12 <= ,laLc~,~),IfjIlzq~(2 )] = c , ,  2 s  L~" ITm, f l~o c E ~ = _ ~  [ l i r a -  ' - s  -~ < m(~) 2 ,~ i m 
t > O  2 

Q.E.D. 

3. Proof of the theorems 

Since RL(2, fl) is continuously embedded in RL(2, ~), if f l>~ (see [3]), 
we may assume without restriction in the proofs of Theorem 1 and Theorem 2 that 
1 /2<~<1 .  

Proof o f  Theorem 1. Choose h~Co(R  ) such that 

s u p p h c [ 1 , 2 ] ,  ~7.=_ h(21t)= l 

Define 

and 

Then we have 

and 

(22) 

We write 

and 

Then we see that 

Vt > 0 .  

mj(t) = m(t) h(2 j t) 

(TtJ f )  ^ (~) = mj(t  [~l)f(~), j~L2(R") �9 

m = Z~~ m j, T,,, = Z f = _ ~  Tj, 

<= -= suplT/ f l~p �9 
t > O  2 t > O  2 

~ j ( t )  -- m~-~( t )h ( t )  -- m j ( 2 - J  t), 

(~J f )  ~ (~) = ,~j( t I~1)}(~) .  

sup }Tdfl 9 ( + ) =  sup I T / f [ 9  ( -~) .  
t > O  t > O  

Moreover, by (9) and (10) 

So, by applying Lemma 3 to ff~2 we get 

(.j ->- o) .  
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By condition (12) 
Ila~J:)ll ~ _-< c2 -aj  ( j  :> o). 

Hence 

sup (1 / (23) ~*=o  ITifl~o -7- <= cX~:=~ 2-(~-")JllfllL~ <= cllfllL~. 
I! t > O  2 

On the other hand, if j < 0 ,  then 

1 I~S/ I  4~ -t -  ITifl ~o 7 = 
1 > 0  2 / > 0  2 

so,, I'll 
/ > 0  2 

once again by Lemma 3. Condition (13) implies 

I I r ~ ) l t ~  -<- c ( - . i )  -~ ( . i  < o), 
hence 

(24) -~ sap ( 1 )  ~".,.=_~ ]Tifl~o -7- -<- c ~ = 1  .i-~l!fllL~ <= clifNL~. 
/ > O  2 

The theorem now is an immediate consequence of (22), (23) and (24). 
Q.E.D. 

Proof  o f  theorem 2. By Theorem 1 we can assume supp m c  [~,  co]. We have 

2 o k 
sup IT,,,,fl ~ <= c ~'~--o sup IT,,,2 . . . .  f l  q~-(2 ). 

0 I 1<t<2 

Define .fk by 

Then for tC(1, 2) 

~f(~), if 2 k-1 < 171 < 2 ,  

fk(O = t 0 , otherwise. 

(T,,,~-~-,f) ^ (~-) = m(t2-~-~l~l) Z~=k fs(#), 
i.e. 

Trot2 . . . .  f : Z. t2 . . . .  ( Z 7 = k  .D)" 

By Lemma 2 we get 

IlaD~P ir.,,-~-,.rille ~ c!i,,,ii~,,~.:,ltY~=~ DII:, 
hence 

112 ~ " 2 2 k 11 :u<,: ( 111; ii,,,.,.,.,2.=, i IZ,,  J, ll.  ~2 ~. 
Since 

IIzT_-ksJll~ = ~7_-~ ii~ll~, 
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we obtain 

sup T. f l  (1)][2=c1! '~ 'if, l'.;'~k_o~O2(2k). 

Noticing that 
-'J Cl~t-' (2J), 2 . , = 0  q~q2 k ) 

the proof follows by another application of Plancherel's theorem. 
Q.E.D. 

Proof of  Theorem 3. Let us first notice that if m is of bounded variation, then 
,r as [ z l ~ ,  which implies 

So, by (3), (7), m satisfies condition (14). 
Now assurne m6WBV2,, is such that (I4) holds. Definc operators P,=P~'= by 

(P.',Ty(r -~. m[u~Sj(~), , ,<(1,3) .  

By an argument similar to that in the proof of Lemma 2 we get 

3 e 

(25) {f~ [P,,fp du} ua ~ -~ ci!,,4l~.=ldil~. 

And similarly we get for sC(1, 2) 

A, f + B, f for every +) T,,,~ f = k,, k,~ :~< (0, , (26) 

where 
m,~(s) = m ( s t 2 - ~ + b ,  

1 f~(u_O~_lpu~.Vdu. A~"~f - r ( = )  

B ~,,c = (3 - 0 ~ T,,,,~ f 
' ~ F(cOF(1--: 0 f:7 (u-3)=(u--t) du. 

Define.~ by .~(~-)=f(<.)Zt2.-,,.~k-,a<[~l) and 

We have 

(27) 

= ~o IT,,, f (x)[ .  
o<,<1 l o g i C +  1) 

M(f )  ~ <= cZ~=a 40(2) sup IT.r �9 
l < t - < 2  
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1 1 
Take c~ = ak = ~ - -  ~-, 

two parts : 

D~A - 

k - 
E ,  f k  = - -  

From (26), (27) we get 

hence 

(28) 

k=>3, and split the integral of A)'=~J into the following 

l t , ~9  - k ( n ~  1) 
f ' " ( , ,  - t)'"-'e?,' " ' k  d . .  

ff (~k) 

ff (~k) 

<= ( I B , "  fkl §  A I ' ~ I  ,At ), M ( f )  = c Z / = a  sup k,k ~ k o. E k 2 
l<t-<2 

-< sup (Ia,k'=~fk["+ IE,kAI ") M ( f )  = c a x<,<~. 

It is easy to see that 

(29) 

1 z 211/2 
- } - C { ~ k = a t ' k  "q ) (2k) )  1s2P2 D~lfk / " 

k ~k -<: I[1 up2r '  fb-: cffmlf.f! tf,. 
Next, for a.e. uq(1, 3) 

( d'V'k { U ~ ) f k ( ~ ) e i X C d ? .  _ 

So, by applying Cauchy--Sehwarz' estimate and (14), ~e get the following uniform 
estimate : 

JP~,'%(x)[ = c2~~ .-.(~k, } ,~ r,, /a I,', (s)l 2 ds 1/". c ]/-k 2 k("/2) 

which implies 

1 "< 

Finally, estimating the integral in u defining Ek, j i  again by Cauchy--Schwarz, we 
obtain 

{ f :  k,,k., ,  }1/2 < 2), [EfAI <-- el/k- I~, ./~1 du (1 t <  

which, by (25) and (14), implies 

(31) 11 sup IEtkJ'klllZ <= ckllAi',,,_. 
l<t-<2 

From (28)--(31) we conclude 

ttM(f)IIL~+L ~ <= c X~=a q)(2k)kilfkllZ <= c 

Q.E.D. 
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4. Applications 

Now we can use the above estimates of  maximal functions to get some results 
on almost everywhere convergence. 

Theorem 4. Assume m is a continuous.fimctiot7 on R - .  contained in RL(2, ~) 
for some e > l / 2 .  I f  condition (12) holds for the multiplier m - 1  with fl>p, then 
for every ./E L~ 

T , , j ( x ) - - f ( x ) = o l - - l . . '  a.e. as t ~ 0  +. 

Proof. Since 

we have 
t l)~(m,- 1)tl= -<- cll[z(m, l)]C=~!!, :- o ( t e ) ,  

We know from (11) that 

Therefore 

m ( t ) - I  = O ( t  t~) as t - §  +. 

tu-<_ c (o , 0-< t < l .  

[I I+}l l I m ( t ) - l l  = O  q) as t ~ 0  +. 

From this we conclude that the theorem is valid for those functions whose Fourier 
transforms belong to Co(R"  ). Since such functions are dense in L~, the theorem will 
be proved provided 

0 1 2 

But this is a direct consequence of Theorem 2 applied to the multiplier m -  1. 

Q.E.D" 

As a corollary of  Theorem 4 we get the following result on Bochner--Riesz 
means of  positive order, which includes the result of  Chen Tian-ping [4], who only 
deals with the case where I" ] is the Euclidean norm. 

Corollary 1. Let ~>0 ,  { > 0 ,  m ( t ) = ( l - t l ) ~ .  1/ ./~Le(R ") sati,~'es the con- 
dition 

(32) fr , ,  If(x)l']xl2Udx < ~ '  p > O, 

then Jor a.e. xCR" 

(33) T , , J ( x ) - f ( x )  - - ~ [O(t"),  if / -- p, 

as t~O +. 



274 D. Mfiller and Wang Kun-yang 

Pr•220 First, one easily estimates 

[l[g(m,--1)]'lt,. = O( t  e) as t -+ 0 +. 

Since RL(2, 1 ) c R L ( 2 ,  6), if  1 / 2 < 6 < 1 ,  we get 

H[z(mt-1)](~)t[ ~ = O(F)  as t ~ 0~, 

for every 1 / 2 < 6 < 1 .  Moreover, one checks easily that mERL(2,6)  whenever 
1 1 -~<6<-~+cc  Notice that the condition - a 0<-gT : t  is forced by the singularity of  
m a t  t = l .  

So, i f  L>/~, the required result is a direct consequence of Theorem4 with 
~o (t) = 1 + t u. 

Now assume f = / t ,  q~(t)=l+t  u. 

Ih(t) = 1, 
(34) 

[h ( t )  0, 
I f  we define 

Choose a function h E C = ( 0 , ~ )  such that 

if 0 < t ~  ~ 
2 

if t > 3/4. 

rh(t) = m(t)+~.teh(t), 

then ~ERL(2 ,6 )  for x 1 6E(-~, ~ + ~ ) ,  and 

[l[x(r~,- 1)]~l l~ = o ( t~ ' ) ,  

by a similar argument as before. So, by Theorem 4, we have 

T,~, f (x)- f (x)  = o(# )  a.e. as t -~ 0 + 

for every fEL~.  We write A(t)=~teh(t) .  Then 

(Ta, f ) ^  (~) = ~tteh (t I{I)ICItf(r �9 

F o r / ~ L ~  let f be defined by 

We see that 
t - ~ : r . , f  = =T~,L 

and so there only remains to prove that 

(35) [I sup Th, g[l 2 ~ crlg[I.,_, g6L"(R"). 
O<t<l 

To this end, write h(l~l):v(l[~lt)~-wC), where v is smooth, v = l  on [0, 1/4] and 
supp vc [0 ,  I/2]. 

Clearly, the maximal operator g~-+sup, >0 JT~# ~. ) gl is dominated by the H a r d y - -  
Littlewood maximal operator, hence bounded on L2(R"). Moreover, one checks 
easily that w satisfies the condition (I) of  the proposition in Section 3 of  Carbery [2], 
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and so also the maximal operator associated with w is bounded on L"(R"). Together 
this implies (35). 

Q.E.D. 

Corollary2. Let m(t)=Z(o,1)(t ). Then for every JEL~ with r  o1" 
r =log ~+1 (e+ t)(p >0) the following estimates hold, respectirely: 

(36) Tm, f (x ) - - f (x )= o( tUlog+)  a.e. as t-~ 0 +, 

(37) 0+" Tm,f(x)--f(x)=o a.e. as t ~  

Proof. We take hEC ' (0 ,  co) satisfying (34). Define ~l=rn-h. Then supp r~c  
[~-, 1], and if7 is of bounded variation. By Theorem 3 we conclude that for fEL~ 

(+ i+/) 0+ (38) Te~,f(x) = o log a.e. as t-~ 

On the other hand the multiplier h satisfies the condition of Theorem 4. So for 

(39) ThJ'(x)--f(x)=o[ ) , , ~  a.e. as t ~ 0  +. 

If  q~(t)=l +t u (#>0) then we have 

(t)  - ( 0 .  

Hence, the combination of (38) and (39) yields (36). 
If  q~(t)=log"(e+t), then O(t)<~clogU+l(e+t). 

(38) and (39) imply (37). 
Hence for �9 2 JE Llog, +, (e+t) 

Q.E.D. 

5. Remarks 

(a) Since we only consider convergence of T,,,f as t-~0 +, it is clear that we 

could even replace 2 in (9) by 2"= ilililililililililiI~,_~ 9(2t) 
 0(t) 

(b) We do not know whether the weight function ~ in Theorem 2 could even be 
replaced by q~. 
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(c) I f  one choses r e ( t ) = ( 1  + / ) h ( t ) ,  h as in (34), then obvious ly  for  every 

f ~ L  2 with s u p p f c { ~ :  1~l=<l/4} 

T m ~ f - f  = / f ,  (0 < t <  1), 

where ( f )  ^ (4)=l~]ef(~) .  

This  example  shows tha t  the condi t ion  f l > p  in T h e o r e m 4  is necessary for 

such a theorem.  

(d) By Carbe ry ' s  theorem,  in the case o f  the Eucl idean no rm (33) is also val id  

for those f ~ U ' ( R " )  for which [ [D~f l I tp(a , )<~ for the range o f p ' s  descr ibed in 

Ca rbe ry ' s  theorem.  
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