On the rate of convergence of certain summability methods for Fourier integrals of L^{2}-functions
 D. Müller and Wang Kun-yang

1. Introduction

Suppose B is a bounded convex symmetric body in \mathbf{R}^{n} and let $|\cdot|$ be the Minkowski norm associated with B, i.e.

$$
|x|=\inf \left\{t>0: t^{-1} x \in B\right\}, \quad x \in \mathbf{R}^{n}
$$

Let $m \in L^{\infty}(0, \infty)$. Denote by m_{t} the function

$$
m_{t}(s)=m(t s) \quad(t>0, s>0) .
$$

We define operators $T_{m_{t}}(t>0)$ on $L^{2}\left(\mathbf{R}^{n}\right)$ by

$$
\left(T_{m_{t}} f\right)^{\wedge}(\xi)=m_{t}(|\xi|) \hat{f}(\xi)
$$

If $m \in L^{\infty}(0, \infty)$ and $0<\alpha \leqq 1$, the fractional integral of order α of m is defined as in [5] (see also [6]). That is, we set

$$
I_{\omega}^{\alpha}(m)(t)= \begin{cases}\frac{1}{\Gamma(\alpha)} \int_{t}^{\omega}(s-t)^{\alpha-1} m(s) d s, & \text { if } \quad 0<t<\omega \tag{1}\\ 0 & \text { if } t \geqq \omega\end{cases}
$$

and, if $0<\alpha<1$ and $I_{\omega}^{1-\alpha}(m)$ is locally absolutely continuous for every $\omega>0$, we define the fractional derivative $m^{(\alpha)}$ by

$$
\begin{equation*}
m^{(\alpha)}(t)=\lim _{\omega \rightarrow \infty}\left(-\frac{d}{d t} I_{\omega}^{1-x} m(t)\right) \tag{2}
\end{equation*}
$$

Moreover, by induction over the integer part [α] of α, we define for arbitrary $\alpha>0$

$$
m^{(x)}(t)=-\frac{d}{d t} m^{(x-1)}(t)
$$

provided this makes sense, i.e. that $I_{\omega}^{1-\delta}, m^{(\delta)}, \ldots, m^{(x-1)}$ are absolutely continuous, where $\delta=\alpha-[\alpha]$.

Notice that for m with compact support in \mathbf{R}^{+}

$$
\begin{equation*}
\left(m^{(\alpha)}\right)^{\wedge}(\tau)=(-i \tau)^{x} \hat{m}(\tau) \tag{3}
\end{equation*}
$$

where $(-i \tau)^{x}$ is defined by the principal branch.
We will consider the localized Riemann-Liouville spaces $R L(2, \alpha)$ which are defined (cf. [3]) by

$$
R L(2, \alpha)=\left\{m \in L^{\infty}(0, \infty):\|m\|_{R L(2 x)}<\infty\right\}, \text { if } \quad \alpha>\frac{1}{2}
$$

where

$$
\|m\|_{R L(2, \alpha)}=\sup _{t>0}\left\|\left(\chi m_{t}\right)^{(\alpha)}\right\|_{2} .
$$

Here $\chi \in C_{0}^{\infty}(0, \infty)$ is an arbitrary fixed non-negative and non-trivial bump function. It is known [3] that the space $R L(2, \alpha)$ does not depend on the choice of χ. For convenience we will choose χ such that

$$
\begin{equation*}
\chi \in C_{0}^{\infty}(0, \infty), \chi(t) \geqq 0, \operatorname{supp} \chi \subset\left[\frac{1}{2}, 1\right], \quad \text { and } \quad \chi(t)=1 \quad \text { for } \quad \frac{5}{8}<t<\frac{7}{8} \tag{4}
\end{equation*}
$$

We will also consider the space of functions of weak bounded variation $W B V_{q, \alpha}$ in the case $q=2$ and $\alpha>0$. By definition (see [7]) $W B V_{2, x}$ is the space of all $m \in L^{\infty} \cap$ $C(0, \infty)$ for which $m^{(\alpha)}$ exists in the sense of (2^{\prime}) and whose norm

$$
\begin{equation*}
\|m\|_{2, \mathcal{Z}}=\|m\|_{\infty}+\sup _{k \in \mathbf{Z}}\left\{\int_{2^{k-1}}^{2^{k}}\left|I^{\alpha} m^{(\alpha)}(t)\right|^{2} \frac{d t}{t}\right\}^{1 / 2} \tag{5}
\end{equation*}
$$

is finite. From [3], Theorem 2, we know that for $\alpha>1 / 2$

$$
\begin{equation*}
R L(2, x)=W B V_{2, x} \tag{6}
\end{equation*}
$$

with equivalent norms.
Remark. If m is supported in a compact interval $[a, b], 0<a<b<\infty$, then for $x<a / 2$

$$
m^{(\alpha)}(x)=\frac{\alpha}{\Gamma(1-\alpha)} \int_{a}^{b}(t-x)^{-\alpha-1} m(t) d t
$$

hence

$$
\left|m^{(\alpha)}(x)\right| \leqq C_{\alpha}\|m\|_{\infty}\left|(b-x)^{-x}-(a-x)^{-x}\right|
$$

and

$$
\left(\int_{-\infty}^{a / 2}\left|m^{(\alpha)}(x)\right|^{2} d x\right)^{1 / 2} \leqq C_{x}^{\prime}\|m\|_{\infty}
$$

These estimates easily imply that for $0<x<1$, there exist constants $c, C>0$, depending only on α and a, b, such that

$$
\begin{equation*}
c\|m\|_{2, x} \leqq\|m\|_{\infty}+\left\|m m_{2}^{(x)}\right\|_{2} \leqq C\|m\|_{2, \alpha} \tag{7}
\end{equation*}
$$

Moreover, if $\alpha>1 / 2$, by (6) we also have

$$
\begin{equation*}
c\|m\|_{R L(2, x)} \leqq\left\|m^{(\alpha)}\right\|_{2} \leqq C\|m\|_{R L(2, x)} \tag{8}
\end{equation*}
$$

We denote by φ a function on $[0, \infty]$ which is non-decreasing and satisfies the following condition:

$$
\begin{equation*}
1 \leqq \varphi(2 t) \leqq \lambda \varphi(t) \quad \text { for some } \quad \lambda \geqq 1 \tag{9}
\end{equation*}
$$

We write throughout this paper

$$
\begin{equation*}
\mu=\log _{2} \lambda \tag{10}
\end{equation*}
$$

where λ is smallest possible to satisfy (9).
It is easy to see that

$$
\begin{cases}\varphi(t) \leqq \varphi(2) t^{\mu} & \text { if } \quad t \geqq 1 \tag{11}\\ \varphi(s t) \geqq \frac{1}{\lambda} s^{\mu} \varphi(t) & \text { if } \quad t \geqq 0 \quad \text { and } \quad 0 \leqq s \leqq 1\end{cases}
$$

Corresponding to φ we define

$$
\psi(t)=\varphi(1)+\left\{\int_{1}^{t+1} \frac{\varphi^{2}(s)}{s} d s\right\}^{1 / 2}
$$

Then ψ is also non-decreasing and satisfies (9), possibly with a different λ, and

$$
\psi(t) \geqq \frac{1}{\lambda} \sqrt{\log 2} \varphi(t)
$$

Given φ, we define the space L_{φ}^{2} by
where

$$
L_{\varphi}^{2}=\left\{f \in L^{2}\left(\mathbf{R}^{n}\right):\|f\|_{L_{\varphi}^{2}}<\infty\right\}
$$

$$
\|f\|_{L_{\varphi}^{2}}=\left\{\int_{\mathbf{R}^{n}}|\hat{f}(\xi)|^{2}|\varphi(|\xi|)|^{2} d \xi\right\}^{1 / 2}
$$

We shall prove the following results:
Theorem 1. Suppose $\alpha>1 / 2, m \in R L(2, \alpha)$. If for some $\beta>\mu$ and $\gamma>1$

$$
\begin{gather*}
\left\|\left(\chi m_{t}\right)^{(x)}\right\|_{2}=\mathrm{O}\left(t^{\beta}\right) \quad \text { as } \quad t \rightarrow 0^{+} \tag{12}\\
\left\|\left(\chi m_{t}\right)^{(\alpha)}\right\|_{2}=\mathrm{O}\left((\log t)^{-\gamma}\right) \quad \text { as } \quad t \rightarrow \infty \tag{13}
\end{gather*}
$$

where χ is a bump function as in (4), then

$$
\left\|\sup _{t \rightarrow 0}\left|T_{m_{t}} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \equiv c\|f\|_{L_{\varphi}^{2}}
$$

Theorem 2. Suppose $\alpha>1 / 2, m \in R L(2, \alpha)$. If for some $\beta>\mu$ (12) holds, then

$$
\left\|\sup _{0<t<1}\left|T_{m_{t}} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \leqq c\|f\|_{L_{\psi}^{3}} .
$$

Theorem 3. Suppose $m \in W B V_{2, \alpha}$ for all $0<\alpha<\frac{1}{2}$ and supp $m \subset\left[\frac{1}{2}, 1\right]$. If

$$
\begin{equation*}
\|m\|_{2,1 / 2-\varepsilon}^{2}=\mathrm{O}\left(\frac{1}{\varepsilon}\right) \quad \text { as } \quad \varepsilon \rightarrow 0^{+} \tag{14}
\end{equation*}
$$

which holds in particular if m is of bounded variation, then

$$
\left\|\sup _{0<t<1} \frac{1}{\log \left(\frac{1}{t}+1\right)} \varphi\left(\frac{1}{t}\right)\left|T_{m_{t}} f\right|\right\|_{L^{2}+L^{\infty}} \leqq c\|f\|_{L_{\varphi}^{2}},
$$

where

$$
\|f\|_{L^{g}+L^{\infty}}=\inf \left\{\|g\|_{2}+\|h\|_{\infty}: f=g+h\right\} .
$$

A corollary of Theorem 2 includes the result of Chen Tian-ping [4] on generalized Bochner-Riesz means of positive order.

We remark that Theorem 1 has some overlapping with the results in [6], in particular with Theorem 1 and Theorem 4 in that paper. However, in [6] Dappa and Trebels are concerned with L^{p}-estimates for maximal operators under no smoothness condition whatsoever on the function f (but in the more general context of quasi-radial multipliers), whereas we want to concentrate in this article on the rate of convergence of $T_{m_{\mathrm{t}}} f$ as $t \rightarrow 0^{+}$, given f has a certain degree of smoothness, measured by some L_{φ}^{2}-norm of f. Our main result is in fact Theorem 3, which deals with the critical index of smoothness $\alpha=1 / 2$ for m.

As to the L^{p}-case, let us also mention some results due to Carbery in order to give a slightly more complete picture of what is known on the subject.

Define D^{s} by

$$
\left(D^{s} f\right)^{\wedge}(\xi)=\|\xi\|^{s} \hat{f}(\check{\zeta})
$$

where $\|\cdot\|$ is the Euclidean norm on \mathbf{R}^{n}. We introduce the global Bessel potential space $L_{\alpha}^{2}=L_{\alpha}^{2}\left(\mathbf{R}^{+}\right)$as in [1]: L_{α}^{2} is the completion of the C^{∞} functions of compact support in $(0, \infty)$ under the norm

$$
\|m\|_{L_{\alpha}^{\alpha}}=\left\{\int_{0}^{\infty}\left|s^{\alpha+1}\left(\frac{d}{d s}\right)^{\alpha}\left(\frac{m(s)}{s}\right)\right|^{2} \frac{d s}{s}\right\}^{1 / 2} .
$$

Theorem (Carbery). Let $|\cdot|=\|\cdot\|$ be the Euclidean norm. If $\alpha>n\left(\frac{1}{p}-\frac{1}{2}\right)+\frac{1}{2}$
for $1<p \leqq 2$, or $\alpha>n\left(\frac{1}{2}-\frac{1}{p}\right)+\frac{1}{p}$ for $2 \leqq p<\infty$, then

$$
\left\|\sup _{t>0} t^{-s}\left|T_{m_{t}} f\right|\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leqq c_{\alpha}\left\|\left.\cdot\right|^{-s} m(\cdot)\right\|_{L_{\alpha}^{2}}\left\|D^{s} f\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}
$$

Furthermore, if $n=1$ or $n=2$, the above estimate even holds if $2 \leqq p<\infty$ and $\alpha>\max \left(1 / 2, n\left(\frac{1}{2}-\frac{1}{p}\right)\right)$.

Of course, Carbery's theorem implies results on the pointwise convergence of Bochner-Riesz means of L^{p} functions, which will be stated later as a remark.

Throughout this paper c will denote a constant which can take different values from statement to statement.

2. Auxiliary results

Lemma 1. Let $0<\alpha<1$. If $m \in W B V_{2, \alpha}$, then there exists a set $E \subset(0, \infty)$ of one-dimensional measure zero such that for any $\beta>1$ and every $u \in(0, \infty) \backslash E$

$$
\begin{equation*}
m(u)=\frac{1}{\Gamma(\alpha)} \int_{u}^{\beta u}(s-u)^{\alpha-1} m^{(\alpha)}(s) d s+\frac{[(\beta-1) u]^{\alpha}}{\Gamma(\alpha) \Gamma(1-\alpha)} \int_{\beta u}^{\infty} \frac{m(s)}{(s-\beta u)^{\alpha}(s-u)} d s \tag{15}
\end{equation*}
$$

Proof. We first assume that m vanishes on (a, ∞) for some $0<a<\infty$. Then we have for $u \in(0, a)$

$$
\begin{gathered}
\int_{u}^{a}\left[\int_{t}^{a}(s-t)^{\alpha-1} m^{(\alpha)}(s) d s\right] d t=\int_{u}^{a}\left[\int_{u}^{s}(s-t)^{\alpha-1} d t\right] m^{(\alpha)}(s) d s \\
=\frac{1}{\alpha} \int_{u}^{a}(s-u)^{\alpha} m^{(\alpha)}(s) d s
\end{gathered}
$$

On the other hand, we have

$$
\begin{equation*}
m^{(\alpha)}(s)=-\frac{d}{d s} I_{a}^{1-\alpha}(m)(s), \quad s>0 \tag{16}
\end{equation*}
$$

and $I_{a}^{1-\alpha}(m)$ is absolutely continuous on $[\varepsilon, a]$ for every $0<\varepsilon<a$. So, by plugging (16) into $\int_{u}^{a}(s-u)^{x} m^{(\alpha)}(s) d s$ and integrating by parts, one obtains after some routine calculations

$$
\frac{1}{\alpha} \int_{u}^{a}(s-u)^{\alpha} m^{(\alpha)}(s) d s=\Gamma(\alpha) \int_{u}^{a} m(t) d t .
$$

By comparison with the previous formula, we see that for almost every $t>0$

$$
\begin{equation*}
m(t)=\frac{1}{\Gamma(\alpha)} \int_{t}^{\infty}(s-t)^{x-1} m^{(\alpha)}(s) d s \tag{17}
\end{equation*}
$$

(Compare also [1], [7]).
Moreover, by partial integration we get from (16)

$$
\begin{gathered}
\int_{\beta t}^{\infty}(s-t)^{\alpha-1} m^{(\alpha)}(s) d s=[(\beta-1) t]^{\alpha-1} I_{a}^{1-\alpha}(m)(\beta t) \\
+\frac{-1}{\Gamma(1-\alpha)} \int_{\beta t}^{\infty}(s-t)^{\alpha-2} \int_{s}^{\infty}(u-s)^{-\alpha} m(u) d u d s=\frac{[(\beta-1) t]^{\alpha}}{\Gamma(1-\alpha)} \int_{\beta t}^{\infty} \frac{m(s) d s}{(s-\beta t)^{\alpha}(s-t)} .
\end{gathered}
$$

So we have proved (15) if $m(t)$ vanishes for t sufficiently large.
For general m we define $m_{N}, N \in \mathbf{N}$, by

$$
m_{N}(t)= \begin{cases}m(t), & \text { if } \quad 0 \leqq t \leqq N \\ 0, & \text { if } \quad t>N\end{cases}
$$

and let $m_{\infty}=m$. Define

$$
\begin{aligned}
& a_{N}(t)=\frac{1}{\Gamma(\alpha)} \int_{t}^{\beta t}(s-t)^{x-1} m_{N}^{(\alpha)}(s) d s \\
& b_{N}(t)=\frac{[(\beta-1) t]^{\alpha}}{\Gamma(\alpha) \Gamma(1-\alpha)} \int_{\beta t}^{\infty} \frac{m_{N}(s) d s}{(s-\beta t)^{\alpha}(s-t)}
\end{aligned}
$$

with $N \in \mathbf{N}$ or $N=\infty$. Then we have

$$
a_{\infty}(t)-a_{N}(t)=\frac{1}{\Gamma(\alpha)} \int_{t}^{\beta t}(s-t)^{\alpha-1}\left(m-m_{N}\right)^{(\alpha)}(s) d s
$$

By definition

$$
\left(m-m_{N}\right)^{(\alpha)}(s)=\lim _{\omega \rightarrow \infty}-\frac{d}{d s} \frac{1}{\Gamma(1-\alpha)} \int_{s}^{\omega}(u-s)^{-\alpha}\left(m-m_{N}\right)(u) d u .
$$

For any fixed $s>0$ with $N>s$ this implies

$$
\left(m-m_{N}\right)^{(\alpha)}(s)=\frac{\alpha}{\Gamma(1-\alpha)} \int_{N}^{\infty}(u-s)^{-\alpha-1} m(u) d u
$$

so that

$$
\left|\left(m-m_{N}\right)^{(\alpha)}(s)\right| \leqq c\|m\|_{\infty} \frac{1}{(N-s)^{\alpha}}, \quad \text { if } \quad N>s
$$

Therefore

$$
\left|a_{\infty}(t)-a_{N}(t)\right| \leqq c\|m\|_{\infty} \int_{t}^{\beta t}(s-t)^{\alpha-1} \frac{d s}{(N-s)^{\alpha}} \leqq c\|m\|_{\infty} \frac{[(\beta-1) t]^{\alpha}}{(N-\beta t)^{\alpha}}, \quad \text { if } \quad N>\beta t .
$$

On the other hand, if $N>\beta t$, we also have

$$
\left|b_{\infty}(t)-b_{N}(t)\right| \leqq c[(\beta-1) t]^{x} \int_{N}^{\infty} \frac{|m(s)|}{(s-\beta t)(s-t)} d s \leqq c\|m\|_{\infty} \frac{[(\beta-1) t]^{x}}{(N-\beta t)^{x}}
$$

since $s-t>s-\beta t$. We conclude that for every $t>0$

$$
a_{\infty}(t)+b_{\infty}(t)=\lim _{N \rightarrow \infty}\left(a_{N}(t)+b_{N}(t)\right)
$$

But we have proved that

$$
m_{N}(t)=a_{N}(t)+b_{N}(t), \quad t \in(0, \infty) \backslash E_{N}
$$

where E_{N} is a set of one-dimensional measure zero. Let $E=\bigcup_{N=1}^{\infty} E_{N}$. We get

$$
a_{\infty}(t)+b_{\infty}(t)=m(t), \quad \text { if } \quad t \in(0, \infty) \backslash E .
$$

Q.E.D.

Lemma 2. If $\alpha \in\left(\frac{1}{2}, 1\right)$ and $m \in R L(2, \alpha)$, then

$$
\left\|\sup _{1<s<2}\left|T_{m_{s}} f\right|\right\|_{2} \leqq c\|m\|_{R L(2, x)}\|f\|_{2}
$$

Proof. Define operators P_{s} on $L^{2}\left(\mathbf{R}^{n}\right)$, with $s \in(1,3)$, by

$$
\left(P_{s} f\right)^{\wedge}(\xi)=\left(\frac{d}{d s}\right)^{\alpha} m(s|\xi|) \hat{f}(\xi)
$$

By Plancherel's theorem we have

$$
\int_{\mathbf{R}^{n}} \int_{1}^{3}\left|\left(P_{s} f\right)(x)\right|^{2} d s d x=\int_{1}^{3} \int_{\mathbf{R}^{n}}\left|\left(P_{s} f\right)^{\wedge}(\xi)\right|^{2} d \xi d s=\int_{\mathbf{R}^{n}}|\hat{f}(\xi)|^{2} \int_{1}^{3}\left|m_{|\xi|}^{(\alpha)}(s)\right|^{2} d s d \xi
$$

From (5) and (6) we see that for $t>0$
(18)
$\int_{1}^{3}\left|m_{t}^{(\alpha)}(s)\right|^{2} d s=\int_{t}^{3 t}\left|f^{x} m^{(\alpha)}(s)\right|^{2} \frac{d s}{t} \leqq c \int_{t}^{3 t}\left|s^{x} m^{(\alpha)}(s)\right|^{2} \frac{d s}{s} \leqq c\|m\|_{2, x}^{2} \leqq c\|m\|_{R L(\Omega, \alpha)}^{2}$.
This shows that P_{s} is well-defined for a.e. $s \in(1,3)$. Now for $s \in(1,2)$ we define two operators as follows:

$$
\begin{aligned}
& A_{s} f=\frac{1}{\Gamma(\alpha)} \int_{s}^{3}(u-s)^{\alpha-1} P_{s} f d u \\
& B_{s} f=\frac{(3-s)^{\alpha}}{\Gamma(\alpha) \Gamma(1-\alpha)} \int_{3}^{\infty} \frac{T_{m_{u}} f}{(u-3)^{\alpha}(u-s)} d u
\end{aligned}
$$

Since $\alpha>1 / 2$ we have

$$
\sup _{1<s<2}\left|A_{s} f\right| \leqq c \sup _{1<s<2}\left\{\int_{s}^{3}(u-s)^{2 x-2} d u\right\}^{1 / 2}\left\{\int_{1}^{3}\left|P_{t} f\right|^{2} d u\right\}^{1 / 2}
$$

So, using (18), we get

$$
\begin{equation*}
\| \sup _{1<s<2}\left|A_{s} f\right\rangle\left\|_{2} \leqq c\right\| m\left\|_{R L(2, \alpha)}\right\| f \|_{2} . \tag{19}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
\left\|\sup _{1<s<2}\left|B_{s} f\right|\right\|_{2} \leqq c \int_{3}^{\infty} \frac{\left\|T_{m_{u}} f\right\|_{2}}{(u-3)^{\alpha}(u-2)} d u \leqq c\|m\|_{\infty}\|f\|_{2} \tag{20}
\end{equation*}
$$

For $\xi \neq 0$ and $s \in(1,2)$ one has

$$
\begin{aligned}
& \widehat{A_{s} f}(\xi)=\frac{1}{\Gamma(\delta)} \int_{s|\xi|}^{3|\xi|}(t-s|\xi|)^{x-1} m^{(x)}(t) d t \hat{f}(\xi) \\
& \widehat{B_{s} f}(\xi)=\frac{(3-s)^{x}|\xi|^{x}}{\Gamma(\alpha) \Gamma(1-\alpha)} \int_{3 \mid \xi ;}^{\infty} \frac{m(t) d t}{(t-3|\xi|)^{\delta}(t-s|\xi|)} \hat{f}(\xi)
\end{aligned}
$$

If we write $u=s|\xi|$ and $\beta=\frac{3}{s}>1$, then by Lemma 1 , for every $u \in(0, \infty) \backslash E$, i.e. for each $|\xi| \in \frac{1}{s}[(0, \infty) \backslash E]$ and $s \in(1,2)$

This shows that

$$
\left(T_{m_{s}} f\right)^{\wedge}(\xi)=\widehat{A_{s} f}(\xi)+\widehat{B_{s} f}(\xi)
$$

$$
T_{m_{s}}=A_{s}+B_{s}
$$

and so the estimate in Lemma 2 follows from (19) and (20).
Q.E.D.

Lemma 3. Suppose $\alpha \in\left(\frac{1}{2}, 1\right)$ and $m \in R L(2, \alpha)$. If supp $m \subset[1,2]$, then

$$
\left\|\sup _{t>0}\left|T_{m_{t}} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \leqq c\left\|m^{(x)}\right\|_{2}\|f\|_{L_{\varphi}^{\sim}}
$$

Proof. We have

$$
\sup _{t>0}\left|T_{m_{t}} f\right| \varphi\left(\frac{1}{t}\right) \leqq c\left\{\sum_{j=-\infty}^{\infty}\left[\sup _{1<t<2}\left|T_{m_{t_{2}}} f\right| \varphi\left(2^{-j}\right)\right]^{2}\right\}^{1 / 2}
$$

For $j \in \mathbf{Z}$ define f_{j} by

$$
\hat{f}_{j}(\zeta)= \begin{cases}\hat{f}(\zeta), & \text { if } 2^{-j-1}<|\zeta|<2^{-j+1} \tag{21}\\ 0, & \text { otherwise }\end{cases}
$$

Since supp $m \subset[1,2]$ we see that

$$
T_{m_{i 2} j} f^{\prime}=T_{m_{i 2} j} f_{j} \quad \text { for } \quad 1<t<2
$$

So, by Lemma 2 and (8) we get

$$
\left\|\sup _{t>0}\left|T_{m_{t}} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2}^{2} \leqq c \sum_{j=-\infty}^{\infty}\left[\left\|m_{2^{j}}\right\|_{R L(2, x)}\left\|f_{j}\right\|_{2} \varphi\left(2^{-j}\right)\right]^{2} \leqq c\left\|m^{(\alpha)}\right\|_{2}^{2}\|f\|_{L_{\varphi}^{2}}^{2} .
$$

Q.E.D.

3. Proof of the theorems

Since $R L(2, \beta)$ is continuously embedded in $R L(2, x)$, if $\beta>x$ (see [3]), we may assume without restriction in the proofs of Theoren 1 and Theorem 2 that $1 / 2<\alpha<1$.

Proof of Theorem 1. Choose $h \in C_{0}^{\infty}(\mathbf{R})$ such that

$$
\operatorname{supp} h \subset\left[\frac{1}{2}, 2\right], \sum_{j=-\infty}^{\infty} h\left(2^{j} t\right)=1 \quad \forall t>0
$$

Define

$$
m_{j}(t)=m(t) h\left(2^{j} t\right)
$$

and

$$
\left(T_{i}^{j} f\right)^{\wedge}(\xi)=m_{j}(t|\check{\zeta}|) \hat{f}(\xi), \quad f \in L^{2}\left(\mathbf{R}^{n}\right)
$$

Then we have

$$
m=\sum_{j=-\infty}^{\infty} m_{j}, T_{m_{t}}=\sum_{j=-\infty}^{\infty} T_{t}^{j}
$$

and

$$
\begin{equation*}
\left\|\sup _{t>0}\left|T_{m_{t}} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \leqq \sum_{j=-\infty}^{\infty}\left\|\sup _{t>0}\left|T_{t}^{j} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \tag{22}
\end{equation*}
$$

We write
and

$$
\tilde{m}_{j}(t)=m_{2^{-j}}(t) h(t)=m_{j}\left(2^{-j} t\right)
$$

$$
\left(\tilde{T}_{t}^{j} f\right)^{\wedge}(\check{\xi})=\tilde{m}_{j}(t|\xi|) \hat{f}(\tilde{\xi})
$$

Then we see that

$$
\sup _{t>0}\left|T_{t}^{j} f\right| \varphi\left(\frac{1}{t}\right)=\sup _{t=0}\left|\tilde{T}_{t}^{j} f\right| \varphi\left(\frac{2^{j}}{t}\right)
$$

Moreover, by (9) and (10)

$$
\varphi\left(\frac{2^{j}}{t}\right) \leqq 2^{\mu j} \varphi\left(\frac{1}{t}\right), \quad j \geqq 0
$$

So, by applying Lemma 3 to \tilde{m}_{j} we get

$$
\left\|\sup _{t \rightarrow 0}\left|T_{t}^{j} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \leqq c 2^{\mu j}\left\|\tilde{m}_{j}^{(\alpha)}\right\|_{2}\|f\|_{L_{\varphi}^{*}} \quad(j \geqq 0) .
$$

By condition (12)

$$
\left\|\tilde{m}_{j}^{(\alpha)}\right\|_{2} \leqq c 2^{-\beta j} \quad(j \geqq 0)
$$

Hence

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left\|\sup _{t>0}\left|T_{t}^{j} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \leqq c \sum_{j=0}^{\infty} 2^{-(\beta-\mu) j}\|f\|_{L_{\varphi}^{2}} \leqq c\|f\|_{L_{\varphi}^{2}} . \tag{23}
\end{equation*}
$$

On the other hand, if $j<0$, then

$$
\begin{aligned}
& \left\|\sup _{t>0}\left|T_{t}^{j} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2}=\left\|\sup _{t>0}\left|\tilde{T}_{t}^{j} f\right| \varphi\left(\frac{2^{j}}{t}\right)\right\|_{2} \\
& \left.\leqq\left\|\sup _{t>0}\left|\tilde{T}_{t}^{j} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \leqq c\left\|\tilde{m}_{j}^{(x)}\right\|_{2} \right\rvert\, f \|_{L_{\varphi}^{L}},
\end{aligned}
$$

once again by Lemma 3. Condition (13) implies

$$
\left\|\tilde{m}_{j}^{(x)}\right\|_{2} \leqq c(-j)^{-7} \quad(j<0)
$$

hence

$$
\begin{equation*}
\sum_{j=-\infty}^{-1}\| \|_{t \rightarrow 0}\left|T_{t}^{j} f\right| \varphi\left(\frac{1}{t}\right) \|_{2} \leqq c \sum_{j=1}^{\infty} j^{-\ddot{*}\|f\|_{L_{\varphi}^{2}} \leqq c\|f\|_{L_{\varphi}^{2}} .} \tag{24}
\end{equation*}
$$

The theorem now is an immediate consequence of (22), (23) and (24).
Q.E.D.

Proof of Theorem 2. By Theorem 1 we can assume supp $m \subset\left[\frac{1}{2}, \infty\right]$. We have

$$
\left|\sup _{0<t<1}\right| T_{m_{t}} f\left|\varphi\left(\frac{1}{t}\right)\right|^{2} \leqq c \sum_{k=0}^{\infty} \sup _{1<t<2}\left|T_{m_{t 2}-k-1} f\right|^{2} \varphi^{2}\left(2^{k}\right)
$$

Define f_{k} by

$$
\hat{f}_{k}(\xi)= \begin{cases}\hat{f}(\xi), & \text { if } 2^{k-1}<|\xi|<2^{k} \\ 0, & \text { otherwise }\end{cases}
$$

Then for $t \in(1,2)$

$$
\left(T_{m_{t 2}-k-1} f\right)^{\wedge}(\xi)=m\left(t 2^{-k-1}|\xi|\right) \sum_{j=k}^{\infty} \hat{f}_{j}(\zeta)
$$

i.e.

$$
T_{m_{t 2-k-1}} f=T_{m_{t 2}-k-1}\left(\sum_{j=k}^{\infty} f_{j}\right) .
$$

By Lemma 2 we get

$$
\left\|\sup _{1<t<2}\left|T_{m_{r 2-k-1}} f\right|\right\|_{2}^{2} \leqq c\|m\|_{R L(2, x)}^{2}\left\|\sum_{j=k}^{\infty} f_{j}\right\|_{2}^{2}
$$

hence

$$
\left\|\sup _{0<t<1}\left|T_{m_{t}} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2}^{2} \leqq c \sum_{k=0}^{\infty}\|m\|_{R L(2, a)}^{2}\left\|\sum_{j=k}^{\infty} f_{j}\right\|_{2}^{2} \varphi^{2}\left(2^{k}\right) .
$$

Since

$$
\left\|\sum_{j=k}^{\infty} f_{j}\right\|_{2}^{2}=\sum_{j=k}^{\infty}\left\|\hat{f}_{j}\right\|_{2}^{2}
$$

we obtain

$$
\left\|\sup _{0<t<1}\left|T_{m_{\mathrm{t}}} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2}^{2} \leqq c\|m\|_{R L(2, x)}^{2} \sum_{j=0}^{\infty}\left\|\hat{f}_{j}\right\|_{2}^{2} \cdot \sum_{k=0}^{j} \varphi^{2}\left(2^{k}\right) .
$$

Noticing that

$$
\sum_{k=0}^{j} \varphi^{2}\left(2^{k}\right) \leqq c \psi^{2}\left(2^{j}\right)
$$

the proof follows by another application of Plancherel's theorem.
Q.E.D.

Proof of Theorem 3. Let us first notice that if m is of bounded variation, then $\hat{m}(\tau)=\mathbf{O}\left(|\tau|^{-1}\right)$ as $|\tau| \rightarrow \infty$, which implies

$$
\int_{-\infty}^{\infty}\left(|\hat{m}(\tau)||\tau|^{1 / 2-\varepsilon}\right)^{2} d t=\mathrm{O}\left(\frac{1}{\varepsilon}\right) .
$$

So, by (3), (7), m satisfies condition (14).
Now assume $m \in W B V_{2, x}$ is such that (14) holds. Define operators $P_{u}=P_{u}^{k, z}$ by

$$
\left(P_{u}^{k, \alpha} f\right)^{\wedge}(\xi)=\left(\frac{d}{d u}\right)^{x} m\left(u \frac{|\xi|}{2^{k-2}}\right) \hat{f}(\xi), \quad u \in(1,3)
$$

By an argument similar to that in the proof of Lemma 2 we get

$$
\begin{equation*}
\left\|\left\{\int_{1}^{3}\left|P_{u} f\right|^{2} d u\right\}^{1 / 2}\right\|_{2} \leqq c\|m\|_{2, x} \mid f \|_{2} . \tag{25}
\end{equation*}
$$

And similarly we get for $s \in(1,2)$

$$
\begin{equation*}
T_{m_{t}^{k}} f=A_{t}^{k, \alpha} f+B_{t}^{k, \alpha} f \text { for every } \quad \alpha \in\left(0, \frac{1}{2}\right) \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
& m_{t}^{k}(s)=m\left(s t 2^{-k+2}\right), \\
& A_{t}^{k, \alpha} f=\frac{1}{\Gamma(\alpha)} \int_{t}^{3}(u-t)^{x-1} P_{u}^{k, \alpha} f d u, \\
& B_{t}^{k, \alpha} f=\frac{(3-t)^{\alpha}}{\Gamma(\alpha) \Gamma(1-\alpha)} \int_{3}^{\infty} \frac{T_{m_{k}^{k}} f}{(u-3)^{\alpha}(u--t)} d u .
\end{aligned}
$$

Define f_{j} by $\hat{f}_{j}(\xi)=\hat{f}(\xi) \chi_{\left[2^{k-4}, 2^{k-2}\right]}(|\xi|)$ and

$$
M(f)(x)=\sup _{0<t<1} \frac{1}{\log \left(\frac{1}{t}+1\right)} \varphi\left(\frac{1}{t}\right)\left|T_{m_{t}} f(x)\right| .
$$

We have

$$
\begin{equation*}
M(f)^{2} \leqq c \sum_{k=3}^{\infty}\left(\frac{1}{k} \varphi\left(2^{k}\right) \sup _{1<t<2}\left|T_{m_{t}^{k}} f_{k}\right|\right)^{2} \tag{27}
\end{equation*}
$$

Take $\alpha=\alpha_{k}=\frac{1}{2}-\frac{1}{k}, k \geqq 3$, and split the integral of $A_{t}^{k, \alpha_{k}} f$ into the following two parts:

$$
\begin{aligned}
& D_{i}^{k} f_{k}=\frac{1}{\Gamma\left(\alpha_{k}\right)} \int_{t}^{t+2-k(u+1)}(u-t)^{x_{k}-1} P_{u}^{k, x_{k}} f_{k} d u \\
& E_{t}^{k} f_{k}=\frac{1}{\Gamma\left(\alpha_{k}\right)} \int_{t+2-k(n+1)}^{3^{3}}(u-t)^{x_{k}-1} P_{u}^{h \cdot z_{k}} f_{k} d u
\end{aligned}
$$

From (26), (27) we get

$$
M(f)^{2} \leqq c \sum_{k=3}^{\infty}\left(\frac{1}{k} \varphi\left(2^{k}\right)\right)^{2} \sup _{1<t<2}\left(\left|B_{t}^{k, x_{k}} f_{k}\right|^{2}+\left|D_{t}^{k} f_{k}\right|^{2}+\left|E_{t}^{k} f_{k}\right|^{2}\right)
$$

hence

$$
\begin{align*}
M(f) \leqq & c\left\{\sum_{k=3}^{\infty}\left(\frac{1}{k} \varphi\left(2^{k}\right)\right)^{2} \sup _{1<t=2}\left(\left|B_{t}^{k, x_{k}} f_{k}\right|^{2}+\left|E_{t}^{k} f_{k}\right|^{2}\right)\right\}^{1 / 2} \tag{28}\\
& +c\left\{\sum_{k=3}^{\infty}\left(\frac{1}{k} \varphi\left(2^{k}\right)\right)^{2} \sup _{1<t<2}\left|D_{t}^{k} f_{k}\right|^{2}\right\}^{1 / 2}
\end{align*}
$$

It is easy to see that

$$
\begin{equation*}
\left\|\sup _{1<i<2} B_{t}^{k, \alpha_{k}} f_{k}\right\|_{2} \leqq c\|m\|_{\infty}\left\|f_{k}\right\|_{2} \tag{29}
\end{equation*}
$$

Next, for a.e. $u \in(1,3)$

$$
P_{u}^{k, \alpha_{k}} f_{k}(x)=\int_{2^{k-4}<|\xi|<2^{k-2}}\left(\frac{d}{d u}\right)^{x_{k}} m\left(u \frac{|\xi|}{2^{k-2}}\right) \hat{f}_{k}(\xi) e^{i x \xi} d \xi
$$

So, by applying Cauchy-Schwarz' estimate and (14), we get the following uniform estimate:

$$
\left|P_{u}^{k, \alpha_{k}} f_{k}(x)\right| \leqq c 2^{k(n / 2)}\left\{\int_{1 / 4}^{3}\left|m^{\left(x_{k}\right)}(s)\right|^{2} d s\right\}^{1 / 2}\left\|f_{k}\right\|_{2} \equiv c \sqrt{k} 2^{k(n / 2)}\left\|f_{k}\right\|_{2}
$$

which implies

$$
\begin{equation*}
\left\|\sup _{1<t<2}\left|D_{t}^{k} f_{k}\right|\right\|_{\infty} \leqq c / \bar{k} 2^{-(k / 2)}\left\|f_{k}\right\|_{2} \tag{30}
\end{equation*}
$$

Finally, estimating the integral in u defining $E_{t}^{k} f_{k}$ again by Cauchy-Schwarz, we obtain

$$
\left|E_{t}^{k} f_{k}\right| \leqq c \sqrt{k}\left\{\int_{1}^{3}\left|P_{u}^{k, x_{k}} f_{k}\right|^{2} d u\right\}^{1 / 2} \quad(1<t<2)
$$

which, by (25) and (14), implies

$$
\begin{equation*}
\left\|\sup _{1<\mathbf{r}<2} \mid E_{t}^{k} f_{k}\right\|_{2} \leqq c k\left\|f_{k}\right\|_{2} \tag{31}
\end{equation*}
$$

From (28)-(31) we conclude

$$
\|M(f)\|_{L^{2}+L^{\infty}} \leqq c\left(\sum_{k=3}^{\infty}\left(\frac{1}{k} \varphi\left(2^{k}\right) k\left\|_{k}\right\|_{2}\right)^{2}\right)^{1 / 2} \leqq c\|f\|_{L_{\varphi}^{2}}
$$

Q.E.D.

4. Applications

Now we can use the above estimates of maximal functions to get some results on almost everywhere convergence.

Theorem 4. Assume m is a continuous finction on \mathbf{R}^{+}, contained in $R L(2, \alpha)$ for some $\alpha>1 / 2$. If condition (12) holds for the multiplier $m-1$ with $\beta>\mu$, then for every $f \in L_{\psi}^{2}$

$$
T_{m_{t}} f(x)-f(x)=0\left(\frac{1}{\varphi\left(\frac{1}{t}\right)}\right) \quad \text { a.e. } \quad \text { as } \quad t \rightarrow 0^{+}
$$

Proof. Since
we have

$$
\left\|\chi\left(m_{t}-1\right)\right\|_{\infty} \leqq c\left\|\left[\chi\left(m_{t}-1\right)\right]^{(x)}\right\|_{2}=\mathrm{O}\left(t^{\beta}\right) .
$$

$$
m(t)-1=\mathrm{O}\left(t^{\beta}\right) \quad \text { as } \quad t \rightarrow 0^{\dagger}
$$

We know from (11) that

$$
t^{\mu} \leqq c\left[\varphi\left(\frac{1}{t}\right)\right]^{-1}, \quad 0<t<1
$$

Therefore

$$
|m(t)-1|=\mathrm{O}\left(\left[\varphi\left(\frac{1}{t}\right)\right]^{-1}\right) \quad \text { as } \quad t \rightarrow 0^{+}
$$

From this we conclude that the theorem is valid for those functions whose Fourier transforms belong to $C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$. Since such functions are dense in L_{ψ}^{2}, the theorem will be proved provided

$$
\left\|\sup _{0<t<1}\left|T_{(m-1) t} f\right| \varphi\left(\frac{1}{t}\right)\right\|_{2} \leqq c\|f\|_{L^{\prime}} .
$$

But this is a direct consequence of Theorem 2 applied to the multiplier $m-1$.
Q.E.D•

As a corollary of Theorem 4 we get the following result on Bochner-Riesz means of positive order, which includes the result of Chen Tian-ping [4], who only deals with the case where $|\cdot|$ is the Euclidean norm.

Corollary 1. Let $\alpha>0, t>0, m(t)=\left(1-t^{\ell}\right)^{x}$. If $f \in L^{2}\left(\mathbf{R}^{n}\right)$ satisfies the condition

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}|\hat{f}(x)|^{2}|x|^{2 \mu} d x<\infty, \quad \mu>0 \tag{32}
\end{equation*}
$$

then for a.e. $x \in \mathbf{R}^{n}$

$$
T_{m_{t}} f(x)-f(x)= \begin{cases}\mathrm{o}\left(t^{\mu}\right), & \text { if } \quad t>\mu, \tag{33}\\ \mathrm{O}\left(t^{\mu}\right), & \text { if } \quad t=\mu\end{cases}
$$

as $t \rightarrow 0^{+}$.

Proof. First, one easily estimates

$$
\left\|\left[\chi\left(m_{t}-1\right)\right]^{\prime}\right\|_{2}=\mathrm{O}\left(t^{t}\right) \text { as } t \rightarrow 0^{+} .
$$

Since $R L(2,1) \subset R L(2, \delta)$, if $1 / 2<\delta<1$, we get

$$
\left\|\left[\chi\left(m_{t}-1\right)\right]^{(\delta)}\right\|_{2}=\mathrm{O}\left(t^{\prime}\right) \quad \text { as } \quad t \rightarrow 0^{\dagger}
$$

for every $1 / 2<\delta<1$. Moreover, one checks easily that $m \in R L(2, \delta)$ whenever $\frac{1}{2}<\delta<\frac{1}{2}+\alpha$. Notice that the condition $\delta<\frac{1}{2}+\alpha$ is forced by the singularity of m at $t=1$.

So, if $\ell>\mu$, the required result is a direct consequence of Theorem 4 with $\varphi(t)=1+t^{\mu}$.

Now assume $\ell=\mu, \varphi(t)=1+t^{\mu}$. Choose a function $h \in C^{\infty}(0, \infty)$ such that

$$
\begin{cases}h(t)=1, & \text { if } \quad 0 \leqq t \leqq \frac{1}{2} \tag{34}\\ h(t)=0, & \text { if } \quad t>3 / 4\end{cases}
$$

If we define

$$
\tilde{m}(t)=m(t)+\alpha t^{\prime} h(t)
$$

then $\tilde{m} \in R L(2, \delta)$ for $\delta \in\left(\frac{1}{2}, \frac{1}{2}+\alpha\right)$, and

$$
\left\|\left[\chi\left(\tilde{m}_{t}-1\right)\right]^{(\delta)}\right\|_{2}=\mathrm{O}\left(t^{2 \ell}\right)
$$

by a similar argument as before. So, by Theorem 4, we have

$$
T_{\tilde{m}_{t}} f(x)-f(x)=o\left(t^{\mu}\right) \quad \text { a.e. as } \quad t \rightarrow 0^{+}
$$

for every $f \in L_{\varphi}^{2}$. We write $\Delta(t)=\alpha t^{\prime} h(t)$. Then

$$
\left(T_{\Delta_{\mathrm{t}}} f\right)^{\wedge}(\xi)=\alpha t^{\ell} h(t|\xi|)|\vec{\xi}|^{\prime} \hat{f}(\zeta)
$$

For $f \in L_{\varphi}^{2}$ let \tilde{f} be defined by

$$
\hat{\tilde{f}}(\bar{\zeta})=|\dot{\zeta}|^{\prime} \hat{f}(\bar{\zeta}) .
$$

We see that

$$
t^{-\ell} T_{A_{t}} f=\alpha T_{h_{t}} \tilde{j}
$$

and so there only remains to prove that

$$
\begin{equation*}
\left\|\sup _{0<t<1} T_{h_{t}} g\right\|_{2} \cong c\|g\|_{2}, \quad g \in L^{2}\left(\mathbf{R}^{n}\right) . \tag{35}
\end{equation*}
$$

To this end, write $h(|\xi|)=v(\|\xi\|)+\mu(\xi)$, where v is smooth, $v=1$ on $[0,1 / 4]$ and supp $v \subset[0,1 / 2]$.

Clearly, the maximal operator $g_{\mapsto} \rightarrow \sup _{t>0}\left|T_{v_{t}(f \cdots)} g\right|$ is dominated by the HardyLittlewood maximal operator, hence bounded on $L^{2}\left(\mathbf{R}^{n}\right)$. Moreover, one checks easily that w satisfies the condition (1) of the proposition in Section 3 of Carbery [2],
and so also the maximal operator associated with w is bounded on $L^{2}\left(\mathbf{R}^{n}\right)$. Together this implies (35).
Q.E.D.

Corollary 2. Let $m(t)=\chi_{(0,1)}(t)$. Then for every $f \in L_{\varphi}^{2}$ with $\varphi(t)=1+t^{\mu}$ or $\varphi(t)=\log ^{\mu+1}(e+t)(\mu>0)$ the following estimates hold, respectively:

$$
\begin{align*}
& T_{m_{t}} f(x)-f(x)=\mathrm{o}\left(t^{\mu} \log \frac{1}{t}\right) \quad \text { a.e. as } t \rightarrow 0^{+}, \tag{36}\\
& T_{m_{t}} f(x)-f(x)=\mathrm{o}\left(\frac{1}{\log ^{\mu} \frac{1}{t}}\right) \text { a.e. as } t \rightarrow 0^{+} . \tag{37}
\end{align*}
$$

Proof. We take $h \in C^{\infty}(0, \infty)$ satisfying (34). Define $\tilde{m}=m-h$. Then supp $\tilde{m} \subset$ $\left[\frac{1}{2}, 1\right]$, and \tilde{m} is of bounded variation. By Theorem 3 we conclude that for $f \in L_{\varphi}^{2}$

$$
\begin{equation*}
T_{\tilde{m}_{t}} f(x)=\mathrm{o}\left(\log \frac{1}{t} \frac{1}{\varphi\left(\frac{1}{t}\right)}\right) \quad \text { a.e. as } t \rightarrow 0^{+} \tag{38}
\end{equation*}
$$

On the other hand the multiplier h satisfies the condition of Theorem 4. So for $f \in L_{\psi}^{2}$

$$
\begin{equation*}
T_{n_{t}} f(x)-f(x)=0\left(\frac{1}{\varphi\left(\frac{1}{t}\right)}\right) \quad \text { a.e. as } t \rightarrow 0^{+} \tag{39}
\end{equation*}
$$

If $\varphi(t)=1+t^{\mu}(\mu>0)$ then we have

$$
\varphi(t) \sim \psi(t)
$$

Hence, the combination of (38) and (39) yields (36).
If $\varphi(t)=\log ^{\mu}(e+t)$, then $\psi(t) \leqq c \log ^{\mu+1}(e+t)$. Hence for $f \in L_{\log ^{\mu+1}(e+t)}^{2}$ (38) and (39) imply (37).
Q.E.D.

5. Remarks

(a) Since we only consider convergence of $T_{m_{t}} f$ as $t \rightarrow 0^{+}$, it is clear that we could even replace λ in (9) by $\lambda^{\prime}=\overline{\lim }_{t \rightarrow \infty} \frac{\varphi(2 t)}{\varphi(t)}$.
(b) We do not know whether the weight function ψ in Theorem 2 could even be replaced by φ.

On the rate of convergence of certain summability methods
(c) If one choses $m(t)=\left(1+t^{\prime}\right) h(t), h$ as in (34), then obviously for every $f \in L^{2}$ with $\operatorname{supp} \hat{f} \subset\{\xi:|\xi| \leqq 1 / 4\}$

$$
T_{m_{t}} f-f=t^{\prime} \tilde{f}, \quad(0<t<1)
$$

where $(\tilde{f})^{\wedge}(\xi)=|\xi|^{\wedge} \hat{f}(\xi)$.
This example shows that the condition $\beta>\mu$ in Theorem 4 is necessary for such a theorem.
(d) By Carbery's theorem, in the case of the Euclidean norm (33) is also valid for those $f \in L^{p}\left(\mathbf{R}^{n}\right)$ for which $\left\|D^{\mu} f\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}<\infty$ for the range of p 's described in Carbery's theorem.

References

1. Carbery, A., Radial Fourier multipliers and associated maximal functions, in: Recent progress in Fourier analysis, edited by I. Peral and T.-L. Rubio de Francia, pp. 49-56, North-Holland, Amsterdam, 1985.
2. Carbery, A., An almost-orthogonality principle with applications to maximal functions associated to convex bodies, Bull. Am. Math. Soc. 14 (1986), 269-273.
3. Carbery, A., Gasper, G. and Trebels, W., On localized potential spaces, J. Approximation Theory 48 (1986), 251-261.
4. Chen Tian-ping, Generalized Bochner-Riesz means of Fourier integrals, in: Multivariate approximation theory IV: Proceedings of the Mathematical Research Institute at Oberwolfach, Febr. 12-18, 1989, edited by C. K. Chui, W. Schempp, K. Zeller, Birkhäuser, Basel-Boston, 1989.
5. Cossar, J., A theorem on Cesàro summability, J. London Math. Soc. 16 (1941), 56-68.
6. Dappa, H. and Trebels, W., On maximal functions generated by Fourier multipliers, Ark. Mat. 23 (1985), 241-259.
7. Gasper, G. and Trebels. W., A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers, Studia Math. 94 (1979), 243-278.

Received February 9. 1990. revised July 7, 1990

Detlef Müller
Fakultät für Mathematik
Universität Bielefeld
Postfach 8640
D-4800 Bielefeld Germany

Wang Kun-yang Dept. of Mathematics Beijing Normal University Beijing
China

