
On determinacy notions for the two dimensional 
moment problem 

Konrad Schmiidgen 

One of  the most important notions in the theory of the classical moment problem 
is that of  determinacy. In the multidimensional case this concept is very far from 
being understood. In addition to the "usual" determinacy, Fuglede [5] proposed 
two other notions which he called strong determinacy and ultradeterminacy. "l-he 
aim of the present paper is to contribute to a better understanding of these con- 
cepts. We restrict ourselves to the two-dimensional case. In Section 1 we discuss 
three examples. Among others they answer a question of Fuglede ([5], p. 62) by 
showing that determinacy does not imply strong determinacy and strong deter- 
minacy does not imply ultradeterminacy. In Section 2 ~e introduce another deter- 
minacy concept called strict determinacy and we give sufficient conditions for this. 

First we explain some terminology and some notation, cf. [5] for more details. 
Let dEN. A positive semi-definite d-sequence is a real d-sequence ~=(~k)k(N~ such 
that .~,~,s=l ~kr+ks ])r~ss~O for arbitrary kl . . . .  ,k,,,~N0 d, m~N and 71 . . . .  ,TmCC- 
Let ~ denote the canonical Hilbert space associated with a positive semi-definite 
d-sequence e, see e.g. [5], Section 4. Scalar product and norm of ~ are denoted 
by ( . ,  .)~ and IJ. ll~, respectively. For notational simplicity we consider polynomials 
of  the polynomial algebra C (xl . . . .  , Xd) directly as elements o f . ~ .  (Strictly speaking, 
we have to take the corresponding equivalence classes.) The multiplication operator 
by a polynomial p on C(xj . . . . .  , Xd) is denoted by Mp. 

Let M(R a) be the set of all positive Borel measures I~ on R d which have finite mo- 
ments of  all order, i.e. f [xg[d[,l(x)<~ for all kENt.  Here we set Xk:=X~t~...X~d" 
for x=(xl, ...,x d) and k=(k~, ...,kd)EN0 d, where xj'~ A real d-sequence 
a=(ek)keNg is called a moment d-sequence if there exists a measure pEM(R d) which 
has the moments ek, i.e. ~k=f xkdlt for k~N~. In this case we say that IL is a 
representing measure for ~. For pa, p2EM(Rn), we write PLOP2 if #~ and P2 have 
the same moments, i.e. f :~'dpl=f xkdp2 for all k(-Nn0. For  a measure p on R e 
and jE{1 . . . .  , d}, the projection measure izxj is defined as the image of  t~ under the 
mapping (x~ ..... xa)-~x,. 
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Suppose a is a moment d-sequence and tt is a representing measure for :~. We 
say that a or/z is determinate if/~ is the only representing measure for ~.. Further, 
a or ~t is said to be strongly determinate if each multiplication operator M~,  
j = l  . . . . .  d, on C(xx . . . . .  xa) is essentially self-adjoint in the Hilbert space aeg, 
([5], p. 56). The d-sequence ~ or the measure ~ will be called dtradeterminate if 
there are self-adjoint extensions S~ of Mx~, j =  1, ..., d, on the Hilbert space acg, 
such that C(,v~ . . . .  , Xd) is dense in the intersection of the domains of  Sj with respect 
to the norm l].l[~+llSl.ll~+...+llSd.ll~ ([5], p. 57). We refer to Fuglede's paper [5] 
for a thorough discussion of these concepts. Let us note that ultradeterminacy 
implies strong determinacy and strong determinacy implies determinacy. 

1. Three Examples 

The following simple fact is often used in the sequel. 

Lemma 0. Let /z~M(R d) and let q be a polynomial such that q (x ) r  for  
xEsupp/~. Then C(xa . . . .  , xn) is dense in E'(}q]2/~) i f  and only ~" q(x)C(Xl . . . .  , xa) 
is dense in L~(it). 

Proof The mapf-+q./  is an isometry of L~'(Iql"-p) onto L2(/~) which maps 
C(x~ . . . . .  xa) onto q(x)C(Xl  . . . . .  Xd). | 

Example 1. A determinate measure which is not strongly determinate 
We take an indeterminate N-extremal measure v0EM(R). (Such measures exist, 

cf. [5], p. 59.) Set v:=(1 +x2)-lv0 . Then vEM(R) is determinate, hence the multi- 
plication operator M S on C(x) in L~(v) is essentially self-adjoint. Since v0 is in- 
determinate, C ( x ) i s  not dense in L2(( l+x")Vo)=U((l+x2)%') .  By Lemma0,  
(xZ+i)C(x) is not dense in L2(v), so M~ is not essentially self-adjoint. Let #:=n(v) 
be the image of  v under the mapping 7z(x)=(x, :d), xER, of R into R 2. Obviously, 
/zEM(R2). 

The multiplication operators Mx and M r on C(x,y)  in L2(p) are unitarily 
equivalent to Mx and M~, respectively, on C(x) in L2(v). Therefore, My on C(x, y) 
is not essentially self-adjoint, so tha t / t  is not strongly determinate. 

We show that # is determinate. For this let fiEM(R ~) such that f i~p.  
By construction, # is supported on the graph of  the parabola y = x  2. Since 
f ( y - x Z ) 2 d f i = f ( y - x Z ) 2 d ~ = O ,  supp/~ is also contained in the graph of  this 
parabola. It follows that fi=rc(~), where i~ is the projection measure fix. Clearly, 
,7~v. Since v is determinate, this yields i~=v and hence f i=p,  i.e. I~ is determinate. 

Example 2. A strongly determinate measure which is not ultradeterminate. 
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For j = l ,  2, let vj be a measure from M(R)  such that: 
(i) M~ on C(x) in LZ(v~) is essentially self-adjoint. 

(ii) M~ is not essentially self-adjoint. 
(iii) vj([-6, 6])=0 for some 6>0.  
(We refer to the first paragraph of  Example 1 for the existence of  such measures.) 

Let Itj, j = l ,  2, be the images of  vj under the mappings ~oa(x)=(x, 0), Qz(x)= 
(0, x), xER. Clearly, It:=it~+it~ is in M(R2). For simplicity, we shall not dis- 
tinguish between Its, Itz and its restriction to the x- resp. y-axis and we identify 
L~(it) and L2(Vl) ~L2(vz). 

Statement 1. The multiplication operators M~ and My on C(x, y) in L2(it) are 
both essentially self-adjoint, so It is strongly determinate. 

Pro& We carry out the proof  for Mx. It suffices to show that (x+i)C(x, y) 
is dense in L~(it). For this let ~o~L2(it) and let ~>0. By assumption (i), there is a 
p~C(x)  such that Ittp(x, O)-(x+i)p(x)]l~:(,.O<~. Similarly, by (i) and (iii), yC(y)  is 
dense in LZ(vz), so there exists a q~C(y)  such that II~p(0, y)-ip(O)-iyq(y)[]~,~,)<e. 
Then we have | 

Statement 2. The polynomial x+i  is not in the closure of  (x+ i )xC(x )  in 
L 2 (v3), j=  1, 2. 

Proof. Fix jE{1, 2} and let I]" II denote the norm of L~(vi). Assume the con- 
trary. Let pCC(x) and let c>0.  We write p(x)=a+xq(x) with a~C and qEC(x). 
By our assumption x+i  is in the closure of  (x+i)xC(x), so we can choose rEC(x) 
such that II(x+i)a-(x+i)xr(x)ll<e. Then [[(x+i)p(x)-(x+i)x(q(x)+r(x))[[<e. 
This shows that the closure of  (x+i)xC(x) in L2(v~) contains (x+i)C(x). But 
(x+i)C(x) is dense in L2(vj) by (i), hence (x+i)xC(x) is also dense in L~(vj). 
Thus C(x) is dense in L~((x'+x~')vj) by Lemma 0 and hence in L2((x'+l)vj) by 
(iii). Again by Lemma 0, (x2+i)C(x) is dense in L2(vj). Therefore, M]  is essentially 
self-adjoint which contradicts (ii). II 

Statement 3. The multiplication operator Mx+y is not essentially self-adjoint on 
C(x, y) in L2(it) and # is not ultradeterminate. 

Proof. Assume to the contrary that Mx+y is essentially self-adjoint. Then 
(x+y+i)C(x ,y)  is dense in L2(/0. By Statement 2, there is a number 7 > 0  
such that 

(1) t[(x+i)--(x+i)xp(x)l[L..~,.j) => ? for j = 1,2 and pCC(x). 

Set @(x, y )=x+i  if y---0 and ~o(x,y)=0 otherwise. Take a number e with ? > 2 e > 0 .  
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We choose p~C(x, y) such that 

(2) I I~0 - (x+y+  i)p(x, y)ll~(,) = 

II(x+i)-(x+i)p(x, 0)llb~vx)+ ll(y+i)p(O, Y)ll~2~,a) < e2. 

Write p(x, O)=a+xq(x) and p(0, y)=a+yr(y).  From (1) and from the first sum- 
mand in (2) we obtain that r l l - - a l  <~, so la] >~- ,  since 2~<7. The second sum- 
mand in (2) gives [l(y+i)(a+yr(y))l}L,~,)<~. Hence 

II(y+i)+(y+i)yr(y)a-~JtL~.~) < ela] -x < 2~ <: ? 

which contradicts (1) in case ./'=2. This proves that M~+ r is not essentially self- 
adjoint. 

Since (x+y+i)C(x ,  y) is not dense in L2(tz) as just shown, C(x, y) is not 
dense in L2((1 +(x+y)Z)/~) by Lemma 0 and hence not in L2((1 +x2+y2)#). There- 
fore, # is not ultradeterminate ([5], p. 58). | 

Example 3. A strongly determinate measure for which the projection measures 
are indeterminate. 

Let v~=~=oa.6~,  and vz--~'~=0bnhy" be two indeterminate N-extremal 
measures from M(R) such that v~({0})~-0 and v2({0})r Without loss of  gen- 
erality we assume that x0 =y0 = 0 and x. ~ 0, y. r 0 for all n ~ 1. Set lq = ~'~'= x a. 6(~., 0) 

b and /~z=z~.=l .6(o,r.~ and / t = / ~ + / t  2. Obviously, /~CM(R~). Then the meas- 
ures #~ and / t  2 are both determinate ([1], Theorem 3.4 or [2], Theorem 7). Therefore, 
it follows in a similar way as in Example 2 (see the proof  of Statement I therein) 
that the multiplication operators M~ and M r on C(x, y) in L2(/~) are essentially 
self-adjoint, hence /t is strongly determinate. The projection measures of # are 

We have v~_~)4t x and vzz~).Pr with some positive constant 2. Therefore, /t~ and/~r 
are both indeterminate, since va and v~ are indeterminate. 

2. Some General Results 

Proposition 1". Let ~ = (~,,,) be a positive semi-definite 2-sequence. Suppose that 
C(x) is dense in L4(/a0, where I~1 is a measure oJ M(R) with moments ~.,o, nENo- 
Then ~ is a moment 2-sequence. 

* According to Fuglede ([5], p. 62), this is an unpublished result of J. P. R. Christensen. 
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Proof. Let m0EN0. The crucial step of  the proof is to show that the moment 
sequence (%,2=o+%,0),~N0 is determinate. Let v,,0EM(R) be a representing meas- 
ure for this sequence. Fix z E C \ R  and set p:~lx+zl-4pl  . (We avoid the depen- 
dence of # on z in the notation.) For k=O, 1 and qEC(x), we have 

(3) [f(x + z)2kq(x)dv.,o[ = I((x + z)"kq(x), yz,.o + 1).1 

= t(q(x), (X+~)~'(y2m*+ 1))~l =< 7[Iq(x)[l= = 7lI q(x)l[L"-(,l) -- ylI(x+z)Zq(x)llL,o,), 

where 7 is a positive constant. From (3) applied with k=O and from the H61der 
inequality we obtain 

(4) Ifq(x) dvmo [ ~ 7 II q (x)l[ L~(~) <---- ~7 II (x + z)-2 q (x)II L,~I) 

for qEC(x), where ~:=~,II(x+z)211L, O,,). 
Now take an arbitrary pEC(x). Since C(x) is dense in L4(p0, there is a se- 

quence (q,) of polynomials such that q,(x)~(x+z)-2p(x) in L4(p0. Setting 
q=(x+z)2q,,-p in (4), we conclude that f(x+z)~q,,(x)dv,,,o-,-fp(x)dv,,,o. Since 
]](x+z)2q.--pllL,(~,)=[]q.--(x+z)-~pllL._(~ O, we have (x+z)2q~(x)~p(x) in LZ(/z). 
Therefore, it follows from (3) applied with k =  1 that [fp(x)dvmo[=<:) , IIp(x)i[z,(u ). 
Hence there exists a function ipEL~(p) such that 

(5) f p(x)clv,,o = f p(x)~(x)du, p~C(x). 

Using once more that C(x) is dense in L4(p~), there is a sequence (p.) from 
C(x) such that p. (x)~(x+z)  -~ in L~(p0. From (5) and from the H61der inequality 
w e  obtain 

f I(x+ z )p . ( x ) -  11 ~ a~.. o = f Ifx+ z )p . (x ) -  l l~r 

= f Ip, (x) - (x + z)-X[ 2 Ix + z1-0" ~0 (x) dpx 

IlP.(X)-(x+z)-X[l~,o,~) �9 II~'(x)llL,(,) ~ O, 

i.e 1 is in the closure of (x+z)C(x) in L~(~,,~). Since C ( x ) = C .  1 +(x+z)C(x), 
C(x) is contained in the closure of (x+z)C(x). If  o~ff,,0 denotes the closure of C(x) 
in L2(v,,,,), (x+z)C(x) is dense in sum~ for z 6 C \ R  and hence M~ is essentially 
self-adjoint on C(x) in the Hilbert space ~.~ff,,o. Thus (cq.2,,o+%. 0) is determinate 
(see e.g. [5], Theorem 7 applied with n = 1) for each rn0EN0. By Lemma 2 below, 
(%.2mo+~.,~(mo+l)) is determinate for every moENo. Therefore, by a result of 
Eskin ([4], Theorem 2), ~ is a moment 2-sequence. II 

Lemma 2. Let ~=(C~,,m) be a positive semi-definite 2-sequence and let moENo. I f  
the sequence (~.,~(,.~ is detelvninate, then (~..2mo+~..z(.,o+X~).~N. is 
also determinate. 
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Proof Let v,,0+ 1 and a,, ~ be measures of M(R) with m o m e n t s  ~n,2(moT1)-t-O~n,O 
and %,2,,o+%,~(,.o+1), respectively. For p~C(x),  we have 

(6) IlP(x)[l~2(Omp --- I[y"~ ~ 21[(y~o+l+i)p(x)ll= = 2[Ip(x)llL,(,. 0+1). 

The inequality in (6) can be seen as follows : We extend the multiplication operator 
My on C(x, y) to a self-adjoint operator in a possibly larger Hilbert space. Since 
l y "~ + i)l ~ 21Y "~ + i [ for y~R, the inequality follows at once from the spectral 
theorem. 

Let z E C \ R .  Since v,,0+ x is determinate by assumption, the function 1 is in 
the closure of (x+z)C(x) in L2(v,,o+ O. From (6) we conclude that 1 is also in the 
closure of  (x+z)C(x) in L2(a,.~ Arguing in the same way as at the end of  the 
proof of Proposition 1, it follows that G,o is determinate. 1 

Remark. Replacing v,. ~ by G,0 in the proof of Proposition 1, the same reasoning 
shows directly that G.o is determinate without using Lemma 2. But the determinacy 
of  V,,o and Lemma 2 are needed for the proof of Theorem 4 below. 

We shall say that a positive semi-definite 2-sequence ~ is strictly determinate 
i f  (x+w)(y+z)C(x,  y) is dense in ~ for w=  + i  and z =  +i.  I f  this is true, it 
follows easily that the multiplication operators M~ and My on C(x, y) in ~ are 
essentially self-adjoint and that the resolvents of their closures commute. Therefore, 
each strictly determinate positive semi-definite 2-sequence is a strongly determinate 
moment 2-sequence. 

Lemma 3. A moment 2-sequence ~ is sO'ictly determinate i f  and only i f  C(x, y) 
is dense in L~((1 +x~)(1 +yZ)p) for some representing measure #~MfR z) for ~. 

The proof of  this lemma is straightforward. We omit the details. 
From Lemma 3 we see that if  ~ is strictly determinate, C(x, y) is dense in 

L2((t +xZ+y")l~) and hence c~ is ultradeterminate ([5]). That the ultradeterminacy 
does not imply the strict determinacy can be seen as follows. Take an indeterminate 
N-extremal measure vEM(R) and let /~ be the image of ( l+x2) - lv  under the 
mapping rc(x)=(x, x) of R into R 2. Then it is easy to check that C(x, y) is dense 
in L2((l+x2+y2)#) and that C(x ,y)  is not dense in L~((l+x2)(l+y2)l~). There- 
fore, the moment 2-sequence associated with /~ is ultradeterminate ([5]), but not 
strictly determinate by Lemma 3. 

Our main result in this section is the following 

Theorem 4. Suppose that ~=(%,,) is a positive semi-definite 2-sequence such 
that the sequence (no,,,) is determinate. Suppose that one of  the following two assump- 
tions is satisfied: 
(i) C(x) is dense #z L4(/q), where Iq~M(R) has the moments ~,o, hEN0. 

(ii) For eve1T m o~ No, the moment sequence (%, 2,,o + z~, o)n ~ No is determinate. 
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Then c~ is a strictly determinate moment 2-sequence. 

Proof By the proof of  Proposition 1 and by Lemma 2 and Eskin's theorem 
([4]), (i) implies (ii) and (ii) implies that ~ is a moment 2-sequence. Thus it suffices to 
show that the moment 2-sequence ~ is strictly determinate provided that (ii) is ful- 
filled. We assume condition (ii). 

Let # be a representing measure for :~. Take functions .s Let 
w, zE{-i ,  i} and let ~>0. The projection measure /ly is a representing measure 
for the sequence (S0, r,). Since the latter is determinate by assumption, there exists a 
polynomial qEC(y) such that 61](y+z)(g(y)-qfy))l[,:.o,,~<~, where 

6 :=sup {l(x+w)f(x)l; xER}. 

There are numbers 7>0  and m0EN0 (of course, depending on q and so on e) such 
that ](y+z)q(y)l<=Tly'o+il, yER. Put v:=((y2~o+l)p)~. Clearly, vEM(R) and 
v has the moments c~,,Z~o+e,,o, nENo. By (ii), v is determinate. Hence there is a 
pEC(x) such that Then we have 

Ilf(x) g(y) - p  (x) q (Y) IIL~((~ + x-~)(1-~- yz )i,) 

= [[(x + w)(y + z)(f(x)g(y)-p(x)q(Y))I[L"-(u) 

I[(x + w)( f (x)-p(x))(y  + z)q(y)liL._(u) + i[(x + w) f(x)(y + z)(g(y)-  q(y))lIL._(,) 

<: 7 [[(x + w)(f(x)--p(x))(ym~ i)]lz.-(, ) + 61](y + z)(g(y)--q(y))llL..O0 

= 7[[(X + w)(f(x)--p(x))l[r:(,, + 6 [[(y + z)(g(y)--q(y))lle'-(,,.) < 2e. 

By Lemma 3 this proves that ~ is strictly determinate. I 

Proposition 5. Suppose e : ( e . , . )  is a moment 2-sequence with representhTg meas- 
ure #EM(R2). Suppose that (x+i)C(x) is dense in L~'+~(p~) for some 6 > 0  and 
(y + i)C(y) is dense in L2(gr) (or equivalently, (%, m) is determinate). Then ~ is strictly 
determinate. 

^ 1  

Proof Take kEN such that k:>2:=l-~-2~ -1 and keep the notation of the 
i 

preceding proof. H61der's inequality yields 

II(x + w)(S(x)-p + i)llL,(u ) ~ [ f  [ymo+ il2t dl@'-' [[(x 4-w) (f(x)-- p (X))IIL-- + e(,,x) �9 

By the first assumption pEC(x) can be chosen such that the right-hand side of  this 
inequality is smaller than e. Using this and arguing in a similar way as in the proof 
of Theorem 4, the assertion follows. 1 
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3. Some Open Problems 

a) Suppose ~=(~. , . . )  is a positive semi-definite 2-sequence. A fundamental  
problem is to find (sufficient) conditions for ct to be a moment  2-sequence. Results 

in this direction were obtained in [3], [4], [6] and in Proposi t ion l above. But there 

is still a s trong gap between known affirmative results and counter-examples.  For  

instance, I do not  know whether the determinacy o f  (~.,0) (even together with the 

determinacy o f  (~o,,.)) implies that :t is a moment  2-sequence. 
b) Suppose ~=(cq,. ,)  is a moment  2-sequence such that (~t.,0) and (~t0, m) are 

bo th  determinate. Then ct is determinate ([7]). Is ~ also strongly determinate? 
c) Suppose ~ is a determinate moment  2-sequence with representing measure kt. 

W h a t  does this imply for ~ or  /~? The only necessary condit ion for determinacy 
in the multidimensional case I know is the denseness o f  polynomials  in Lx(V). It is 

no t  known whether the polynomials  are dense in L2(F0. I believe that the latter is 
no t  true in general*. 

A c k n o w l e d g e m e n t .  The author  would like to thank Professors C. Berg and 
B. Fuglede for valuable discussions and for their hospitality during the author 's  

stay in Copenhagen,  1988. 
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