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w 1. Introduction 

Let Z be an irreducible JB*-algebra of finite dimension d and rank r. Let D 
be the open unit ball of Z;  it is a bounded symmetric domain of tube type. We 
denote by G=Aut  (D)0 the connected component of the identity in the group 
Aut (1)) of all biholomorphic automorphisms of D. The isotropy subgroup at the 
origin 

K = {eEG; e(O) = O} = a n O L ( Z )  

is a maximal compact subgroup. 
In the recent work [FK] Faraut and Koranyi describe the Hilbert spaces of 

analytic functions on D which are invariant under the unitary action of G given by 

ur = f o e .  (Je) ~/p, y e a .  

Here J e  = det (e') is the complex Jacobian of e, p is the genus of D (to be defined 
below) and ;t ranges over a permissible set of non negative real numbers called the 
Wallach set. The formulas for the invariant inner products in [FK] are in terms of a 
certain orthogonal expansion of the functions (called the Peter--Weyl decomposi- 
tion), which refines the homogeneous expansion. 

The purpose of this work is to provide more concrete formulas (in terms of 
integrals of certain derivatives) for the invariant inner products, in the special cases 
of the highest quotients associated with points 2 is the discrete part of the Wallach 
set. The main results are Theorems 12, 14, and 19 below. 

Our formulas for the invariant inner products exhibit the invariant Hilbert 
spaces as certain Besov spaces. They can be used effectively to define duality in the 
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invariant Banach spaces of analytic functions on D. Our results extend some known 
facts concerning the Dirichlet space in the context of the unit disk in the complex 
plane. 

We fix some notation and terminology. For more details see [FK], [U1] and 
the references therein. Fix a frame {el, e2 . . . . .  e,} of minimal orthogonal tripotents, 
let e = e l + . . . + e  ~. Let Z=~i<=i~_j~_,~Zi.i 
relative to {e,}~=a and let 

Zj = Zi~i~,ajOZi, i, 

Z~ is a JB*-algebra with unit ex+...+ej. 

be the Peirce decomposition of Z 

j =  1 ,2 , . . . , r .  

Let Nj be the determinant ("norm") 
polynomial of Zj, j = l  . . . . .  i". We denote N,=N, 

For l<~i-<j<=r let a=dim(Zi,  j). It is known that a is independent of the 
particular choice ofi ,  jwi th  1 -<'=t<J=r.'< Thus d=r+r(r -1 )~ .  The genus of D is 
p = ( r -  1)a + 2 ~- 2d/r. 

For two polynomials p, q let 

(P, q)r -- 0~(q*)(0) 

bethe Fiseherinnerproduet. Here Op=pl~z ) and q(z*)=q*(z). It is known that 

the Fischer inner product is given by 

1 (p, q) = e f zp(Z ) q(z) e-ll:il2 dV(z) = z p(z) q(z) e-Ii:i1~ dz 

where dV(z) is the usual Lebesgue's volume measure and IlzU is the unique K-in- 
variant inner product on Z, normalized so that the norm of a minimal tripotent is 1. 
The Fischer inner product is called the "Fock inner product" by some authors. 
In particular, the Fischer inner product is K-invariant: 

(pok, qok)~. = (p, q)F; kCK. 

Let S={k(e); k6K} be the Shilov boundary of D and let da be the unique 
K-invariant probability measure on S. The Hardy space H2(S) is the completion 
of the space P=P(Z) of analytic polynomials with respect to the inner product of 
L2(S, or). 

A signature is an r-tuple ~ = ( m l ,  m2 . . . . .  m~) of integers satisfying nh~  
m~ ~. . .  -->mr = 0. The conical polynomial associated with the signature ~ is 

Let 

Nra ( z )  -~- N ~  x - ra, ( z )  N~  n2 - m3 (Z ) . . .  N y ' ( Z ) .  

P,,:= span {N,,ok; kCK}. 
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It is known (see [S] and [U1]) that the spaces {Pro},. are precisely the irreducible 
K-orbits in the space P of  analytic polynomials on D. Moreover, P admits a direct 
sum decomposition 

P =  ~', .  | P., (sum over all signatures), 

called the "Peter--Weyl decomposition", see [U1], which is orthogonal with respect 
to the Fischer inner product. 

Let L={kEK; k(e)=e}. For each signature nj consider the spherical poly- 
nomial 

(z) = f u., (l(z)) at 

(dl is the Haar measure of  L). q~,_, is the unique L-invariant polynomial in ~ sat- 
isfying q~_~(e)= 1. 

For 2EC and a signature n3 we define 

H " f l l 2 + v - ( j - - 1 )  2 ) 

It is known [FK, Theorem 3.6] that 

l[(P~]'~ = ( d l ~ / d i m  P~_. 

The Bergman kernel K(z, w) is the reproducing kernel of the space L~.(D) of 
analytic functions in L2(D)=L2(D, dV). Notice that K(z, 0)=  1 for all zED. The 
Wallach set W(D) of D is the set of all 0<=2 so that K(z, w) alp is positive definite, 
i.e. ~';'.j=l aiasK(zJ, zi) x/p>=O for all finite sequences {Zj}~= 1 in D and {aj}7= 1 
in C. It is known (see [FK]) that the Wallach set consists of  a discrete part Wn(D): 
{(v-l)-~}~,= 1 and a continuous part @ f ( D ) = ( ( r - 1 ) ~ ,  oo). For  2EW(D) one 
defines an inner product ( . , . ) 4  on g~!~ := span {K(. ,  w)~/P; wED} via 

(K(., w)'./,, K(. , = K(z, w):.:, 

and let o%#z denote the completion of o~::! ~ Define an action U ~:) of G on analytic 
functions on D by 

Ufa)(qo) f = (logo). (Jqo) alp 

where (J~o)(z)=det(tp'(z)) is the complex Jacobian of q~ at z, p---(r-l)a+2 is 
the genus of  D and we used the principal branch of  the power function. By the 
transformation rule 

Jq)(z)K(~o(z), ~p(w))Jq~iw) = K(z, w); z, wED, (p~G 
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one sees that for each r U(Z)(~0) is a unitary operator on ~r a. Unless 2]p is 
an integer the map r is not continuous, nor is it an ant i -homomor-  
phism. There is however a natural way to extend U (a) to an anti-representation o f  
the covering group G of  G (see for instance [B], [U2]). This yields the important  
formula 

UC~)(q,~) = c(~, ~, ;.). u(~)(O)u~(~), ~, ~ G ,  

where c(q~, ~O, 2) is a unimodular number. Clearly, U(~)( id)=I  where "id" is the 
identity function on D. 

The classification of  the irreducible bounded symmetric domains up to bi- 
holomorphic isomorphism, due to E. Cartan, is the following. 

D(I . ,  m) 

D(II.) 

D(III . )  

D(IV.) 

D(V) 

D ( V I )  

= {zEM.,m(C); zz* < 1.}, 1 ~_ n ~_ rn; 

= {zED(I., .);  z r = - z } ,  5 _~ n; 

= {z(D(I . . . ) ;  z r = z}, 2 _~ n; 

= {zcC.; [(zT=, lz;')'- IZT=, z,'l'] ' ' <  1-zT=,  

= {z(M~,,(O); Ilzll < 1}; 

= { z ( n 3 , 3 ( O ) ,  z* = z,  Ilzll < 1}. 

5 ~ _ n ;  

Here z r is the transpose of  the matrix z, O is the complex 8-dimensional Cayley 
algebra. The domains of  types I - - I V  are classical. D(V) and D(VI)  are the excep- 
tional 16 and 27 dimensional domains. The domains of  tube type are D(I . , . ) ,  D( I I . )  
for n even, D(I I I . ) ,  D(IV.) ,  and D(VI).  The parameters of  these domains are given 
in the following table: 

type If,, IH. IV. VI 
parameter I . , .  (6 _~ n even) (2 ~_ n) (4 ~ n) 

d= division 
r = rank 
a=dim Z~,~ 

1 ~_i~_j~_r 
p = genus 

n 2 

n 

2, if 2_~n 
O, if n = l  

2n 

n ( n -  1)/2 
n/2 

4 

2(n-  1) 

n(n+l)/2 
n 

1 

n + l  

n -  2 

27 
3 

8 

18 
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meier on subjects related to this paper. He is also grateful to Z. Yan and A. Koranyi  
for sending him their unpublished results ([Y] and [K] respectively) after the first 
draft of  the paper  was written. 
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w Analysis of the differential operator O N . 

Proposition 1. N(k(z))=x(k)N(z), k6K, where ~: k ~ T  is a multiplicative 
homomorphism. 

This is well-known, 

Notation. m ' = ( m x ,  m2 . . . . .  m,_x, 0). 

I f  m is a signature and l is a non-negative integer, we denote 

m_ +l  = (mx+l, m2+l . . . . .  m,+l). 

Proposition 2. Let rn be any signature, l>=0. P,.N z= Pm+t. In particular, P,.,NI= 
e m ,  + l  . 

Proof. 

P~ml+, ..... - -+o  = span{ ( (N~N ' )ok ) :  k 6 K }  

= span {(N~ok)Nk; k6K), by Proposi t ion  1 

= span {N~_ok; k~K} . N  l 

= P.N' I 

I .emma 3. Ou(N~, Nt)E Pm, N '-1. 

Proof. Clearly, f=Ol~(Nm_,Nl)C~s the space o f  homogeneous  polynomials  o f  
degree s, where s= lm ' l+( l -  r ,-1 1) ~ = i m j + ( I - 1 ) r .  Let  g ~ .  Then Oaf is con- 
stant  and so 

Oaf = OaN( N~,N') = Ogu( Nm_.N')(O) = (gN, Nu  N')e. 

I f  g----~l,I =, gr g,6P,,  then 

(g, N, N. ,  N')e = 0 

unless _ a = ( m l + l -  1 . . . . .  m , _ l + l -  1, 1-1). 
So 

E P,. +l i +l f , 1 - .  . . . . . . .  x -1.1-1) = P m  "NI-I. II 

Notation. ON(N.,_, N')=F~_,,tN '-l ,  F~_,,IE P~,. 

In  the p r o o f  o f  L e m m a  4 below we use the fact tha t  N * = N  and  that  for  every 
polynomials  p,  q 

(t) (p*, q*)~ = (q, p)~ 
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and 

(~f) (c)NP, q)F = (P, Nq)r. 

The first formula follows easily from the integral form of the Fischer inner product, 
while the second follows from the definition (i.e. the differential form of the Fischer 
inner product). 

l.emma 4. ON(gok)-=((aNg)Ok)z(k), kEK. 

Proof. It is enough to assume that gEP~,N t. Then ON(gok)EP~,N 1-1. Let 
hEPm_,N '-1. Then Oh(ON(gok))=OhN(gok) is constant. Hence 

(0~(0N(gok))) : 0hN(go~)(0) 

: (gok, h*N)r, by (t), 

: (g, (h*ok-1)N)rz(k),  by K-invariance, 

= (Oug , h*ok-~)rz(k),  by (?~f), 

= ((ONg)ok, h*)rx(k ), by K-invariance, 

=- On(O~(g)ok)x(k), by (t). 

Hence ON(gok)=(ON(g))ok.z(k) as desired. I 

Lenuna 5. Os((Nm_,ok)N')=-(F~_,,,ok)N '-x for any kEK. 

Proof. ON ((U,,_,ok)N') = i) N ((N~_, N')ok)/'z(k)' 

= ((Ou(N~_,N'))ok)/x(k) '-~, by Lemma 4, 

= (Fro, zok)NI-L II 

We define linear operators {Tl}~=l, Tl: P_~,~P_~,, as follows. 

T~ (Zv  c,.(N_~,ok,)) = ~',. cvF~_,,okv 

and extend Tl to the space ~(Z):=~_,@P~_, of harmonic polynomials by line- 
arity. By Lemma 5, for every harmonic polynomial q E ~ ( Z )  

T~(q) = O~(qN~)/N~-L 

Lemma6. Let qEgrf(Z), l ~ l .  Then Tt(qok)= T~(q)ok; VkEK. 

Proof. Let qEP_~,. Then 

T~(qok) = Ou ((qok)N')/N '-~ = 0~- ((qN')ok)/(N 1-~" z(k)') 

((O,~(qg'))ok). )~(k) (O~(qN') ] 
= N,_ lx(k)  t == ~,. ~ )ok  = Tl(q)ok. II 
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Corollary 7. There are numbers c,_., 1 such that 

Tt(q) = c~_,,iq for qEP~," 

Proof. T~: Pm-~P,., commutes with the action of  the group K. However, Pro, 
is K-irreducible. So by Schur's lemma in representation theory T~le,=.=c~,,iIpm,. | 

Lemma 8. 

Cm.,, = IkOm, N'l[~/ll~o~_,Nt-lll~ = I[s=~ + m i + l -  1 - ( j - 1 )  

where a = d i m  (Zu) for l<=i<j-~r, (mr=0). 

Proof. Since N is L-invariant and N(e)=  1, for every signature L_n, 9m__N t=  
~0._,+,. Also 

c91q(Cpm, +t ) = ON(qgm, N l) = Cm, l ~Om, N 1 - 1  = Cra,,l ~Ora,,l ~Ora, + l + l" 
Hence 

c.,,, = (ON(q'~,§ ~0~,+t§247 = II~o=_,+tll~li@~,+,-xll~ 

by (I"1") above. But 

t l % l i l  = 

(see Section 1) and dim (P~,+3=dim (P~,+l_~)=dim (P~,) by Proposition 2. Thus 

d d r d 
c~,,, = (~).,+,/(--~-)m,+t_l = 1I~=~ ( r + m J  + 1 - l - - ( j - l ) g ) .  

Corollary 9. Let m_ be any signature with m,>- 1. Let 

c_~ = H j=l + mj - 1 - ( j -  1) . 

Let c._,=O i f  m,=O. Let f = Z 2  f,. be analytic in a neighborhood o lD,  fmE P,.. Then 

Proof. I f  m,_->l and fEP_~, then f=gNm% with gEP~.,_,~. ...... ._,-.,.,o). By 
Lemma 8 

ON f =  C(,nl-. .......... l_n,.,O) mrf/N = c~flN.  

If  m . = 0  then P., consists of  harmonic polynomials, and hence 0N f = 0  for all 
fEP.2 (see[U]). II 

Corollary 10. For every non-negative integer s 
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(,'--). 
with bm,s-~-Cm.C(mt_l,...,mr_l)...C(mt_s+l . . . . .  m r _ s + l  ) -  d - "  

- -  - -  ( ' 7 ) m - s  

if m,<s. 

Proof. Since 0N.=(0~y, 
and fmE P,, 

ON.fro = (a,,)" fm 

= Cm(aN)s-lfmlN, 

= Cm" C ( . , - ~  . . . . . . .  - , ( O ~ ) ~ - ~ ( f . J N  ~) 

for m,>-s and bm, s=O 

we get by Corollary 9 for any signature m with m,>=s 

with fm/N~e(mt_l m.-I) 

with fm_/N~E P(ml_2 ....... -2) 

= CI_" C(. , , - -1 . . . . . . .  - 1 ) " ' C < m 1 - * + 1  .. . . .  =.-.+l)(f_~/N*) �9 

I f  m,<s then bin,,=0 and the same proof yields 

ON'fro = o = b,.,fmlN'. I 

Corollary 10". 

w 3. Characterization of the invariant inner products on the highest 
quotients by integration over the Shilov boundary 

a Fix 2 = 2 , = ( v - 1 ) - ~ ,  v = l ,  2 . . . . .  r, be a point in Wd(D). For a signature m 
let q(2, _m) be the multiplicity of  2 as a root of the polynomial 

_ .1,=o ~ + l - ( j -  1) 

(We set q(A,m)=0 if  2 is not a root of  (~)m_). Set q(2)=sup_=q(2, m). Clearly 
q(a)=<r. More precisely 

J r--  v + I; a even 
| f  1 

q ( 2 , = ] [ ~ - - Y - ] + l :  a =  1, D=D(I I I , )  
/ -  - 
I. 1; D = D(IVn), nodd;  

Consider the action U ta) of  G on analytic functions on D defined by 

U(a)(tg) f = ( focp) ( ]~o)  alp. 
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Let P(a)=span {U(a)(9)P; q~EG}. For j = 0 ,  1 . . . . .  q(2) define 

M~ a) = {fEP(~); f = Z f . , ,  f,,EP,.}. 

q ( 2 , m ) _ ~ j  

Clearly, 

(*) {0} ~ Mo (*) ~ M, (*) ~ ~ "*(*) = P(*) �9 . .  * ' * q ( 2 )  

According to [FK] (see also [O] for the special case of  domain of  type I...) the spaces 
M~ z) are U(X)-invariant and the quotients M~)/M~Z_) 1 are irreducible (where 
M_~, := {0}). Thus (*) is a composition series of  P(x). It is not hard to see that in fact 
every U(X)-invariant subspace of  P(a) is one of  the spaces in (*). Moreover, if we 
define for ~EC and f ,  gEP (~) 

(f ,  g)r Z . ,  (f,., g.,)r/(~),. 

and for f ,  gEMJ ;') we define 

then ( . , . ) a . j  is a U(X)-invariant Hermitian form on M~ x) with 

{fEM} x); (g , f ) x , i  0, VgEM) ~)} = ~t(z) :- *'*j--I " 

One can compute 

where 

(f, gh, j =  Z (f.,g.)g(z).~ 
m 

~(a,2) =j 

(2)m,j = l i m  (4),. Ilrv=1111=O ( 2 )  - r  ( 4  - ,~)J - r t m ~ - I  ~" + l -  ( j -  1)  

(where "//'~'2~ -I'' ranges over all non-zero terms). The Hermitian form ( . ,-  )x,j on 
MJa)/~.o) is definite (positive or negative) if and only if either j = 0 ,  or j = q ( 2 )  l~ra j-- 1 
and ( r - v ) ~  is a non-negative integer. In this case the quotient ~r(x)/ag(x) is 
said to be unitarizable, and we denote by Jcga, j the completion of  ""JlVt(~)/~4(~),'"J-x with 
respect to ( . , . ) 4 , j .  

Since Z is a JB*-algebra, we get the following three possibilities. 

Corona. 11. ( 0  t f  a is e~e, then M(,~)/M~,~2)_~ i~ always ~nita~izable, i.e. 
( "," )a,q(~) is definite. 

(2) I f  D=D(I I I , )  and a= 1 then M ~a) IM ~) is unitarizable i f  and only i f  q(a)l q(2)--1 
r--- v (mod 2). In this case q ( 2 ) - - ~  + 1. 

(3) I f  D=D(IV. ) ,  n odd, then q(2)= 1, MCla)/M(o ~) is unitarizable for 2= "-~ 
and not unitarizable for 2 = O. 
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The following theorem is the main result of this section. 

Theorem 12. Let ) . = ( v -  1) ~ , 1 <=v<=r, and assume that the highest quotient 
Mq(~) IA,r is unitarizable. Then 

2 Ilfll~..qo> = Y ( N ~ O N ' f ,  f)z,(s) 

where a - 0 - v ) ~ - + l - - ~ - ) . , P  and . . . . .  , - H j = l l I l ~ o  v)(ai'2) (( , ' - j )-~+l) ,  the product 
ranges over non-zero terms. Consequently, 9~.. q(z) is identified with the space of  analytic 
functions f on D for which (N ~ 0m) 1/-0 f6 H 2 (S). 

Proof. Let f=~'_~ f_~ be analytic in a neighborhood of / ) .  Then 

(fro, f.)~ 
Ilftl~.,a(a) = Zq. , ,~)=qo.)  

= Z . , r ~ . ( f ~ , f . , ) d / / ; = ~ .  ,=o 0 , -1 )  + I - ( i - 1 )  

Also, by Corollary 10' 

, ~ (d _ i _ ( j _ l ) 2 ) ( f , , , f . ) L ~ ( s  , (N*Om f ' f  )t=~s) = ~ n l r  >=$ H j : I  HI=I "7 -~- n,j 

H~:~HT=~ 7 + m - / - ( J  - 1) 

e " ~  ' ":c"+'-~' - ' ' ~ ' t r  ~J ~ '~"~  I I  j = l  = 

by [FK, Corollary 3.5]. Now, if mr~s then 

H : = x l I ~ = l { d + m - i - ( j - 1 ) 2 )  

,. rr..,-1 ( a ~-) llj=~,,=o r + t - ( J -  1) 

= H,./=ll~t=o r + l - ( J  - 1 )  

Hence 

{., . . 1  / a i , 
= 1 ) - ~ - + l -  ( j -  :' ().).,,~o., 

,9 
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Remark. I f  r = l  (and then a=0) ,  Z = C  and D={zCC,  Izl<l}, 2 = 0  and 
Dog0, x is the Dirichlet space. Theorem 12 yields in this case the known result 

L ~ " I f ' ( z ) l"dA(z)  = ei~f'(ei~ - ~ .  IlfllDi~iohl~t = fl=!<' 

Corollary 13. Let )., s, 7 be as in Theorem 12. Then 

( f  , g)x,q(a) = ?,.(]WeaN'f, g)L'-(s," 

Thus (NSO~,~f,g)L,(S) is hwariant under the action o f  G given by U('~)(40)f= 
(fo40)(J40) 'ip. 

w 4. Characterization of the invariant inner product in terms of integration over D 

The Dirichlet semi-norm in the unit disk A in C, 

IlSll.,.,o ,o, = (fi=T<. IS'(z) l :dA(z))" :  
can be wri t ten as 

II/ll.i,~0h,ot = ( / i= i< ,  i ( /o ~o)'(0)1: d~ ( . ) ) ' / '  = II(fo 40)'1k,(~, ~.). 

Here the MSbius transformation 40, (z) = ( a -  z)l( 1 - ~z) is the biholomorphic sym- 
metry of  A which interchanges 0 and a, d lL (a )=( l - l a lO- 'dA(a )  is the MSbius- 
invariant measure on the unit disk and d40 is the Haar measure of G = A u t  (A)= 
(Aut (A)) 0 . 

In this section we study the generalizations of this formula to other tube domains 
and group actions. Let D be a tube domain in C d and fix a point ) . = ) . v = ( v - 1 ) ~ ,  
(1-<_v_-<r) in Wd(D). Recall that UO')(40)f=(fo40)(J40) x/p, 9EG. 

We restrict our attention to the case where the highest quotient at(x)/~r(~) -L'Jq().)/~'~q().)--i 
is unitarizable, i.e. ( r -  l) ~ -  2 = ( r -  v) ff is a non-negative integer. 

Define 
s s(2) min {I~N; t (a) = = N (~ Mq(,t) _1}. 

Thus, s is the first positive integer for which 

span {U<Z)(40)N~; 40EG} -- Mq(~ )) = p<x). 

It is not hard to see that in fact 

g . S~-  --A.  
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Define a differential operator D~ ~) form the analytic functions on D into the 
real analytic functions on G by 

D} ~) (f)(tp) = au. (U (a) (tp) f )  (0) = (U (a)(tp) f ,  NS)j,. 

Dt~ a) is invariant in the sense that 

D} a) (U(a)(tp)f)(~b) = c(~o, 4, 2)D}~)(f)(tP~b), q~, ~bEG 

where c(q~, 4, 2) is the unimodular function introduced in Section 1. Also, for kCK 

R~D} ~) = x(k)SJ(k)a/,D~ x) = 7.(k)S+~/~D~ ~) 

where Rk(U)(~b)=u(~k) is the operator of  right translation by k. 

Definition. ~(a)  is the space of  all analytic functions f on D for which 
D~)( f )~L2(G)=L2(G,  d~0), with the seminorm 

Ilfll~'~' = IID}a)(f)lla,(o~ �9 

Here d~o is the Haar measure of  G. 
The main result of  this section is the following 

Theorem 14. Let D be a tube domain in C a, and let 2 be a point in Wa(D ). Assume 
that the highest quotient ~Ar(z) [~Ar(a) is unitarizable. Then .r is non-trivial i f  
and only i f  2 <  1, and is this case a~ta)=3/taa,q(a) with proportional seminorms 

where ot is a constant, independent o f f .  

We prove the theorem in several steps, where the most substantial one deals 
with the non-triviality of  ~r for 2 <  1 (i.e. that .,~(a) contains some function with 
non-zero semi-norm). Let us begin with the easier parts. 

Step 1. Characterizing ~(~) by integration over D. 

Define for an analytic function f on D 

/3(a)f(a) = ]D} a) (f)(cP)[ 

where ~06G satisfies r  The right K-invariance of  D~ a) shows that/3~a)f(a) 
is well-defined, i.e. independent of  the choice of  ~o which satisfies tp (0)= a. Also, 
/3~a)Uta)(q0=L~0/3~), where (L~u)(~) is the operator left translation. Let ~Oo~G 
be the symmetry which interchanges 0 and a. Then ~(z)  consists of  all analytic 
func t ions fon  D for which D~a)(~Oo)f~L~(D, p), where dl~(a)=K(a, a)dV(a) in the 
G-invariant measure on D. 
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Step 2. ~(~) is invariant with respect to the isometric action U (~) o f  G. 

Indeed, for every f E ~  (a) and ~pEG, 

llU(a~(~o)fll~t,~, = IlD~ta) u(Z)(q~)fllL,(6 ) 
= [ILq,(D]a)f)]IL2(~ ~, by the invariance of D] ~) 

= llDt, a~flb.,(~), by the left invariance of the Haar measure 

= I l f l l ~ " .  

(4) Step 3. []f[lje~=0 i f  and only i f  f is supported on M~(a)_ 1, i.e. f =  

Zq(~,_-)-q~ f_,, f~ E P~. 

Indeed, let fE3Cf (~). Then lff[l~e(~,=0 if and only if (U(a)(q~)f, N~)e--0 for 
all q~EG. This is equivalent to the orthogonality of N ' in the Fischer inner product 
to ~ {U(a~(q~)f; q~EG}. Since the latter space is U(X~-invariant and the decomposi- 
tion series M(oX)cM~x)c c~a r(~) exhaust all the nontrivial U(a)-invariant sub- . . . . . .  q(2) 
spaces of p(a) we see that s--p--fi-fi{U(a)(~p)f; ~pEG}=M) a) for a unique j<=q(2). 
However N~EM~)_x .  Hence II f11~e,~, =0 if and only i f j<q(2)  (i.e. f=~(a,z)~_yf_~, 
f~EP,  and j<q(~t)). 

Step 4. I f  3/t ~(~) is non trivial, then ~(a)=~a~.~(x) with [Ifll~.~,=~(,t)llfll~. 
for all f E ~  (~). 

This is the special case of the uniqueness theorem of [AF]. We sketch the 
short proof for the convenience of the reader. 

Since we assume that ~(z) is non-trivial we get by step 3 that ~r is dense ~,~q(~) 

in ~(~) and that [[N~]]~e~ >0. Moreover, by the orthogonality of the Peter--Weyl 
decomposition Z~_ @ P_~ in both of .,~(a~ and ~'a.,(x), we get 

(N *, f)~r,~, = a (2) ~ (N', f)~....(~, 

for every function f which is analytic in a neighborhood of D, where 

~(X) = I IN~II~ , , , / I IN~II , e~ . , ,~ , .  

The semi-inner products of ~(~) and ~.~(a) are U(a)-invariant. Thus for all 
~p, !PEG: 

(U(~)(qg) N ~, U(X)f~k) N')~r,~, = (N*, U(Z)fcp-~) U(Z)(~b) N~)F 
= a (2)2(N *, Ura)(q~ -~) U~a)(~b) g ' ) ~ ,  ~,~, 

= a(2) z (U(Z)(q~) g ' ,  U(Z)(~b) N')~r~, ~ 

since span {U(a)(q0N*; ~oEG} is dense in both ~(~) and 3fea, a(a), we see that ~ x ) =  
Wz, a(z) and that 

(f, g)~r ̀~, = ~(2) ~ (f,  g)ae,, ~ 
for all f gE.~ (a). 
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The last and the most important part of  the proof  of  Theorem 14 characterizes 
the )?s for which 3eg ~) is non-trivial. 

We begin with the transformation rule of  the determinant polynomial N under 
composition with automorphism of D. This is interesting in its own right. 

As in [FK], let h(z, w) be the sesquiholomorphic extension of  the unique 
K-invariant polynomial h on Z whose restriction to span R {ej}~= a is given by 

r �9 / i  h (~ ' i=l  tjej) = N(x~i=l (1 - tj)ej) = / / j = t  (1 -Itjl2). 

It is known that 
K(z, w) = h(z, w) -v, 

Recall that S is the Shilov boundary of  D. 

(i) 
(ii) 

z, w~D. 

Lemma 15. Let aED. Then 

U(-~Oa(u))U(u) = h(a, u)h(u, a) -x, uCS. 

N(~%(z)) = N(a-z )h ( z ,  a) -1, zCD. 

We sketch the proof. In the matrix tube domains (types I . . . .  lI. (n even), and 
III,) q~a can be written as 

r = ( I -  aa*)-l/"(a- z ) ( I -  a ' z ) (1-  a'a) 1/~, zED. 

The determinant polynomial N is very closely related to the ordinary determinant: 

N(z) = det (z), in types I, , ,  and III, ,  

N2(z) = det (z), in type II, (n even). 

The desired formulas in Lemma 15 follow now by the multiplicativity of  the ordinary 
determinant function, the formula 

det (1-  xy) = det ( I - y x )  
and the fact that 

[det(l-zw*),  types I,,. a n d [ r . ,  

h(z, w) = idet(i_zw.)l/2 ' type II. (n even). 

Formula (i) in Lemma 15 is proved in full generality in [Y]. Formulas (i) and (ii) 
in the Lemma are equivalent. Indeed, since both sides of  (ii) are analytic in z, (ii) is 
equivalent to 

N(-q~.(u)) = N(u-a)h(u ,  a) -1, a~D, u~S. (ii') 

We claim that 
N ( u - a )  = N(u)h(a, u), aED, u~S. 

Clearly, this establishes the equivalence of  (i) and (ii'). For u=e, this is well known 
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(see [FK]). For u=k(e),  k~K, this follows by the K-invariance of N and h and the 
previous case. Since S =  {k(e); k~K}  the proof is complete. II 

Lemma 16. Let z, aE D, then 

Jq)a(z) =- ( -  l )d K(a, a)-l/2 K(z, a). 

Proof. By the transformation rule of the Bergman kernel 

a) = ,p,:(O)) 

= (J~Oa(~Oa(Z)) J f p a ( C ' ) )  - 1  = J~Oa(Z)lJf~a(O ) 

letting z=0,  we get that Yrp,(0) is real. Letting z=a,  we get Ycpa(O)2=K(a, a) -x. 
Thus Ygo,(O)=e(a)K(a, a) -~/2, with e(a)= -t- 1. Clearly, ~(a) is a continuous func- 
tion of a. Where a=0,  goa= - id ,  so Yg0o(0)=(- 1) d. Thus e ( a )= ( -  1) d identically. 
It follows that Jrpa(0)=(- 1)dK(a, a) -1/2. This completes the proof. II 

Remarks. (1) The above proof holds in any bounded symmetric domain. 
(2) The argument determining e(a) is due to A. Koranyi [K]. 
(3) Lemma 16 is proved in [Y] by a different method. 

Lemma 17. For evel y aCD 

(N ~, U(S')(cp.)N~)r = cflK(a, a) '-plop 

where c is a unimodular constant and 

N~2N~' (P) --I1 [tril l  I I . - - ( s )  - -  ( . . . . . . . . .  )" 

Proof. By the arguments in step 4 above 

( Ns, f ) r  = b( N~, f)n'-(s) 

for every function f which is analytic in the neighborhood of D. Recall that the 
reproducing kernel (i.e. the Szeg5 kernel) is 

S(u, a) = K(u, a)'!2; uES, a~D. 

Using Lemmas 15 and 16 and the fact that s+2=p/2 ,  we get 

(NS' U(~)(q~") (N~))'~(s) = f s N(u)~ N (q~. (u))" Jep. (u) z/p da (u) 

= ( -  1)'fs h(u, a)'h(a, u)-~K(a, u)a!Pda(u) �9 K(a, a) -;'/2p 

= ( -  1) t f sK(u  , a) -~/p K(a, u) x!z da(u) K(a, a) -~/~p 

= (-- 1)tK(a, a)~-p/~ 
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where 
d2 

1 = r s + - - .  1 
P 

Step 5. Completing the proof of Theorem 14. 

Since span {UCa)(~p)N~; ,,r ~r(a) =pea), it is clear that ~'(a) is not trivial 
if and only if 0<[[N~tl~ca~<o~. However, by Lemma 17 and step 1 of  the proof  

[IN~[l~eta) : f o  I (v(z)(cpa) Ns' N')t[~ dp(a) : #' f og(a, a) alp dr(a). 

It is well known (see [FK]) that this integral is finite if and only if 2 <  1. Thus ~,~(z) 
is not trivial for all tube domains different from D(III.)  precisely when 2=0 .  For 
D01I.) ,  ~cz) is not trivial for 2 = 0  if n is odd, or for 2--1/2 if n is even. This 
completes the proof. [ 

Remark. The proof  yields in fact the value of  the constant 

in Theorem 14. The case where D=D(I I I . ) ,  n even and 2-- 1/2 requires the com- 
putation of foh(z,  z)~/~dV(z), using either [H] or formulas (3.7), 0 .8)  in [FK]. 

Corollary 18. In the context of Theorem 14, let 2 <  1. Then the inner product in 
the highest quotient ~,q(x) is 

(f, g)~r., ~,~, = - ~  (D(~a) f, D(~X) g)L'(G). 

w 5. Characterization of the invariant inner product in terms 
of integration over D • D 

A less well-known formula for the Dirichlet semi-norm in the unit disk A in C is 

IIDiric~le, = ff~• If(z)--f(w)l  ~ IKv(z, w)l~dv(z)dr(w) 

where v is a very general finite measure on A and Kv(z, w) is the reproducing kernel 
of  L~(v), the space of  analytic functions in LZ(v). See [AFP] for the special case 
dv(z)=(~-l)(1-1zl~Y-~dA(z) (~>1) and [AFJPI] for the general case and ex- 
tensions to other planar domains. One interpretation of  this formula is that the 
Hilbert--Schmidt norm of  the Hankel operator 

h) (z) = f (f(z) --f(w)) h(w) K,(z, w) dv(w) 

is given by Ilnslls=llfllo~rioh~,, independently of  the measure v. 
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In this section we extend these results to the context of all tube domains. 
Fix ~ >p + ( r -  1) ~ and let 

a~.(z) = c(~)Iffz, z)l-=/, aV(z) 

where c (ct)-l= fo  K(z, z)l-~/PdV(z). Let LS,(/z~) be the subspace of L2(/z,) consisting 
of analytic functions. Its reproducing kernel is K(z, iv) alp. G acts isometrically on 
L2(/z,) and L~(/t,) via UC')(~p)f=(fo~p)(J~p) ~/', q~G. 

Next, let 2=(v-1)a/2 (l~_v~_r) be a point in the discrete part of the Wal- 
lath set. Let Q<a) be the orthogonal projection on the highest quotient M ~) IM CaJ i(a)t ~(x)-l, 
that is 

QCa)(Z_~fm) = Z,r 

we a~m~ in the sequel that M~:U~q~_ ~ is unitarizat, le, i.e. 0"-l)a/2-~ is a 
nonnegative integer. 

Definition..,~f'r is the space of  all analytic functions f on D for which 

nflI~,,~,<.> := (fo IIQ ̀~, (u<%0))fll~,., d~)~' 
is finite. 

Again dq~ is the Haar measure of  G. Since Q~a) commutes with the action of 
the subgroup K it is clear that 

iiSii~.<~><:. --S~ IIQ <~)(U"'c~f))flb',,,.> d~Cz) 

where dlz(z)=K(z, z)dV(z) is the G-invariant measure on D. Also, by Lemma 16 
one obtains 

IK(z, w)l ~'/l' dtl,(w) a,.(<~.cw)) = I(:~.C~))I~"d,.Cw) = ~ 
Hence, 

Ilfll~<:>c:) = c(~)-'SS~>xol(QC'~(uc~>(<p,))f)(~,,(w))l 'lg(,, ~)1 ":/" d~,,(~) d,,@) 

Example, Let D = A  be the unit disk in C and let 2--0, Then p---2 and 
(QC~ Hence 

QCO>(fo ~o=) (<:,(w)) = f(w) - f (z)  

and the last formula becomes 

Ilfll~<~'c~) = c(~) -x f fax  a If(z) - f (w) l  ~ IK(z, w)'/~l~dlZ,(z)dlz,(w) 

which is (up to the proportionality constant) the formula for the Diriehlet semi-norm, 
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Remark. If  the rank r of  D is 2 or more we cannot take in the definition of  
~(0)(e) the projection (Q~o~ on ~r Unless f is constant, ~'- q(0)t"- o �9 
the integral 

f f  o• If(z) --f(w)l 2 IK(z, w)'/P} 2 dlt=(z) dp~(w) 

is infinite, because it is the Hilbert--Schmidt norm of the ordinary, Hankel operator 

Hf  h = ( I -  P,)fh, h EL] (pa) 

where P~: L~(p,)-~L](p,) is the orthogonal projection. It is well-known that if 
r=>2 no non-trivial Hankel operator H :  with f analytic is compact, see [BCZ]. 

The projection Q(0) onto at(0) :~Ar(0) used in the definition of A'~(~ is 
"~ q(O)l  ~'~ q ( 0 )  - -  1 

much smaller than Q(0), yet preserves the "essential contents" o f f ,  i.e. the com- 
ponent o f f  in the highest quotient ~/(0)/aar<0) This observation is the key to zv l  q( O)lZWt q( O ) _  1 �9 

our definition of the generalized Hankel operator, see section 6. 
The main result of this section is the following. 

T h e o r e m  19. Let D be a tube domain and let ).EWd(D). Assume that the highest 
quotient ~Ar(~) I~,r(a) is unitarizable. Then o-~ (~) (~) is non-trivial i f  and only i f  ), < 1. 

" ' ~  q(~.)/~" qO.)- a 
In this ease ~(a)(~)=o~f'z,q(a) with proportional seminorms 

Ilflla,'~'(=) = e I[/l]~':,,,~, 

where 
e = IlN~II~-,(,)/IlN~II~,.,,,:.,. 

As in the proof of Theorem 14, it is easy to verify that A:t)')(~t) is invariant under 
the isometric action U ~ of G, that I[ fll,e,~,(=) = 0  if and only if f=~'a(;.,,_,)<q(z)f_~, 
and that if ~(~)( , )  is not trivial then it must coincide with Yf:.,q(~) with proportional 
semi-norms. It is also clear that ~r176 is non-trivial if and only if N~6~~ 
where as in w 4 

s s(2) min {IEN; l ( , ~ )  P 2. = = N ( ~ M ~ o . ) _ I }  = -~--- 

It remains to check when is N~6.,u:(*)(~). 
Recall that for every signature ~ ,  K"-'(z, w) is the reproducing kernel of Pm in 

the Fischer inner product. 

Lemma 20. For any signature m_, all z, w6 D and I~ N, 

(dl~_ Km-(z, w) N(z) '  N(w)~ = (d)._,+t Km+' (z, w) 

where n~ + l= (m~ + l, in2 + l . . . . .  m~ + 1). 
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Proof. By the L-invariance of N and the definition of  q~ (see the introduction), 

~om N z = ~0m+z. 

Let t=~=~t je j ,  ty=>0 (where {ej}~.=l is the fixed frame of orthogonal minimal 
tripotents). Denote tz=~=~t~ej.  If  kEK, z=k(t )  then N(z)=;((k) N(t)= 
z(k)/-/f=l ty and by [FK], Lemmas 3.1, 3.2 and Theorem 3.6: 

tpm(t 2) dim (P,,) 
K~-(z, z) = g"-' (t, 0 = - 

Thus, using Proposition 2 

{d)  ~ K ~_ (z, z)N(z) 'N (z) '= dim (P,~). ~om ( f ) _  N(,~) ' 

= dim (P~+l)~p~_+z(t 2) = ~_+t KZ+l(z' z). 

[d~ k"+tCZ W) are analytic in z, The functions (,a--)m K~-(z, w)N(z)~-N-~ t and ~T/,,+z-~- , , 

conjugate analytic in w and coincide for z=w.  Hence they coincide for all 
z, wED. II 

Let S(z, u)=K(z, u) ~/2, zED, u~S, be the Szeg6 kernel. It admits an expansion 

/_,emma 21. Let D be a tube domain and let f = ~ _  f_~EH2(S). Then for I~N 

f s f (u) S(z, u) N(z)'N(u)' da(u) = Z . .~ , f~(z )  

Proof. (6)m Km(z, u) is the reproducing kernel of  P"i in the norm of H2(S). 

Hence 

= Z~_.f_.§ = _y..~,f_.~z) 

Corollary 22. Let f be an analytic function in a neighborhood of  D, s =-~-  2 = 
-~- 2. Then 

(Q~Z) f)(z) = f sf(U ) S(z, u) N(z)~N(zy da(u). 
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Proof. It is obvious that 
(4) 

m ~ ( ~ ) _  1 = ~m,<s(~Pm. 

Hence, using Lemma 21 with l z s ,  we get for f=Z_~ f= 

(a(~) f )  (z) = ~=.  ~_, f=_ (z) = f s  f(u) S(z, u) N(z) s N(u) ~ da (u) = ON (~p, (z) - z)'. I 

Lemma 23. For all a, zE D, 

Qt~) (U(a)(~p,) NO(z ) = O. N(z)" K(a, a)-(P-al2P) g(z, a) ]/~, 

where 0 is a unimodular constant independent of a and z. 

Proof. By Lemmas 15 and 16 and Corollary 22, we get 

Q(a) (Ut~)(~o) NO (z) 

= fs N(q~a(u))SJqJ~ u)I/ZN(z)SN(u)" da(u) 

= Ors h(a, u)Sh(u, a)-SK(z, u)VZK(u, a)~/t'da(u)N(z)SK(a, a) -a/2p 

= Ors K(a, u)-'/PS(u, a)K(z, u)alZda(u)N(z)'K(a, a) -a/2p 

--- O" K(a, a)-(s+(~lg)lP) K(g, a)Xl2 N(g)s 

= O. K(a, a)-(P-a/~P)K(z, a)l/ZN(z)" 

where 0 = ( -  1)'~+d~/P=( - I) '((~-~)/~). | 

Lemma 24. Let ~ > p -  1. Then there exists a positive constant C such that for 
every f~ L2,(la,,) 

C I[fllv(,.) ~- IINSfllL,(,.) -~ Ilfll,,(~.). 

Proof. Let 0 < e < l ,  then 

is an equivalent norm on L2.(p.). Since lN(z)l =>8-" on D\eD and lN(z)l ~- 1 for a11 
zED we get the desired inequality. 1 

Conclusion of  the proof of  Theorem 19. By Lemmas 23 and 24, 

IIN'II~e,~,(,) ~ f f oxo K(a, a) -cp-a/') Ig(z, a)l dlz,(z) dlt(a) 

= ffo• IK(z, a)l dp~(z)K(a, a) alp dV(a). 

We claim that there exists 1 ~_C< oo so that 

] IK(z, a)l d/z,(z) ~ C 
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for all a(D. The lower estimate is trivially, 

f o  [K(z, a)[ dp~(z) >-- IfD K(z, a)dp~(a)l = [K(0, a)[ = I. 

The upper estimate follows from [FK], Theorem 4.1 since ~ > p + ( r - 1 ) - ~ .  Thus 

IIN~II~,~,(~) ~ fog(a ,  a)am dV(a). 

The integral on the right-hand side is finite if and only if 2<  1. This completes 
the proof. II 

Remark. It is possible to compute ItN~II~,,~,(~) explicitly in terms of the Gin- 
dikin's Gamma function and the generalized hypergeometric functions, see [FK1] 
for general information and Proposition 2.2 there for the actual computation. This 
gives the value of the constant c in Theorem 19. 

w 6. Concluding remarks and open problems 

The most interesting problem left for future study is to extend our results to 
the non-tube cases and to obtain "canonical" formulas (involving derivatives, in- 
tegrals, etc.) for the invariant inner-products on the highest quotients M~)/M<~2)_t. 
This seems to require some new ideas if r > 1. In the case of the unit ball B of C d 
(which is the only Cartan domain of rank 1), Wd= {0} and the invariant Hilbert 

space ~o,~(0)=~(~ consists of  all analytic functions f(z)=z~c~z ~ on 
B so that Ilfll~, ~ o :=Z~ I~1 ~ lc~l ~ is finite, see [Z]. J. Peetre [P] obtained 
�9 , q (  ) 

mtegral formulas for the invariant inner product (.,.)0.~(0) by analytic continua- 
tion of the inner products of L~,(B, g~), d<2. See [A] for the details. A similar 
formula was obtained independently by M. Peloso [Pe] by different methods. 

Both Theorems 14 and 19 provide integral formulas for the highest quotient 
M~)[M~)_ 1 only for 2=0  and the special case of  D(IIIa) and 2=112. It is 
interesting to find the modifications of  our formulas which will hold for more (or, 
all) 2 ( ~ ( D ) .  In Theorem 19, it seems that one can modify QCX) by subtracting 
terms of low degree, to improve the chance of convergence of the integrals. 

What is behind the seemingly different descriptions of ~"a,~ca) (Theorems 12, 
14, and 19) is its uniqueness with respect to the isometric action U Ca) of G (see [AF] 
and step 4 of the proof of Theorem 14). One can obtain many other equivalent 
descriptions. For instance, let H be an auxiliary K-invariant Hilbert space of analytic 
functions on D with some natural properties, and consider the space ,~g'ca)(H) of  
all analytic functions f on D for which Q(~)(U(a)(~o)f)(H for all ~o(G and 

:-- (A 
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is finite. By Lemma 23, ~ ~  is non-trivial if and only if 

f [ ~rs r / ' l / 2  2 l ~ [ ~  n,!v n,;' IIn,,~,,, a)~/vdV(a) < oo 

and in this case ~tfo')(H)=~;..qO. ) with proportional semi-norms. In Theorem 19 we 
study the case where H=L](I,,) and =>p+0"- 1)-~ (thus ~'(~)=XP")(L](pA). 
Also, it is easy to verify that :Yg(X)(H"-(S)) is always trivial. 

Theorems 12, 14, and 19 justify the notation 

B2 (z) = .gV~, q(z), 

the Besov-2 space associated with the isometric action U Ca) of G. One can define the 
other Besov-p spaces associated with U (a) (here 0 < p ~  0% and the genus of D is 
denoted by g), by either 

B~ ~') = {f  analytic in D; [[f]]~):= ]]O]~)(f)[]L~(o) <~o} 
o r  

B~ x) (X) : { f  analytic in D; ]]flfn~,<x):= (AllQ" ' (u" ' (~~ +d+) l 'e < =o} 

where X is an auxiliary Banach space of analytic functions on D. It is elementary to 
use the proofs of Theorems 14 and 19 to characterize the non-triviality of these 
spaces. Thus B~ *) and B~a)(L~(p:)) for ~ > - ~ - + ( , ' - 1 ) +  are non-trivial if and 
only if 2 < g - 2 ( g - 1 ) / p .  It is interesting to study the spaces B~ ~) and B~)(X) from 
the usual point of views in the theory of Besov spaces, and in particular to establish 
our conjecture that (~) o.> <~) B e =Bp (X) for interesting spaces X for which B e (X)  iS 
non-trivial. 

Motivated by our Theorem 19, and by [AFP], [AFJP1], and [AFJP2] we define 
the (generalized) Hankel operator Hf with an analytic symbol f as the operator 
H r: L2(p,)~L2(/,~) (or 1) {-) given by 

(tt I h)(z) = f D h(w) AAz, w) K(z, wy,'o d~:(w) 
where 

Af (z, w) = (Q(0)(fo ~0:)) (~0,(w)) 

and Q(O) is the orthogonal projection on the hiehest quotient AAr<0)/aar<0) (thus ~ "  q ( 0 ) !  ~ "  q ( 0 ) - - I  

2=0). It is easy to establish some of the usual properties of (ordinary) Hankel 
operators, for instance nfiL~o,)• =0  and 

U(~)(~o)HfU(~)(tp -~) = Hf~g, ~o~G. 

It is interesting to investigate the question of boundness, compactness, and the 
membership in Schatten ideals S v of the generalized Hankel operators. Theorem 19 
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