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O. Introduction 

In this note we study the relationship between growth conditions of  area of  
balls and the existence of  Green's function on Riemann surfaces which we view as 
two-dimensional surfaces with a complete metric of  constant negative curvature - 1. 

This is a well-known and classical issue. We refer, for instance, to [5], [7], [8], 
[10], [12], [17] and the references therein for some general (arbitrary Riemannian 
manifolds) geometric and topological conditions related to the existence of  Green's 
function. Green's function exists if and only if there exists a positive non-constant 
superharmonic function or equivalently if Brownian motion on the surface is tran- 
sient (see, e.g. [1, p. 204], [17]). 

To fix notation let us denote by R a Riemann surface (whose universal covering 
space is the unit disk A) endowed with its Poincar6 metric, i.e. the metric obtained 
by projecting the Poincar~ metric o f  the unit disk, which is the metric given by ds = 
2 ( 1 -  Izl~) -1 ldzl, zCzl. The only Riemann surfaces which are left out are the sphere, 
the plane, the punctured plane and the tori. If  p~R and t is a positive number 
we denote by As(p,  t) the area of  the ball of  radius t centered at p. The precise 
question we address here is: which rate of  growth of  A R (p, t) as t tends to oo implies 
that R possesses a Green's function ? Of course, A R (p, t) ~ A~ (0, t ) = 4n sin h 2 (t/2) 
ne t as t ~ o .  

The following theorem is known. 

Theorem A. (i) I f  for a point po~ R and constants co, to 

AR(Po, t) ~_ cog, for every t >= to, 

then R has a Green's function. 
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(ii) Given a function ~k: (0, oo)~(0, co), increasing, and such that 

(0.1) lim-~--(, 0-- = 0, 
e "  

there exists a Riemann surface R and a point poE R so that 

Aa(p0, t) >= ~(t), for every t >= tl, 

but R has no Green's function. 

Part (i) is elementary and part (ii) is due to Nicholls [13]. We will give a 
sketch of a simple proof of theorem A in section 2. We do remark now that in the 
example of (ii) of theorem A, R can be chosen to be planar. 

It has been suggested by N. Varopoulos that in our situation, i.e., constant 
negative curvature, a uniform exponential growth o f  the area should imply that 
Green's function exists. More precisely, define 

AR(t) = inf AR(p, t), 
p~R 

and assume that 

inf l~ > 0, 
t~-to t 

can we deduce that R has a Green's function? 
This is the ease for planar domains, and actually, as a corollary of the following 

theorem we have much more. 

Theorem 1. I f  there exists a radius to and a constant Co so that 

(0.2) AR(p, to) >= co, for  every pER,  

then there exists a positive lower bound for the lengths o f  all closed curves which are 

not homotopic to zero. And conversely. 

We deduce: 

Corollary. I f  R is a planar domain satisfying (0.2) then R has Green's function. 

Therefore Varopoulos' observation is verified at least in the ease of  planar 
Riemann surfaces. As a matter of fact the same argument works for Riemann sur- 
faces of finite genus. The situation in general is radically different. 

We shall show: 

Theorem 2. There exists a Riemann surface R so that 

AR(t) ~_ e ~ for every t >--_ to, 

where ~o, to are positive numbers, and such that R does not have a Green's function. 
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We believe that one can replace ~0 by any aE(0, 1), and even obtain that 
AR(t)>=~b(t) for ~k as in (0.1), but we have not been able to do so. If  one keeps 
track of  the constants appearing in the argument one sees that ~0=0.08 works. 
A more sophisticated argument of  this sort builds a similar example with ct0=-1/3. 

Varopoulos in [18, p.271] gives an example like the one in theorem 2 with 
a0= 1, but with variable curvature. Notice that topologically his example is the 
plane. 

In section 1 and 3 we give the proofs of  theorems 1 and 2, respectively, while 
the proof  of  theorem A is discussed in section 2. Section 4 contains the proof  of  
some technical lemmas needed in the proof  of  theorem 2. 

Notation. By c we will mean an absolute constant which can change its value 
from line to line, and even in the same line. 

Acknowledgements. We would like to thank Prof. N. Varopoulos for suggesting 
the problem. The first named author wishes to thank the Mittag-Lefl]er Institute 
for support during the preparation of  this paper. Also, we would like to thank 
the referee for his careful reading of the manuscript and for some helpful suggestions. 

1. Proof of  Theorem 1 

First we deal with the corollary. 
Let R be a planar domain and assume that R satisfies (0.2). Then there exists 

a constant c0>0 so that every homotopically non-trivial closed curve has length 
at least co. We deduce that R has uniformly perfect boundary (see [14]) and, in 
particular, that OR has positive capacity, and equivalently that R has a Green's 
function. 

To prove the theorem we assume that R satisfies (0.2) and we show that if F 
is a Fuchsian group representing R then F has no parabolic elements and there 
exists co >0  so that the translation length of  every hyperbolic element of  F is larger 
than co. 

I f  7 is a hyperbolic element of  F then the axis of  ? projects onto a closed geodesic 
a whose length is the translation length of  7, L, say. Let C be the set of  points whose 
distance to a is less than to. I f  p e a  then 

Co <= AR(p, to) ~-- area(C) <= 2Lsinh(to). 

The third inequality is obtained simply by lifting C to the unit disk. 
We conclude that 

L -> co(2 sinh (to)) -1. 
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If  F has a parabolic element ~ then as p "converges" to the puncture ([ 11, p. 52]) 
determined by y, -4 R(p, to) tends to zero. 

The converse follows easily because from the hypothesis one deduces that for 
some constant cl, BR(p, cl) is simply connected for every pER. 

Remark. We should notice that if R is not compact then (0.2) improves itself 
automatically to 

(1.1) Aa(p, t) ~_ ct for every t => t~. 

A Z-cover of  a genus 2 compact Riemann surface gives an example where 
AR( p, t) ~ t. We leave the details to the reader. 

2. Proof of Theorem A 

First we deal with part (i). So we assume that for some point poER and con- 
stant c0>0 

(2.1) AR(p0, t) >= Cod. 

We shall prove that R has bounded non-constant harmonic functions and, in 
particular, that R has a Green's function. L e t / 7  be a universal covering map from 
A onto R with /-/(0)=p0. Let F be the associated covering group and denote by 
D the Dirichlet region o f F  at 0, [2, p. 227]. It is easy to see (e.g., [16, p. 488]) that 
(2.1) implies that cgDnOA has positive length. Let E be a Borel subset of ODnOA 
whose length is half the length of  ODnOA and F = U r ~ r  [~,(E)]. I f  u is the Poisson 
extension of  the characteristic function of F, then u is F-invariant, bounded and 
non-constant. Notice that R is accessible in the terminology of [15]. 

The argument above is standard. 
The examples of  (ii) can be constructed as follows. Let 0 n be positive numbers 

decreasing to zero slowly, 00=re. Let gn be the geodesic joining e i~ with e i~ 
and h n be its reflection on the real axis. Consider the M6bius transformations Vn 
preserving A and such that ~,n(gn)=hn, so that if PEgn, Vn(P)=P, w h e r e " - "  
means complex conjugate. Then by Poincar6's theorem the group generated by 
the ~,n's is a Fuchsian group and the (infinite sided) polygon Q determined by the 
gn's and the hn's is a fundamental region. The quotient R = A / F  is the plane 
with a sequence converging to ~o removed. And therefore R has no Green's 
function. It is clear that given $( t )  satisfying (0.1) one can choose the sequence On 
so that 

area(ac~Ba(0 , t)) ~_ d/(t), for every t _-> tl, 
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and consequently, if P0 is the point of  R represented by 0, then 

A s ( p o ,  t) >= ~k(t). 

This is essentially the construction of  Nicholls in [13]. 

87 

3. Proof of Theorem 2 

The proof  is divided into two steps. In the first step we construct a graph G 
with two properties: 

(i) for every vertex v the number of  vertices at graph-distance less than t is 
at least ce ~'a . 

(ii) the random walk in the graph (with equal probability of  jumping from a 
vertex to any of  its adjacent vertices) is recurrent. 

The second step consists in making a Riemann surface out o f  this discrete 
model. 

The basic building block is a Y-piece. That  is the graph with 4 vertices and 3 
edges which is represented by the letter Y. The central vertex is called a node. The 
other three vertices are dots. The graph will be obtained by adjoining Y-pieces 
by the dots. A node has then 3 neighbours which are dots, and a dot has 2 neigh- 
bours which are nodes. 

Consider an increasing sequence of  positive integers {k j}7= 1 . 
We start with two Y-pieces joined by a dot. Denote this common dot by/7o. 

At each dot (there are four) we adjoin another Y-piece by a dot. So that after this 
we have 2 a free dots. At each one of  those we adjoin a Y-piece, and we keep doing 
this ( k l - 2 )  times. Now we have 2 kl free dots. Now we reverse the process. These 
free dots come in pairs (having the same father). At each pair we adjoin a Y-piece. 
Now we have 2 kI-1 free dots. Again they come in pairs (having the same grandfather), 
and we adjoin a Y-piece to each such pair. Now we have 2 k~-~ free dots. We repeat 
this until finally we have 1 free dot left. We call this free dot Pl; and start again by 
adjoining a Y-piece, and so on until there are 2 k, free dots. Reverse again until 
there is one free dot left; call it P2 and continue. 

Any edge in this graph connects a dot with a node. The distance between ad- 
jacent node and dot is declared to be 1/2. 

No matter how the k~ are chosen the random walk on the graph is recurrent. 
One way of  verifying this is by means of  the well-known electrical network analogy, 
which is carefully described in the delightful book of  Doyle and Snell [6]. We refer 
to this book for definitions and results. Consider the graph as an electrical network 
and consider each edge as having conductance 1 [6, p. 40]. (This is the condition 
that from a vertex the random walker has equal probability to jump to any of  its 
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neighbours.) It is easy to see that the effective resistance ([6, p. 53]) of the piece of 
graph "between" p, and P,+I is essentially constant and consequently the effective 
resistance of the whole graph from P0 to oo is infinite. (See p. 55 and chapter 6.5 
of [6] for the standard tricks of evaluating the effective resistance of a graph.) There- 
fore the random walker starting from P0 has zero probability of escaping to ~o. 

Nonetheless, we shall verify directly later that the Riemann surface we are 
going to build from the graph has no Green's function. 

Choose the k,'s so that k,+z=2"kl. 
For a vertex p denote by a(p, m) the number of Y-pieces in the graph con- 

tained in the graph-ball of center p and radius the positive integer m. Elementary 
counting arguments show first that 

(3.1) a(p.~, m) >= c12 Bin, 

for eachjand each positive integer m, where B-- 1/10 works, and from that it follows 
easily that 

(3.2) a(p, m) >= cz 2 (s/~)m , 

for each vertex p and each positive integer m. 

We assume now (3.2) and continue with the rest of the argument. The verification 
of (3.1) and (3.2) is dealt with in the next section. 

To build up our Riemann surface modelled upon the graph above we will 
substitute the Y-pieces of the graph by the so-called L6bell Y-pieces, which are a 
standard tool for constructing Riemann surfaces. A clear description of these Y-pieces 
and their use is given in [4, chapter X.3]. 

A L6bell Y-piece is a three-hole sphere, endowed with a metric of constant 
negative curvature -1 ,  so that the boundary curves are geodesics. We also require 
that the lengths of the boundary curves are the same, say 2zt, and that the distance 
between any two of these boundary curves is//, say. Then ~ a n d / / a r e  related by 

sinh (0t/2) sinh (///2) = 1/2. 

(This is the only restriction on ~ and ft. See [3], [4, p. 248] for details.) 

Fix 0c0=//0 satisfying the relation above. 
If  we now put together these L6bell Y-pieces following the combinatorial 

design of our graph, by identifying corresponding boundary curves, we obtain a 
complete surface R of constant negative curvature -1 .  The dots are the boundary 
curves of the L6bell Y-pieces which themselves are represented by the nodes. 

Let Qa and Q~ be two non-adjacent L6bell Y-pieces of R, and let qz and q2 
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denote the corresponding nodes. Then, if dist G is the distance in the graph G, 

A_ a<_ diStR(Qi, Q~) <=A, 
disto ( q l ,  q2) 

where A is a fixed constant. 
Since our L6bell Y-pieces have the same area 2re we immediately deduce that 

if  pER then 
AR(p, t) >= clec, t, for every t => to, 

where cx and c2 are some fixed constant. 
Finally, we must check that R has no Green's function. 
The two Y-pieces used to start up our construction have a common boundary 

curve which is represented by the dot-vertex P0- Let us call the domain they deter- 
mine by D. We simply have to check that the extremal length 2(F) of  the family 
of  curves F "joining" 01) with the Alexandrov - ~  of  R is infinite [1, p. 229]. Now, 
the geodesics gi represented by the dot-vertices pj have all length 0~ 0. Let Cj denote 
the collar around gj of  width d, where d is an appropriate fix constant (i.e. sinh (d )=  
cosech (~0/2)). Let Fj denote the family of  curves joining the boundary components 
of  Cj. Then the extremal length 2(Fi) is a fixed constant 2o. Since every curve in 
F contains a subcurve in every Fj we have, by the composition laws ([ 1, p. 222]) that 

(r )  > ~ "  ~(r j )  = n2o. = j = l  

We deduce that 2 (F )=  ~,  as desired. 
In any case the graph and the Riemann surface are clearly roughly isometric 

in the sense of  Kanai [9]; consequently since the random walk in the graph is recur- 
rent the Brownian motion in the Riemann surface is also recurrent, i.e. it does not 
possess Green's function. 

4. Proof of (3.1) and (3.2) 

Lemma 1. There is a universal constant c > 0 such that 

a(pj ,  m) >= c2 "/x~ 

for every j, for every positive integer m. 

Proof. First we deal with P0- There are three cases. 

(1) I f  0 < m < = k x - 1 ,  then 

a(po, m) = 2m+1-2 => 2". 

(2) I f  - - l + 2 ~ k j < : m < = - - l + 2 z ~ N x k j + k N + l ,  then 

a(po, m) = - 1 + 2 ~ (2ks - 1) + 2 m+ 1 - 2 Z~ k s _ 1 => C(2kN + 2 m- 2--r~ k j). 
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We use the inequality 

(4.1) x + y  >= xl- 'y"  for every x , y ~ R  +, uE(0, 1), 

with u=l/5. We have 
a(po, m) >= c2 ~/5 

4 2 N because y k N - T ~ ' ~  kj>-0. 

(3) I f  - l + 2 ~ [ k j + k N + l < m < - l + 2 ~  "N+~ = -~1 k j ,  then 

afpo, m) >= a(po, -- 1 + 2  Z~  ky + kN + l) ~-- c2,,/xo. 

The proof  is finished in the case j=O. 
For arbitrary A simply do not count the Y-pieces of  the generations preceding 

p~ and obtain the same inequality with the same universal constants. 

Lemma 2. Let p be a dot between Pl-x and pl. I f  d is the graph-distance between 
p and p/, then 

a(p, m) >-- c2 m/a, i f  1 ~_ m <= d, 

where c is an absolute constant. 

Proof. First we observe that a(p, m)=a(p', nO if  p and p '  are dots of  the 
same generation. 

I f  p is such that d<-_kj, then 

a(p, m) >= 2(2 m / ~ - l ) _ ~ c 2  m/~, if  1 =-<m~_d. 

We do not need to count the Y-pieces of  the generations preceding p. 
I f p  is such that d>kj ,  then 

a(p,m)~_2 m, if l ~ _ m < - d - k j ,  
and 

a(p, m) ~_ 2a-k~ + c2("-J+kP/~ => c2 ~/3, i f  d - k j  < m ~_ d, 

where we have used (4.1) with u=2/3. Then 

Finally, 

Lemma 3. 

a(p,m) >= c2 "j3 if  1 ~ m _ ~ d .  

There is a universal constant c > 0  such that 

a(p, m) >= c2 "/is 

for every dot p, and positive integer m. 

Proof. We fix a do tp .  Then, if l<=m~_d, we have 

a(p, m) ~_ c2 "Is. 
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A n d  i f  r n g d ,  then 

a(p,  m) ~ c(2d/s + 2 (m-d)/l~ ~ C2 m/~s, 

where we have used (4.1) wi th  u =  10/13. Then 

a(p,  m) >= c2 m/~a for  every  posi t ive integer m. 

W i t h  a sui table choice  o f  the  {kj}j~ 1, we can replace  the  exponen t  
any  number  less than  1/9. 

91 

1/13 by 

References 

1. AHLrORS, L. V. and SARIO, L., Riemann surfaces, Princeton University Press, Princeton, 1960, 
2. B~Am)ON, A. F., The geometry of  discrete groups, Springer-Verlag, New York, 1983. 
3. BusErt, P., Cubic graphs and the first eigenvalue of a Riemann surface, Math, Z., 162 (1978), 

87--99. 
4. CHAVEL, I., Eigenvalues in Riemannian geometry, Academic Press, Orlando, Fla., 1984. 
5. DOYLE, P. G., Random walk on the Speiser graph of a Riemann surface, Bull. Amer. Math. 

Soc., 11 (1984), 371--377. 
6. DOYLE, P. G. and S~LL, J. L., Random walks and electric networks, Carus Mathematical Mo- 

nographs, M.A.A., Washington, D.C., 1984. 
7. EPSTEIN, C. L., Positive harmonic functions on Abelian covers, J. Functional Analysis, 82 (1989), 

303--315. 
8. F E ~ D ~ Z ,  J. L., On the existence of Green's function in Riernannian manifolds, Proc. Amer. 

Math. Soc., 96 (1986), 284---286. 
9. KANAI, M., Rough isometrics and the parabolicity of Riemannian manifolds, J. Math. Soc. 

Japan, 38 (1986), 227--238. 
10. KAva,, L., Subharmonic functions, harmonic mappings and isometric immersions, Seminar on 

Differential Geometry, ed. S.-T. Yau, Annals of Mathematics Studes, Princeton U.P., 
1982. 

11. KRA, I., Automorphicforms and Kleinian groups, Benjamin, Reading, 1972. 
12. LYONS, T. and SULLIVAN, D., Function theory, Random Paths and Covering Spaces, J. Diff. 

Geom., 19 (1984), 299---323. 
13. NichOLS, P. J., Fundamental regions and the type problem for a Riemann surface, Math, Z., 

174 (1980), 187--196. 
14. P o u ~ a ~ ,  Ch., Uniformly perfect sets and the Poincar6 metric, Arch. Math., 32 (1979), 

192---199. 
15. POMMErt~NgJ~, Ch., On Fuchsian groups of accessible type, Ann. Acad. Scient. Fennicae, 7 

(1982), 249--258. 
16. SULLrVAN, D., On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic 

motions, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook 
Conference, ed. I. Kra and B. Maskit, pp. 465---496 Annals of Mathematics Studies, 
Princeton U. P., Princeton, 1981. 

17. VA~orout~, N. Th., Potential theory and diffusion on Riemannian manifolds, in: Conference 



92 J.L.  Fern~ndez and J. M. Rodriguez: Area growth and Green's function of Riemann surfaces 

in Harmonic Analysis in Honor of Anthony Zygmund, pp. 821--837 Wadsworth, 
Belmont, California, 1983. 

18. VAROVOULOS, N. TH., Small time Gaussian estimates of heat diffusion kernels. Part I: The 
semigroup technique, Bull. Sc. Math., 113 (1989), 253---277. 

Received Jan. 31, 1990; 
in revised form July 4, 1990 

J. L. Fern~indez 
and 
I. M. Rodriguez 
Departamento de Matem~iticas 
Universidad Auton6ma de Madrid 
E--28049 Madrid 
Spain 


