Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves

Usha Bhosle

Introduction

Let X be an irreducible nonsingular projective curve over an algebraically closed field. Let E be a vector bundle of rank k and degree d on X. We define generalised parabolic vector bundles (or GPB's) by extending the notion of a parabolic structure at a point of X to a parabolic structure over a divisor on X as follows.

Definition 1. A parabolic structure on E over a divisor D consists of 1) a flag \mathscr{F} of vector subspaces of the vector space $E_{\mid D}=E \otimes O_{D}$:

$$
\mathscr{F}: F_{0}(E)=E_{\mid D} \supset F_{1}(E) \supset \ldots \supset F_{r}(E)=0
$$

2) real numbers $\alpha_{1}, \ldots, \alpha_{r}$ (with $0 \leqq \alpha_{1}<\alpha_{2}<\ldots<\alpha_{r}<1$) called weights associated to the flag.

Definition 2. A GPB is a vector bundle E together with parabolic structures over finitely many divisors D_{i}.

We define semistability, stability of $G P B^{\prime} s$, study their properties and construct moduli spaces in some important cases. The main results are the following:

Result 1. (Proposition 2.2.) The moduli space P of generalised parabolic line bundles L with \mathscr{F} given by $F_{0}(L)=L_{x_{1}} \oplus L_{x_{2}} \supset F_{1}(L) \supset o ; x_{1}, x_{2} \in X, \operatorname{dim} f_{1}(L)=1$, is a nonsingular projective variety, it is in fact a \mathbf{P}^{1}-bundle over Pic X.

Result 2. (Theorem 1.) There exists a coarse moduli space $M(k, d, a)$ of equivalence classes of semistable GPB's of rank k, degree d and with a parabolic structure over a divisor D of degree 2 given by $\mathscr{F}: F_{0}(E)=E_{\mid D} \supset F_{1}(E) \supset o, a=\operatorname{dim} F_{1} E$, weights $\left(\alpha_{1}, \alpha_{2}\right)=(0, \alpha)$. This space is a normal projective variety of dimension $k^{2}(g-1)+1+\operatorname{dim} F, \quad F$ being the flag variety of flags of type \mathscr{F}. If k and d are
mutually coprime, α near 1 and $a=k$, then $M(k, d, k)$ is nonsingular and is a fine moduli space.

We have an interesting application of GPB's to the study of the moduli space $U(k, d)$ of torsionfree coherent sheaves of rank k and degree d on a nodal curve X_{0}. Let $\pi: X \rightarrow X_{0}$ be the normalisation map. For simplicity of exposition, let us assume that X_{0} has a unique node x_{0} and let x_{1}, x_{2} be two points in X lying over x_{0}, $D=x_{1}+x_{2}$.

Result 3. The moduli space P (result 1) is a desingularisation of the compactified Jacobian \bar{J} of X_{0}.

Result 4. (Theorem 3.) There is a birational surjective morphism $f: M(k, d, k) \rightarrow$ $U(k, d)$. If $U_{k} \subset U(k, d)$ is the open subset corresponding to locally free sheaves, then the restriction of f induces an isomorphism of $f^{-1}\left(U_{k}\right)$ onto U_{k}.

In particular from results 2 and 4 it follows that if $(k, d)=1$, then $M=M(k, d, k)$ is a desingularization of $U(k, d)$. The moduli space $U=U(k, d)$ has a stratification. $U=\bigcup_{r=0}^{k} U_{r}$ where $U_{a}=\left\{F \mid\right.$ stalk $\left.F_{x_{0}} \approx a \mathcal{O}_{x_{0}} \oplus(k-a) m_{0}\right\}, O_{x_{0}}$ and m_{0} being the local ring and maximum ideal at x_{0}. The space M also has a stratification $M=$ $\bigcup_{r=0}^{k} M_{r}$ such that $f\left(M_{r}\right) \subseteq U_{r}$, for all $r>0$ (proposition 4.3). We have a morphism det: $U_{k} \rightarrow J$ defined by $\operatorname{det} F=\Lambda^{k} F$. An interesting question to ask is: Does this morphism extend to U ?

Result 5. (Proposition 4.7.)
(1) The morphism det: $U_{k} \rightarrow J$ lifts to a morphism $M_{k} \rightarrow P$. The latter extends to a morphism d : $\bigcup_{r>0} M_{r} \rightarrow P$.
(2) The morphism d descends to a morphism $\operatorname{det}: U_{k} \cup U_{k-1} \rightarrow \bar{J}$. But d does not induce a morphism on $\cup U_{r}$ for $r<k-1$ extending the det morphism.

Having found a negative answer to our first question, further questions arise: What is the closure of the graph of the det morphism in $U \times \bar{J}$? What is the closure of a fibre of the det morphism in U ? Let U_{L} be the closed subset of U_{k} corresponding to vector bundles with a fixed determinant L and let \bar{U}_{L} be its closure in U. We show that $(3.20,4.9) \bar{U}_{L} \subset U_{L} \cup U_{0}$, and in case of rank two $\bar{U}_{L}=U_{L} \cup$ $\left\{\pi_{*} E \mid \operatorname{det} E=\pi^{*} L\left(-x_{1}-x_{2}\right), E\right.$ stable $\}$.

I am grateful to P. E. Newstead and C. S. Seshadri for very useful discussions. I would like to thank the University of Liverpool for hospitality and excellent working conditions. I would also like to thank Amit Roy for the proof of proposition 1.8 and N. Hitchin and P. M. H. Wilson for some inspiring remarks.

1. Generalised parabolic bundles

Notation 1.1.

Let X be an irreducible curve with only nodes as singularities over an algebraically closed field k. Let $\pi: \widetilde{X} \rightarrow X$ be the normalisation map. For simplicity of exposition we shall assume that X has a single node x_{0}, the results can be seen to generalise easily to the general case. Let x_{1}, x_{2} be the two points of \hat{X} lying over $x_{0}, D=x_{1}+x_{2}$. Let $\theta_{x_{0}}, m_{0}$ denote the local ring and its maximum ideal at x_{0}.

We want to study the moduli space U of semistable torsion free sheaves of rank two and degree d on X. This space has been studied by Seshadri [S] and Gieseker [G]. Our approach is different from either of them, it is closer to the former. One has a stratification of U given by $U=\bigcup_{a=0}^{2} U_{a}$, where U_{a} denotes the subset of U consisting of points corresponding to sheaves F such that $F_{x_{0}} \approx a \theta_{x_{0}} \oplus(2-a) m_{0}$; U_{2} is an open dense subset of the (irreducible) complete variety U corresponding to locally free sheaves F. Let U_{2}^{L} denote the subset of U_{2} corresponding to F such that determinant of F is a fixed line bundle L. We are particularly interested in studying U_{2}^{L} and its closure in U. It can be shown that the determinant morphism from U_{2} to the generalised Jacobian of X can be extended to $U_{1} \cup U_{2}$, it seems that it is not extendable to U_{0}. In $[\mathrm{S}]$, a bijective correspondence between sheaves F corresponding to elements in U_{a} and bundles on \bar{X} with additional structures at x_{1} and x_{2} is given (theorem 17, p. 178, [S]). But this correspondence is different on each stratum and does not preserve degrees. Hence it is not of much use in studying the moduli space U as a whole. In our approach, we get sheaves F in U from "generalised parabolic bundles" E on \tilde{X} of same degree as F.

Definition 1.2. A Generalised parabolic vector bundle of rank 2 on \bar{X} is a vector bundle E of rank two on X together with a two-dimensional k-subspace $F_{1}(E)$ of $E_{x_{1}} \oplus E_{x_{2}}$.

Definition 1.3. A generalised parabolic vector bundle E is stable (semistable) if for every line subbundle L of E,

$$
\operatorname{degree} L+\operatorname{dim}\left(F_{1}(E) \cap\left(L_{x_{1}} \oplus L_{x_{3}}\right)\right)<(\leqq) \frac{1}{2}\left(\operatorname{degree} E+\operatorname{dim} F_{1}(E)\right)
$$

i.e.

$$
\operatorname{deg} \cdot L+\operatorname{dim}\left(F_{1}(E) \cap L_{D}\right)<_{(\leqq)} \mu(E)+1 .
$$

Remark 1.4. If degree E is odd, then stability is equivalent to semistability for the generalised parabolic bundle of rank two.

Definition 1.5. A homomorphism of generalised parabolic bundles E_{1}, E_{2} of rank two is a vector-bundle homomorphism of E_{1} into E_{2} which maps $F_{1}\left(E_{1}\right)$ into $F_{1}\left(E_{2}\right)$.
1.6. We now want to associate to a generalised parabolic bundle E of rank 2 and degree d on \tilde{X} a torsionfree sheaf F on X of rank two and degree d. We have $\pi_{*}(E) \otimes k\left(x_{0}\right)=E_{x_{1}} \oplus E_{x_{2}}$ (p. 175, [S]) and hence a surjective morphism $\pi_{*}(E) \rightarrow$ $E_{x_{1}} \oplus E_{x_{2}} / F_{1}(E)$. Define F to be the kernel of this surjection i.e. F is given by

$$
\begin{equation*}
0 \rightarrow F \rightarrow \pi_{*} E \rightarrow \pi_{*}(E) \otimes k\left(x_{0}\right) / F_{1}(E) \rightarrow 0 \tag{1.7}
\end{equation*}
$$

Proposition 1.8. Let p_{1} and p_{2} denote the canonical projections from $F_{1}(E)$ to $E_{x_{1}}$ and $E_{x_{2}}$ respectively.
(1) If p_{1} and p_{2} are both isomorphisms, then F corresponds to an element in U^{2} i.e. F is locally free.
(2) If only one of p_{1} or p_{2} is an isomorphism and the other is of rank one, then F corresponds to an element in U^{1}.
(3) If p_{1} and p_{2} are both of rank one or one of them is zero, then F corresponds to an element in U^{0}.

Proof. (3) Note that if neither of p_{1} or p_{2} is an isomorphism, then p_{1}, p_{2} satisfy the conditions of (3).

In case both p_{1}, p_{2} are of rank $1, F_{1}(E)=k_{1} \oplus k_{2}, k_{i} \subset E_{x_{i}}, i=1,2$. Then clearly $F=\pi_{*}\left(E_{0}\right)$, where E_{0} is defined by

$$
0 \rightarrow E_{0} \rightarrow E \rightarrow E_{x_{1}} / k_{1} \oplus E_{x_{2}} / k_{2} \rightarrow 0
$$

If $p_{2}=0, F_{1}(E)=E_{x_{1}}$ and $F=\pi_{*}\left(E_{0}\right)$, with E_{0} defined by $0 \rightarrow E_{0} \rightarrow E \rightarrow E_{x_{2}} \rightarrow 0$ i.e. $E_{0}=E\left(-x_{2}\right)$. Similarly, if $p_{1}=0, F=\pi_{*}\left(E\left(-x_{1}\right)\right)$.
(1) and (2). In cases (1) and (2), one of p_{1} and p_{2} say p_{1} is an isomorphism. Then using $p_{1}, F_{1}(E)$ can be regarded as the graph of a homomorphism $\sigma: E_{x_{1}} \rightarrow E_{x_{2}}$, σ being an isomorphism in case (1) and of rank one in case (2). Since $F \mid X-x_{0} \approx$ $\pi_{*}(E) \mid X-x_{0}$ is locally free, our problem is local at x_{0}. So we are reduced to the following situation. Let A be the local ring at x_{0}, it is a Gorenstein local ring with maximum ideal m, \bar{A} is a semi local ring with two maximum ideals m_{1}, m_{2}; $\sigma: \bar{A} / m_{1} \oplus \bar{A} / m_{1} \rightarrow \bar{A} / m_{2} \oplus \bar{A} / m_{2}$ a nonzero linear map with graph Γ_{σ}. We write $k_{i}=\bar{A} / m_{i}, \bar{A}_{i}=\bar{A}, i=1,2$ and $n_{i}: \bar{A}_{i} \rightarrow k_{1} \oplus k_{2}$ canonical maps, for $i=1,2 . \quad F$ is an A-module given by

$$
0 \rightarrow F \rightarrow \bar{A}_{1} \oplus \bar{A}_{2} \rightarrow p\left(\left(k_{1} \oplus k_{2}\right) \oplus\left(k_{1} \oplus k_{2}\right)\right) / \Gamma_{\sigma} \rightarrow 0
$$

where p is the composite of the map ($n_{1} \oplus n_{2}$) with the quotient map $k_{1} \oplus k_{2} \oplus$ $k_{1} \oplus k_{2} \rightarrow\left(k_{1} \oplus k_{2} \oplus k_{1} \oplus k_{2}\right) / \Gamma_{\sigma}$. Thus $F=\left(n_{1} \oplus n_{2}\right)^{-1} \Gamma_{\sigma}$. We want to show that $F \approx A \oplus A$ or $A \oplus \bar{A}$ according as σ is of rank two or one. Note that \bar{A}, m, m_{1} and m_{2} are all isomorphic. Fix a basis e_{1}, e_{2} of k^{2}. With respect to the basis e_{1}, e_{2}, let the matrix of σ be $\left(\begin{array}{ll}g & b \\ c & d\end{array}\right)$ and let the matrix of σ^{-1} be $\left(\begin{array}{ll}G & B \\ C & D\end{array}\right)$ if σ is of rank two. Since
$n=n_{i}: \bar{A} \rightarrow k_{1} \oplus k_{2}$ is a surjection, there exist $\alpha, \beta, \gamma, \delta$ in \bar{A} such that $n(\alpha)=(1, G)$, $n(\beta)=(0, B), n(\gamma)=(0, C)$ and $n(\delta)=(1, D)$. Then the matrix $\left(\begin{array}{ll}\alpha & \beta \\ y & \delta\end{array}\right) \in G L(\bar{A})$ as $n(\alpha \delta-\beta \gamma)=(1, G D-B C)$ is a unit in \bar{A} modulo the conductor $m, \bar{A} / m \approx \bar{A} / m_{1} \oplus$ \bar{A} / m_{2}. This matrix defines an automorphism φ of $\bar{A} \oplus \bar{A}$ which induces the homomorphism $\psi: k_{1} \oplus k_{2} \oplus k_{1} \oplus k_{2} \rightarrow k_{1} \oplus k_{2} \oplus k_{1} \oplus k_{2}$ given by

$$
\psi\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\left(x_{1}, G y_{1}+B y_{2}, x_{2}, C y_{1}+D y_{2}\right) .
$$

We have $\Gamma_{\sigma}=\left\{\left(x_{1}, g x_{1}+b x_{2}, x_{2}, c x_{1}+d x_{2}\right)\left(x_{1}, x_{2}\right) \in k_{1} \oplus k_{2}\right\}$. Since $\sigma^{-1} \circ \sigma=\mathrm{Id}$ it follows that $\psi\left(\Gamma_{\sigma}\right)=\Gamma_{\mathrm{Id}}$. Since ψ lifts to the automorphism φ i.e. $\psi\left(n_{1} \oplus n_{2}\right)=\left(n_{1} \oplus n_{2}\right) \circ \phi$, it follows that $\left(n_{1} \oplus n_{2}\right)^{-1} \Gamma_{\sigma} \approx\left(n_{1} \oplus n_{2}\right)^{-1} \Gamma_{\mathrm{ld}} \approx A \oplus A$.

Now let σ be of rank one. In the above proof, we lifted the homomorphism ψ defined by $\sigma^{-1} \in G L\left(k^{2}\right)$ to an automorphism φ of $\bar{A} \oplus \bar{A}$. We can do it for any $f \in G L\left(k^{2}\right)$; then ψ will map Γ_{σ} into $\Gamma_{f \circ \sigma}$. Hence we can replace Γ_{σ} by $\Gamma_{f \circ \sigma}$. Since $\sigma \rightarrow f \circ \sigma$ is equivalent to change by row transformations of the matrix of σ, we may replace the matrix of σ by any matrix obtained by doing row transformations. (Note that column transformations are not allowed e.g. $\psi:\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \rightarrow$ ($x_{1}, y_{1}-x_{2}, x_{2}, y_{2}$) cannot be lifted to an automorphism of $\bar{A} \oplus \bar{A}$.) By row transformations, any matrix σ of rank 1 can be reduced to one of the following forms

$$
\text { (i) }\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { (ii) }\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { (iii) }\left(\begin{array}{ll}
1 & b \\
0 & 0
\end{array}\right), \quad b \neq 0 .
$$

The following can be seen easily. In case (i), $\left(n_{1} \oplus n_{2}\right)^{-1} \Gamma_{\sigma}=A \oplus m_{2}$. In case (ii) $\left(n_{1} \oplus n_{2}\right)^{-1} \Gamma_{\sigma}=m_{1} \oplus A$. In case (iii), we need a little more work. We have $\Gamma_{\sigma}=$ $\left\{\left(x_{1}, x_{1}+b x_{2}, x_{2}, 0\right) \mid\left(x_{1}, x_{2}\right) \in k_{1} \oplus k_{1}\right\}$. Consider

Then $p_{2}^{\prime} \circ\left(n_{1} \oplus n_{2}\right) F=p_{2}^{\prime}\left(\Gamma_{\sigma}\right)=\left\{\left(x_{2}, 0\right) \mid x_{2} \in k_{1}\right\}=k_{1} \oplus\{0\}$. Now L.H.S. $=n_{2} \circ p_{2}(F)$, so $n_{2} \circ p_{2}(F)=k_{1} \oplus 0$ i.e. $p_{2}(F)=m_{2}$. Let $K=\operatorname{Ker} p_{2} \mid F=\left(\bar{A}_{1} \oplus 0\right) \cap F$. As $\left(n_{1} \oplus n_{2}\right)(K)=$ $\left(n_{1} \oplus n_{2}\right)(\bar{A} \oplus 0) \cap \Gamma_{\sigma}=\left\{\left(x_{1}, x_{1}, 0,0\right) \mid x_{1} \in k_{1}\right\}$ we have $K=A \oplus 0$. Thus we have an exact sequence $0 \rightarrow A \rightarrow F \xrightarrow{\boldsymbol{P}_{2}} \bar{A} \approx m_{2} \rightarrow 0$. Since Ext $_{A}^{1}(\bar{A}, A)=0$, this sequence splits giving $F \approx A \oplus \bar{A}$.

This finishes the proof of the proposition.
Proposition 1.9. If F is a semistable (respectively stable) torsionfree sheaf on X, then E is a semistable (respectively stable) generalised parabolic bundle on X. The converse is also true.

Proof. Suppose that F_{1} is stable. Let $L \subset E$ be a line subbundle. We want to show that $\operatorname{deg} L+\operatorname{dim}\left(F_{1}(E) \cap\left(L_{x_{1}} \oplus L_{x_{2}}\right)\right)<\mu(E)+1$. Let $\quad \operatorname{dim}\left(F_{1}(E) \cap\left(L_{x_{1}} \oplus L_{x_{2}}\right)\right)=a$, $a=0,1$ or 2 .
(i) $a=0$: One has an exact sequence on X

$$
0 \rightarrow L_{1} \rightarrow \pi_{*} L \rightarrow\left(L_{x_{1}} \oplus L_{x_{2}}\right) \rightarrow 0, \quad\left(L_{x_{1}} \oplus L_{x_{3}}\right) \approx \pi_{*} L \oplus k\left(x_{0}\right),
$$

with $L_{1} \subset F$. The stability of F implies that $\operatorname{deg} \cdot L_{1}<\mu(F)$ i.e. $\operatorname{deg} L-1<$ $\mu(E)$ i.e. $\operatorname{deg} L+a<\mu(E)+1$.
(ii) $a=1$: One has $0 \rightarrow L_{1} \rightarrow \pi_{*} L \rightarrow \pi_{*} L \otimes k\left(x_{0}\right) / k^{a} \rightarrow 0$, with $L_{1} \subset F$, $\operatorname{deg} \cdot L_{1}=\operatorname{deg} L$. Hence $\operatorname{deg} L_{1}<\mu(F)$ implies that $\operatorname{deg} \cdot L+a<\mu(E)+1$.
(iii) $a=2$: In this case, $L_{1}=\pi_{*} L$ so that $\operatorname{deg} \cdot L_{1}=\operatorname{deg} \cdot L+1$. The stability of F implies that $\operatorname{deg} \cdot L+2<\mu(E)+1$.

Thus F is stable implies that E is a stable generalised parabolic bundle. The proof in the semistable case is obtained by replacing ' $<$ ' by ' \leqq ' in the above proof.

We now prove the converse. Let L_{1} be a torsionfree subsheaf of F of rank 1 . One has $\pi^{*} L_{1} /$ torsion $\subset \pi^{*} F /$ torsion and (a sheaf inclusion) $\pi^{*} F /$ torsion $\rightarrow E$. Let L be the line subbundle of E generated by $\pi^{*} L_{1} /$ torsion; $a=\operatorname{dim}\left(F_{1}(E) \cap\left(L_{x_{1}} \oplus L_{x_{2}}\right)\right)$. As seen above, if $a=0, L_{1}=\pi_{*}\left(L\left(-x_{1}-x_{2}\right)\right)$ so that $\operatorname{deg} \cdot L<\mu(E)+1$ implies that $\operatorname{deg} \cdot L_{1}<\mu(F)$. If $a=1$, as seen above, L_{1} is locally free and $\operatorname{deg} L_{1}=\operatorname{deg} L$. Hence $\operatorname{deg} L+a<\mu(E)+1$ implies that $\operatorname{deg} L_{1}<\mu(F)$. If $a=2, L_{1}=\pi_{*} L, \operatorname{deg} \cdot L_{1}=$ $\operatorname{deg} L+1$ and we again get $\operatorname{deg} L_{1}<\mu(F)$. Thus F is stable (semistable) if E is stable (semistable) generalised parabolic bundle.

Remark 1.10. In 1.6, we defined a mapping f from the set S of isomorphism classes of generalised parabolic vector bundles of rank 2 and degree d on \tilde{X} to the set \mathbf{R} of isomorphism classes of torsionfree sheaves of rank 2 and degree d on X. Proposition 1.9 shows that $f\left(E, F_{1}(E)\right)=F$ is semistable (stable) iff $\left(E, F_{1}(E)\right)$ is so. Let $\tilde{U}^{2}, \tilde{U}^{1}$ and \tilde{U}^{0} be the subsets of S corresponding to generalised parabolic bundles which satisfy the conditions (1), (2) and (3) respectively in proposition 1.8. Then f maps \tilde{U}^{i} into $U^{i}, i=0,1,2$. Here U^{i} denotes the subset of R consisting of torsionfree sheaves F such that the stalk $F_{x_{0}}$ of F at x_{0} is isomorphic to $i \theta_{x_{0}} \oplus$ (2-i) m_{0}.

Proposition 1.11. (1) f maps \tilde{U}^{2} bijectively onto U^{2}, (2) f maps \tilde{U}^{0} onto U^{0}, (3) f maps \tilde{U}^{1} onto U^{1}.

Proof. (1) We give the inverse of f on U^{2}. Let $F \in U^{2}$. Define $E=\pi^{*} F, F_{1}(E)=$ $F \otimes k\left(x_{0}\right) \subset F \otimes \pi_{*} \theta_{\mathcal{R}} \otimes k\left(x_{0}\right)=\pi_{*}(E) \otimes k\left(x_{0}\right)$. It is easy to see that $\left(E, F_{1}(E)\right)$ is a generalised parabolic bundle which maps to F under f.
(2) Let $F \in U^{0}$. Then $F=\pi_{*} E_{0}$ for a unique vector bundle E_{0} on X (proposition 10, p. 174 [S]). The fibre of f over F consists of generalised parabolic bundles of the following type.
a) $E=E_{0}\left(x_{2}\right), F_{1}(E)=E_{x_{1}}$.
b) $E=E_{0}\left(x_{1}\right), F_{1}(E)=E_{x_{2}}$.
c) E given by an extension of the type $0 \rightarrow E_{0} \rightarrow E \rightarrow k\left(x_{1}\right) \oplus k\left(x_{2}\right) \rightarrow 0, F_{1}(E)=$ $\operatorname{Ker}\left(E \otimes \theta_{x_{1}+x_{2}} \rightarrow k\left(x_{1}\right) \oplus k\left(x_{2}\right)\right)$.

Now, $\operatorname{Ext}^{1}\left(k\left(x_{1}\right) \oplus k\left(x_{2}\right), E_{0}\right) \approx\left(E_{0} \otimes\left(\Omega^{1}\right)^{-1}\right) \otimes \theta_{x_{1}+x_{2}} \approx\left(E_{0}\right)_{x_{1}} \oplus\left(E_{0}\right)_{x_{2}}$ and given $k_{1} \subset$ $\left(E_{0}\right)_{x_{1}}, k_{2} \subset\left(E_{0}\right)_{x_{2}}, k_{1} \approx k_{2} \approx k$, there exists a unique extension of the above type with kernel $\left(\left(E_{0}\right)_{x_{i}} \rightarrow E_{x_{i}}\right)=k_{i}, i=1,2$. Thus the set of generalised parabolic bundles of type c) is isomorphic to $\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{1}\left(=\mathbf{P}\left(\left(E_{0}\right)_{x_{1}}\right) \times \mathbf{P}\left(\left(E_{0}\right)\right)_{x_{z}}\right)$.
(3) Before proving that $\varphi \mid \tilde{U}^{1}$ is a surjection onto U^{1}, let us analyse $\varphi \mid \tilde{U}^{1}$. In this case, we can write $F_{1}(E)$ as the graph Γ_{σ} of a homomorphism $\sigma: E_{x_{1}} \rightarrow E_{x_{2}}$ of rank one if p_{1} is an isomorphism, p_{1} being the projection of $F_{1}(E)$ to $E_{x_{1}}$. (The case when p_{2} is an isomorphism can be dealt with similarly.) Let $F=f\left(E, F_{1}(E)\right)$, $E_{0}=\pi^{*}(F) /$ torsion. Then one has exact sequences $0 \rightarrow E_{0} \rightarrow E \rightarrow E_{x_{2}} /$ Image $\sigma \rightarrow 0$ and

$$
0 \rightarrow F \rightarrow \pi_{*} E \rightarrow E_{x_{1}} \oplus E_{x_{2}} / \Gamma_{\sigma} \rightarrow 0 .
$$

Hence $\left(E_{0}\right)_{x_{1}} \xrightarrow{\sim} E_{x_{1}}$ canonically, let N_{1} denote the isomorphic image of kernel σ in $\left(E_{0}\right)_{x_{1}}$. Since $0 \rightarrow k \rightarrow\left(E_{0}\right)_{x_{2}} \rightarrow E_{x_{2}} \rightarrow E_{x_{2}} /$ Image $\sigma \rightarrow 0,\left(E_{0}\right)_{x_{2}}$ contains a one dimensional N_{2} such that $\left(E_{0}\right)_{x_{2}} / N_{2} \approx$ Image σ. Let $\bar{\sigma}$ denote the isomorphism $\left(E_{0}\right)_{x_{1}} / N_{1} \xrightarrow{\sim}$ $\left(E_{0}\right)_{x_{2}} / N_{2}$ induced by the composite $\left(E_{0}\right)_{x_{1}} \xrightarrow{\sim} E_{x_{1}} \xrightarrow{\sigma}$ Image $\sigma \xrightarrow{\sim}\left(E_{0}\right)_{x_{2}} / N_{2} . F$ is defined by

$$
\begin{aligned}
\Gamma(U, F) & =\left\{s \in \Gamma\left(\pi^{-1} U, E\right) \mid s\left(x_{2}\right)=\sigma s\left(x_{1}\right)\right\} \\
& =\left\{s \in \Gamma\left(\pi^{-1} U, E_{0}\right) \mid s\left(x_{2}\right) \bmod N_{2}=\bar{\sigma}\left(s\left(x_{1}\right) \bmod N_{1}\right)\right\} .
\end{aligned}
$$

Now start with an $F \in U^{1}$. Define $E_{0}=\pi^{*} F /$ torsion. Since the stalk $F_{x_{0}} \approx m_{0} \oplus \theta_{x_{0}}$, $\left(E_{0}\right)_{x_{i}} \approx N_{i} \oplus \Delta_{i}, N_{i} \approx m_{0} \bar{\theta}_{x} \otimes k\left(x_{i}\right), \Delta_{i} \approx \bar{\theta}_{x_{0}} \otimes k\left(x_{i}\right), i=1,2, \bar{\theta}_{x}$ being the normalisation of θ_{x}. Define the vector bundle E on \tilde{X} by $0 \rightarrow E_{0} \rightarrow E \rightarrow k\left(x_{2}\right) \rightarrow 0$ with the condition $\operatorname{Ker}\left(\left(E_{0}\right)_{x_{2}} \rightarrow E_{x_{2}}\right)=N_{2}$, it is easy to see that such E exists. By theorem 17, p. $178[\mathrm{~S}]$, there is a natural bijection between the set of isomorphism classes of torsionfree sheaves F of rank 2 , degree d on X with $\mathscr{F}_{x_{0}} \approx \theta_{x_{0}} \oplus m_{0}$ and the set of isomorphism classes of triples $\left(E_{0}, \Delta_{1}, \Delta_{2}, \bar{\sigma}\right), E_{0}$ being a vector bundle of rank 2 on \tilde{X} of degree $d-1, \Delta_{i}$ are one-dimensional subspaces of $\left(E_{0}\right)_{x_{i}}, i=1,2$ and $\bar{\sigma}$ is an isomorphism $\Delta_{1} \rightarrow \Delta_{2}$. Since Δ_{1}, Δ_{2} both come from $\theta_{x_{0}} \subset F_{x_{0}}$, we have an isomorphism $\bar{\sigma}: \Delta_{1} \rightarrow \Delta_{2}$. Define σ as the composite $E_{x_{1}} \xrightarrow{\sim}\left(E_{0}\right)_{x_{1}} \rightarrow \Delta_{1} \xrightarrow{\bar{\sigma}} \Delta_{2} \rightarrow E_{x_{2}}$ and $F_{1}(E)=\Gamma_{\sigma}$. From our analysis of $f \mid \vec{U}^{1}$, it is easy to see that $f\left(E, F_{1}(E)\right)=F$ i.e. f maps \tilde{U}^{1} onto U^{1}.

Lemma 1.12. If E is a stable generalised parabolic vector bundle of rank 2, then either E is stable as a vector bundle or E has a unique (maximum) line subbundle L of degree d_{1}, where $d_{1}=\mu(E)$ if degree of E is even and $d_{1}=\mu(E)+\frac{1}{2}$ if degree of E is odd. Moreover one has $F_{1}(E) \cap\left(L_{x_{1}} \oplus L_{x_{2}}\right)$ is zero.

Proof. Let L be a line subbundle of E and $a=\operatorname{dim}\left(F_{1}(E) \cap\left(L_{x_{1}} \oplus L_{x_{2}}\right)\right)$. If $a=1$ or 2 , stability of E as a generalised parabolic bundle implies that degree $L<\mu(E)$. If $a=0$, it implies that degree $L<\mu(E)+1$. Hence if E is not a stable vector bundle, there must exist a line subbundle L of degree d_{1} such that $\mu(E) \leqq d_{1}<\mu(E)+1$ and $a=0$. It is easy to see that such a line bundle is unique, even the former condition suffices for uniqueness.

Lemma 1.13. (i) If E is a generalised parabolic bundle (of rank two). Then the following condition (C) is satisfied.
(C) For any line subbundle L of E with

$$
\operatorname{deg} L=\left\{\begin{array}{lll}
\mu(E)-\frac{1}{2} & \text { if } & \operatorname{deg} E \text { is odd } \\
\mu(E)-1 & \text { if } & \operatorname{deg} E \text { is even }
\end{array}\right.
$$

one has $a(L)<2$. Here $a(L)=\operatorname{dim} F_{1}(E) \cap\left(L_{x_{1}} \oplus L_{x_{2}}\right)$.
(ii) If E is a stable vector bundle satisfying condition (C) for $F_{1}(E) \subset E_{x_{1}} \oplus E_{x_{2}}$ then E together with $F_{1}(E)$ is a stable generalised parabolic vector bundle.

Proof. Proofs are straightforward (using definitions).
Remark 1.14. ($g \geqq 2$). Given a stable vector bundle E of odd degree there exists $F_{1}(E)=k_{1} \oplus k_{2}, k_{i} \subset E_{x_{i}}$ such that $a(L) \neq 2$ i.e. $k_{1} \oplus k_{2} \neq L_{x_{1}} \oplus L_{x_{2}}$ for any line subbundle L of degree $=\mu(E)-\frac{1}{2}$. In fact if degree E is odd, rank $E=2, E$ can have at most 4 line subbundles of degree $\mu(E)-\frac{1}{2}$ (proposition 4.2 [L]). By corollary 4.6 [L], the variety of maximal line subbundles of E has dimension $\leqq 1$ for any vector bundle E of rank 2.

2. Generalised parabolic line bundles and extension of the determinant map

Definition 2.1. A generalised parabolic line bundle on \tilde{X} is a line bundle L on \tilde{X} together with a one dimensional subspace $F_{1}(L)$ of $L_{x_{1}} \oplus L_{x_{2}}$.

Proposition 2.2. The moduli space P of generalised parabolic line bundles on \tilde{X} of fixed degree d (degree $L=d$) is a \mathbf{P}^{1}-bundle over the Jacobian $J(\tilde{X})$ of \tilde{X} of line bundles of degree d. The variety P is a desingularisation of the compactified Jacobian $J(X)$ of X.

Proof. Let V be the Poincaré bundle on $J(\tilde{X}) \times \widetilde{X}$. Let $\mathscr{F}(V)$ denote the flag variety over $J(\widetilde{X}) \times \widetilde{X}$ of type determined by the generalised parabolic structure (i.e. $k^{2} \supset k \supset 0$) and let P denote its restriction to $J(\tilde{X}) \times\left\{x_{1}, x_{2}\right\}$. Let $p: P \rightarrow J(\tilde{X})$ be the composite $P \rightarrow J(\tilde{X}) \times\left(x_{1}, x_{2}\right) \rightarrow J(\tilde{X})$. Clearly $p: P \rightarrow J(\tilde{X})$ is a \mathbf{P}^{1}-bundle over $J(\tilde{X})$, and P is the moduli space of generalised parabolic line bundles of degree d.

Consider the universal bundle ($p \times \mathrm{id})^{*} V$ on $P \times \tilde{X}$. We have a surjection $(p \times \mathrm{id})^{*} V \rightarrow(p \times \mathrm{id})^{*}\left(V \mid J(\tilde{X}) \times\left\{x_{1}, x_{2}\right\}\right)$. Let p_{1} be the projection $P \times \tilde{X} \rightarrow P$. On P, there is a surjection $V \mid J(\tilde{X}) \times\left\{x_{1}, x_{2}\right\} \rightarrow \theta_{p}(1) \rightarrow 0$. Since $p_{1}^{*}\left(V \mid J(\tilde{X}) \times\left\{x_{1}, x_{2}\right\}\right)=$ $(p \times \mathrm{id})^{*} V \mid J(\tilde{X}) \times\left\{x_{1}, x_{2}\right\}$, we get a surjection
$\varphi:(\mathrm{id} \times \pi)_{*}(p \times \mathrm{id})^{*} V \rightarrow(\mathrm{id} \times \pi)_{*}(p \times \mathrm{id})^{*} V\left|P \times x_{0} \rightarrow p_{1}^{*} \theta_{P}(1)\right| P \times x_{0}, p^{\prime}: P \times X \rightarrow P$.
Since $\theta_{P}(1)$ is free over P, it follows that $K=\operatorname{Kernel} \varphi$ is flat over P. For every $g=\left(L, F_{1}(L)\right) \in P$, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow K \mid g \times X \rightarrow \pi_{*} L \xrightarrow{\varphi_{g}}\left(\pi_{*} L\right) \otimes k\left(x_{0}\right) / F_{1}(L) \rightarrow 0 . \tag{S}
\end{equation*}
$$

Thus K is a family of torsionfree sheaves on X of degree d flat over P, so it gives a morphism h of P to the compactified Jacobian $\bar{J}(X)$ of $X . \bar{J}(X)$ contains $J(X)$, the generalised Jacobian of X as a dense open subset. We shall now show that h is a surjective morphism which is an isomorphism from $h^{-1}(J(X))$ onto $J(X)$ and fibre over each point in $\bar{J}(X)-J(X)$ consists of two points. In the sequence (S), write $L_{1}=K \mid j \times X$. It is easy to see that if $F_{1}(L) \neq L_{x_{1}}$ or $L_{x_{2}}$, then L_{1} is obtained by identifying fibres $L_{x_{1}}$ and $L_{x_{2}}$ by an isomorphism σ whose graph is $F_{1}(L)$ and L_{1} is locally free with $\pi^{*} L_{1}=L$. In case $F_{1}=L_{x_{1}}, L_{1}=\pi_{*}\left(L\left(-x_{2}\right)\right)$ and $\pi^{*} L_{1} /$ torsion $=L\left(-x_{2}\right)$. If $F_{1}=L_{x_{2}}, L_{1}=\pi_{*}\left(L\left(-x_{1}\right)\right), \pi^{*} L_{1} /$ torsion $\approx L\left(-x_{1}\right)$. Thus if L_{1} is locally free it comes from a unique generalised parabolic line bundle ($L=\pi^{*} L_{1}, F_{1}(L)$), $F_{1}(L)=\Gamma_{\sigma}, \sigma:\left(\pi^{*} L_{1}\right)_{x_{1}} \xrightarrow{\sim}\left(\pi^{*} L_{1}\right)_{x_{2}}$ canonical isomorphism. If L_{1} is not locally free, the fibre over L_{1} consists of two points viz.

$$
\left(\left(\pi^{*} L_{1} / \text { torsion }\right)\left(x_{2}\right)=L, F_{1}(L)=L_{x_{1}}\right),\left(L=\left(\pi^{*} L_{1} / \text { torsion }\right)\left(x_{1}\right), F_{1}(L)=L_{x_{2}}\right)
$$

Thus P is the disjoint union of $J(X)$ and two copies of $\{J(\tilde{X}) \approx \bar{J}(X)-J(X)\}$. This finishes the proof of the proposition.

2.3. Extension of the determinant map to \tilde{U}^{1} and U^{1}.

Consider a generalised parabolic vector bundles $\left(E, F_{1}(E)\right)$ on \tilde{X}. If we fix E, then $F_{1}(E)$ varies over $G(2,4)=$ the grassmannian of 2-dimensional subspaces of $E_{x_{1}} \oplus E_{x_{2}} . G(2,4)$ is embedded as a quadric in $\mathbf{P}^{5}=P\left(\Lambda^{2}\left(E_{x_{1}} \oplus E_{x_{2}}\right)\right)$. Fixing a basis (e_{1}, e_{2}) of $E_{x_{1}}$ and $\left(e_{3}, e_{4}\right)$ of $E_{x_{2}}$, a basis of \mathbf{P}^{5} is given by $\left(e_{i} \Lambda e_{j}\right)_{i<j}$. An element of \mathbf{P}^{5} is of the form $\sum_{i<j} P_{i j} e_{i} \Lambda e_{j}, P_{i j}$ being the Plücker coordinates. Then $G_{2,4} \cap\left(P_{12} \neq 0, P_{34} \neq 0\right) \subset G_{2,4}$ is the open subset corresponding to elements $\left(E, F_{1}(E)\right)$
in $\tilde{U}^{2} . A=G(2,4) \cap\left\{\left(P_{12} \neq 0\right) \cup\left(P_{34} \neq 0\right)\right\}$ corresponds to elements $\left(E, F_{1}(E)\right)$ in $\tilde{O}^{1} \cup \tilde{O}^{2} . A^{c}=\left(P_{12}=0=P_{34}\right) \cap G(2,4)$ corresponds to elements $\left(E, F_{1}(E)\right)$ in $\tilde{0}^{0}$. The set $\left(P_{12} \neq 0\right)\left(\right.$ respectively $\left(P_{34} \neq 0\right)$) can be identified with $\operatorname{Hom}\left(E_{x_{1}}, E_{x_{2}}\right)$ (respectively $\left.\operatorname{Hom}\left(E_{x_{2}}, E_{x_{2}}\right)\right)$ by identifying $\sigma \in \operatorname{Hom}\left(E_{x_{1}}, E_{x_{2}}\right)$ with its graph Γ_{σ}. If $\sigma\left(e_{1}\right)=\alpha e_{3}+\gamma e_{4}, \sigma\left(e_{2}\right)=\beta e_{3}+\delta e_{4}$, then Γ_{σ} as an element of \mathbf{P}^{6} has coordinates $P_{12}=1, P_{34}=\operatorname{det} \sigma, P_{13}=\beta, P_{14}=\delta, P_{23}=-\alpha, P_{24}=-\gamma$ i.e. it is a point with homogeneous coordinates ($1, \operatorname{det} \sigma, \beta, \delta,-\alpha,-\gamma$) in \mathbf{P}^{5}. If σ is an isomorphism, the graph of σ^{-1} is the point $\left(d^{-1}, 1, \beta d^{-1}, \delta d^{-1},-\alpha d^{-1},-\gamma d^{-1}\right), d \equiv \operatorname{det} \sigma$, which is the same point as Γ_{σ}. Thus, for ($\left.E, F_{1}(E)=\Gamma_{\sigma}\right)$ in $\tilde{U}^{1} \cup \tilde{U}^{2}$ we can define its determinant as the pair (det $E, p\left(\Gamma_{\sigma}\right)$) where $p: \mathbf{P}^{\mathbf{5}} \rightarrow \mathbf{P}^{\mathbf{1}}$ is defined by the projection $\left(P_{i j}\right)_{i<j} \rightarrow$ $\left(P_{12}, P_{34}\right)$ in homogeneous coordinates i.e. $\operatorname{det}\left(E, \Gamma_{\sigma}\right)$ is the generalised parabolic line bundle (det $E, \Gamma_{\text {deta }}$). Thus we get a map from $\tilde{U}^{1} \cup \tilde{U}^{2}$ onto the variety P of generalised parabolic line bundles.

Now consider the subset of $G(2,4)$ defined by $\left(P_{12}(x) \neq 0\right) \cap\left(P_{34}(x) \neq 0\right) \cap$ ($p(x)=$ fixed). Let $\left(x_{0}, y_{0}\right)$ be the homogeneous coordinates of $p(x)$ for an x in this set. Thus a point in this set looks like $\left(t x_{0}, t y_{0}, *, *, *, *\right)$ showing that the closure of this set in $G(2,4)$ is given by (this set) $\cup\left(G(2,4) \cap\left(P_{12}=0=P_{34}\right)\right.$. The subset ($\left.P_{12}=0=P_{34}\right) \cap G(2,4)$ corresponds to elements ($E, F_{1}(E)$) in \tilde{U}^{0}. Notice also that fixing the determinant of $\left(E, F_{1}(E)\right)$ is equivalent to fixing the determinant of $F=f\left(E, F_{1}(E)\right.$) for ($E, F_{1}(E)$) in \tilde{U}^{2}. We clearly have a commutative diagram

We now want to show that the determinant map $\tilde{U}^{1} \rightarrow P-h^{-1}(J(X))$ goes down to a map $U^{1} \rightarrow J(X)-J(X)$.

If $F \in U^{1}$, any $\left(E, F_{1}(E)\right) \in \tilde{U}^{1}$ mapping to F is obtained either from an extension of type

$$
\begin{equation*}
0 \rightarrow \pi^{*} F / \text { torsion } \rightarrow E \rightarrow k\left(x_{1}\right) \rightarrow 0 \tag{i}
\end{equation*}
$$

or of type

$$
\begin{equation*}
0 \rightarrow \pi^{*} F \text { /torsion } \rightarrow E \rightarrow k\left(x_{2}\right) \rightarrow 0 \tag{ii}
\end{equation*}
$$

and one has
(i)'

$$
\operatorname{det}\left(E, F_{1}(E)\right)=\left(L=\left(\operatorname{det} \pi^{*} F / \text { torsion }\right)\left(x_{1}\right), F_{1}(L)=L_{x_{2}}\right)
$$

or

$$
\begin{equation*}
\operatorname{det}\left(E, F_{1}(E)\right)=\left(L=\left(\operatorname{det} \pi^{*} F / \text { torsion }\right)\left(x_{2}\right), F_{1}(L)=L_{x_{1}}\right) . \tag{ii}
\end{equation*}
$$

(See the proof of proposition 1.11(3).) As seen in the proof of proposition 2.2, R.H.S. of both (i)' and (ii)' map into the same point in $J(X)-J(X)$ under h, we define this point as the determinant of F. Thus we have the required commutative diagram

For simplicity, let ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$) denote the homogeneous coordinates in P^{5}, with $x_{1}=P_{12}, x_{2}=P_{34}$ and let $G(2,4)$ be defined by the quadratic equation $x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}=0$. Fix a point $\left(y_{1}, y_{2}\right)$ in \mathbf{P}^{1}, we normalise y_{1}, y_{2} by $y_{1} y_{2}=-1$. Let $\alpha, \beta, \gamma, \delta, \lambda, t \in k$. Define $C_{1, \lambda}(t) \in \mathbf{P}^{5}$ by $C_{1, \lambda}(t)=\left(t y_{1}, t y_{2}, \lambda t+\alpha, t+\beta,(\lambda-1) t+\gamma\right.$, $-t+\delta)$. Then $C_{1, \lambda}(t) \in G(2,4)$ iff $\lambda(\beta+\delta)+\alpha-\gamma-\delta=0, \beta \alpha+\gamma \delta=0, C_{1, \lambda}(t) \in G(2,4) \cap$ $\left\{\left(x_{1} \neq 0\right) \cap\left(x_{2} \neq 0\right)\right\}$ for $t \in k^{*}$ and $C_{1, \lambda}(0) \in A^{c}$. Hence $\left\{C_{1 \lambda}(t)\right\}_{r \in k^{*}}$ parametrizes a family of parabolic vector bundles on \tilde{X} with a fixed determinant or equivalently a family of vector bundles on X with a fixed determinant (2.4) and the limit point $C_{1, \lambda}(0)=(0,0, \alpha, \beta, \gamma, \delta)$ corresponds to an element of \tilde{U}^{0}. Define $D_{1, \lambda}(t)=$ $(t, 0, \alpha, \beta, \gamma, \delta),\left\{D_{1, \lambda}(t)\right\}_{t \in k^{*}}$ parametrices a family of elements in \tilde{U}^{1} with the same limit and with a fixed determinant. It is easy to see that any point $(0,0, \alpha, \beta, \gamma, \delta)$ in A^{C} is of the form $C_{i, \lambda}(0)$ for some i, λ where $C_{2, \lambda}(t)=\left(t y_{1}, t y_{2}, \lambda t+\alpha, t+\beta, t+\gamma, \delta-\left(\lambda y_{t}\right)\right)$, $C_{3, \lambda}(t)=\left(t y_{1}, t y_{2}, \alpha, \beta, t+\gamma, t-\gamma\right), \quad C_{4, \lambda}(t)=\left(t y_{1}, t y_{2}, t+\alpha, \lambda t+\beta, t+\gamma, \delta-(\lambda-1) t\right)$.

A point in U_{0} corresponds to a torsionfree sheaf $\pi_{*} E_{0}, E_{0}$ being a stable vector bundle on \tilde{X}. Let E be a bundle ocurring in an extension of the form $0 \rightarrow E_{0} \rightarrow E \rightarrow$ $k\left(x_{1}\right) \oplus k\left(x_{2}\right) \rightarrow 0$. Then $\left(E, F_{1}(E)\right)$ with $F_{1}(E)=(0,0, \alpha, \beta, \gamma, \delta) \in G(2,4)$ is a point in \tilde{U}^{0} lying over the point $\left[\pi_{*} E_{0}\right]$ in U_{0}. Let $L=\left(\operatorname{det} \cdot E_{0}\right)\left(x_{1}+x_{2}\right)=\operatorname{det} \cdot E$. Let $p: P \rightarrow \operatorname{Pic} \tilde{X}$ and $h: \mathbf{P} \rightarrow \bar{J}$ be as in proposition 2.2. Varying (y_{1}, y_{2}) over \mathbf{P}^{1} in the above discussion, we see that $C_{i, \lambda}$'s parametrise families of bundles on X with determinant a fixed line bundle M, where M varies over $h\left(p^{-1}(L)\right) \cap$ Pic X. Define $D_{2, \lambda}(t)=(0, t, \alpha, \beta, \gamma, \delta)$. Then $D_{1, \lambda}$ (respectively $\left.D_{2, \lambda}\right)$ parametrices a family of torsionfree sheaves (which are not locally free) on X with a fixed determinant $\pi_{*}\left(L\left(-x_{2}\right)\right)$ (respectively $\pi_{*}\left(L\left(-x_{1}\right)\right)$) belonging to $h\left(p^{-1}(L)\right)$. This shows that the fibre over ($\pi_{*} E_{0}$) of the closure (in $U \times \bar{J}$) of the graph of the determinant map (which is a rational morphism) contains $h\left(p^{-1}(L)\right) \approx \mathbf{P}^{1}$.
2.4. We now want to "globalise" the construction of 1.6 . Let $\mathscr{E} \rightarrow T \times \varnothing$ be a family of vector bundles on \bar{X} of rank 2, degree d flat over T. Let $G(\mathscr{E})$ be the Grassmannian bundle over $T \times D, D=x_{1}+x_{2}$, such that $G(\mathscr{E})_{t} \cong G\left(2,\left(\mathscr{E}_{t}\right)_{D}\right)$, the Grassmannian of two dimensional subspaces of $\mathscr{E} \mid t \times D$. On $G(\mathscr{E})$, we have an exact sequence $0 \rightarrow U \rightarrow \mathscr{E} \mid T \times D \rightarrow Q \rightarrow 0, Q$ being the universal quotient bundle. Let $p: G(\mathscr{E}) \rightarrow$ $T \times D \rightarrow T, p_{1}: G(\mathscr{E}) \times \mathscr{X} \rightarrow G(\mathscr{E}), p_{1}^{\prime}: G(\mathscr{E}) \times X \rightarrow G(\mathscr{E})$ be the natural maps. The above sequence gives a surjection $p_{1}^{*}(\mathscr{E} \mid T \times D) \rightarrow p_{1}^{*} Q$ and hence $(1 \times \pi)_{*}\left(p_{1}^{*} \mathscr{E} \mid T \times D\right) \rightarrow$
$(1 \times \pi)_{*} p_{1}^{*} Q$. One has $(1 \times \pi)_{*} p_{1}^{*} Q=p_{1}^{* *} Q ;$ also $(1 \times \pi)_{*} p_{1}^{*} \mathscr{E}\left|T \times D \approx\left((1 \times \pi)_{*} \mathscr{E}\right)\right| T \times x_{0}$. The restriction map $\mathscr{E} \rightarrow \mathscr{E} \mid T \times D$ gives a homomorphism

$$
(1 \times \pi)_{*}(p \times 1)^{*} \mathscr{E} \rightarrow(1 \times \pi)_{*}(p \times 1)^{*}(\mathscr{E} \mid T \times D)=(1 \times \pi)_{*} p_{1}^{*}(\mathscr{E} \mid T \times D)
$$

Composition gives a homomorphism $(1 \times \pi)_{*}(p \times 1)^{*} \mathscr{E} \rightarrow p_{1}^{\prime *} Q$. Let \mathscr{F} be defined by the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathscr{F} \rightarrow(1 \times \pi)_{*}(p \times 1)^{*} \mathscr{E} \rightarrow p_{1}^{\prime *} Q \rightarrow 0 \tag{2.5}
\end{equation*}
$$

Since π is a finite morphism and \mathscr{E} is flat over T, it follows that $(1 \times \pi)_{*}(p \times 1)^{*} \mathscr{E}$ is flat over $G(\mathscr{E})$. Since Q is locally free over $G(\mathscr{E}), p_{1}^{\prime *} Q$ is flat over $G(\mathscr{E})$. It follows that \mathscr{F} is flat over $G(\mathscr{E})$. Thus \mathscr{F} is a flat family of torsionfree sheaves of rank two, degree d on X parametrised $G(\mathscr{E})$. Let $G(\mathscr{E})_{s s}\left(G(\mathscr{E})_{s}\right)$ be the open subset of $G(\mathscr{E})$ corresponding to $g \in G(\mathscr{E})$ such that \mathscr{F}_{g} is semistable (stable). Then we have a morphism $\varphi: G(\mathscr{E})_{s s} \rightarrow U$ mapping $G(\mathscr{E})_{s}$ to stable points in U.

We have

$$
G(\mathscr{E}) \subset \mathbf{P}\left(\Lambda^{2}(\mathscr{E} \mid T \times D)\right)=P\left(\Lambda^{2}\left(\mathscr{E}\left|T \times x_{1} \oplus \mathscr{E}\right| T \times x_{2}\right)\right) \cdot \Lambda^{2}\left(\mathscr{E}\left|T \times x_{1} \oplus \mathscr{E}\right| T \times x_{2}\right)
$$

has $\Lambda^{2} \mathscr{E}\left|T \times x_{1} \oplus \Lambda^{2} \mathscr{E}\right| T \times x_{2}$ as a direct summand and hence a projection onto itHence we get a rational morphism $G(\mathscr{E}) \rightarrow \mathbf{P}\left(\operatorname{det} \mathscr{E}\left|T \times x_{1} \oplus \operatorname{det} \mathscr{E}\right| T \times x_{2}\right)$, this is nothing but the extended determinant map of (2.3), as det $\tilde{\mathscr{E}} \mid T \times \widetilde{X}$ and $V \mid J(\tilde{X}) \times \tilde{X}$ are locally isomorphic, V being the universal bundle on $J(\tilde{X}) \times \tilde{X}$.
2.5. In the notations of 2.4 , let now $T=M$, where M is the moduli space of stable vector bundles of rank two and odd degree on X and let \mathscr{E} be the universal bundle on $M \times \tilde{X}$. Let L be a fixed line bundle on X and let M^{0} denote the subvariety of M corresponding to bundles E with determinant $\pi^{*} L$. Let $G=G(\mathscr{E})_{s}=G(\mathscr{E})_{s s}$ (remark 1.4). Let $G_{i}=\varphi^{-1}\left(U_{i}\right), i=0,1,2, G_{2}^{L}=\varphi^{-1}\left(U_{2}^{L}\right)$ (notations 1.1) G_{2} is a fibration over M with fibre $G L(2)$ and hence is of dimension $4 g-3$ and G_{2}^{L} is a closed subvariety of G_{2} of $\operatorname{dim} \cdot 3 g-3$. The restriction of φ to G_{2} is an isomorphism onto an open dense subset U_{2}^{\prime} of U_{2}, mapping G_{2}^{L} isomorphically onto $U_{2}^{\prime L}$ contained in U_{2}^{L}; $U_{2}^{\prime L}$ being open and dense in U_{2}^{L}. Using 2.3, it follows that the closure of G_{2}^{L} in $G=\overline{G_{2}^{L}}=$ $\left\{\left(E, F_{1}(E)\right) \mid E \in M^{0}, F_{1}(E)=k_{1} \oplus k_{2}, k_{i} \subset E_{x_{i}},\left(E, F_{1}(E)\right)\right.$ parabolic stable i.e. E has no line subbundles L^{\prime} of degree $\left(\mu(E)-\frac{1}{2}\right)$ such that $\left.L_{x_{1}}^{\prime} \oplus L_{x_{1}}^{\prime}=k_{1} \oplus k_{2}\right\}$ and $\varphi\left(\overline{G_{2}^{L}}\right)=\left\{\pi_{*}\left(E_{0}\right) \mid E_{0}\right.$ (stable) bundle given by an extension of the form

$$
\left.0 \rightarrow E_{0} \rightarrow E \rightarrow E_{x_{1}} \oplus E_{x_{2}} / F_{1}(E) \rightarrow 0,\left(E, F_{1}(E)\right) \in \overline{G_{2}^{L}}\right\}
$$

Note that $\operatorname{det} E_{0}=\left(\pi^{*} L\right)\left(-x_{1}-x_{2}\right)$. We claim that any stable bundle E_{0} can be obtained by an extension of the above form. Now, the extensions of the above form (i.e. $\left.0 \rightarrow E_{0} \rightarrow E \rightarrow k\left(x_{1}\right) \oplus k\left(x_{2}\right) \rightarrow 0\right)$ are parametrised by $\left(E_{0} \otimes K_{\bar{z}}^{-1}\right)_{x_{1}} \oplus\left(E_{0} \otimes K_{\bar{z}}^{-1}\right)_{x_{2}} \approx$
($\left.E_{0}\right)_{x_{1}} \oplus\left(E_{0}\right)_{x_{2}}$ and given $k_{i} \subset\left(E_{0}\right)_{x_{i}}$ one dimensional subspaces, there is a (unique) extension such that $\operatorname{Ker}\left(\left(E_{0}\right)_{x_{1}} \rightarrow E_{x_{i}}\right)=k_{i}, i=1,2$. Choose k_{1}, k_{2}, such that $k_{1} \oplus k_{2} \neq$ $L_{x_{1}} \oplus L_{x_{2}}$ for any line subbundle L^{\prime} of E_{0} of degree $\mu(E)-\frac{3}{2}$ (remark 1.14). Then E obtained for such a choice is stable and parabolic stable. Thus $\varphi\left(\overline{G_{2}^{L}}\right)=\left\{\pi_{*} E_{0} \mid E_{0}\right.$ stable bundle on \tilde{X} with determinant $\left(\pi^{*} L\right)\left(-x_{1}-x_{2}\right)$.
2.6. The case $g(\widetilde{X})=1$. In this case $M^{0}=$ a point corresponding to a stable bundle E. Then $\left(E, F_{1}(E)\right), F_{1}(E)=k_{1} \oplus k_{2}$, all give the same bundle E_{0} as there is a unique stable vector bundle E_{0} of rank 2 and fixed determinant ($\left.\pi^{*} L\right)\left(-x_{1}-x_{2}\right)$ on \tilde{X}. Moreover, ($E, F_{1}(E)$) with $E=N \oplus\left(\pi^{*} L \otimes N^{-1}\right), F_{1}(E)=k_{1} \oplus k_{2}$, degree $N=\frac{1}{2}$ (degree $L+1$) also give the same E_{0} for the same reason.

Lemma 2.7. Let X be an irreducible complete curve with the only singularity a single node at x_{0}. Let R be a discrete valuation ring, $T=\operatorname{spec} R, T_{0}$ the closed point of T. Let $F \rightarrow X \times T$ be a family of torsionfree sheaves on X, flat over T, with the generic member locally free and $F \mid x_{0} \times T_{0} \approx a \theta_{x_{0}} \oplus b m_{0}, a>0, m_{0}$ being the maximum ideal of $\theta_{x_{0}}$. Assume that $H^{\circ}(F)$ generates F. Then one can find an exact sequence $0 \rightarrow \theta \rightarrow F \rightarrow G \rightarrow 0$, where G is a family of torsionfree sheaves on X fiat over T and G is a torsionfree sheaf.

Proof. Write $F_{\left(x_{0}, T_{0}\right)}=\theta_{x_{0}} \oplus M, M$ is the direct sum $(a-1) \theta_{x_{0}} \oplus b m_{0}$. Since $H^{0}(F)$ generates $F_{\left(x_{0}, T_{0}\right)}$, there exists e_{1} in $H^{0}(F)$ such that $e_{1}\left(x_{0}, T_{0}\right)=(1,0), 1 \in \theta_{x_{0}}$. Define $V=\left\{s \in H^{0}(F) \mid s=\sum c_{i} e_{i}, c_{1} \neq 0\right\}$. Then for any s in the open set V, s maps into $\theta_{x_{0}}$ at x_{0}. Since $F \mid\left(X-x_{0}\right) \times T$ is locally free, there exists an open set $W \subset H^{0}(F)$ such that for s in W, the map $\theta|(X-x) \times T \xrightarrow{s} \rightarrow F|\left(X-x_{0}\right) \times T$ is injective. Then for any s in $V \cap W$, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \theta \rightarrow F \rightarrow G \rightarrow 0 . \tag{I}
\end{equation*}
$$

We shall now check that G is torsionfree and is flat over T. Since R is a discrete valuation ring, to check that G is flat over T, it suffices to check that G is flat over T_{0}. Tensorising the sequence (I) by $\theta_{T_{0}}$, we have $0 \rightarrow \operatorname{Tor}_{1}\left(G, \theta_{T_{0}}\right) \rightarrow \theta_{T_{0}} \rightarrow F \mid T_{0} \rightarrow$ $G \mid T_{0} \rightarrow 0$. Since, by our construction, $\theta \rightarrow F \mid T_{0}$, is an injection, it follows that $\operatorname{Tor}_{1}\left(G, \theta_{T_{0}}\right)=0$ i.e. G is flat over T_{0}.

Since G is flat over T, it has no T-torsion. So G can have only X-torsion, say G^{\prime}; so that G / G^{\prime} is torsionfree. Since G and G / G^{\prime} are flat over T, it follows that G^{\prime} if flat over T. This implies that $0 \rightarrow G^{\prime}\left|T_{0} \rightarrow G\right| T_{0} \rightarrow\left(G / G^{\prime}\right) \mid T_{0} \rightarrow 0$ is exact. By our choice of $s, G / T_{0}$ is torsionfree, so that $G^{\prime} \mid T_{0}=0$ and hence $G^{\prime}=0$. Thus G is torsionfree.

Remark 2.8. If F is of rank two, we can define the determinant of $F \mid X \times T_{0}$ as $G \mid X \times T_{0}$.

In the general case i.e. rank $F=n, F_{x_{0}, T_{0}} \approx(n-1) \theta_{x_{0}} \oplus m_{0}$ write $G=G_{1}$. Applying the above lemma to G_{1}, we get a torsionfree quotient G_{2} flat over T_{0}. Repeating the process, we get a torsionfree rank one sheaf G_{n-1} flat over T. We can define the determinant of $F \mid X \times T_{0}$ as $G_{n-1} \mid X \times T_{0}$.

3. Generalisations and construction of the moduli space

The generalised parabolic bundles defined before (definitions 1.2, 1.3 and 2.1) are special cases of the more general definition below (3.1). A good generalisation of the concept of a parabolic structure at a point seems to be a parabolic structure on a divisor. On singular curves one seems to get naturally vector bundles E with flags on $E \mid D, D$ being a Cartier divisor concentrated at the singular point. Definition 1.2 is obtained from 3.1 by taking $D=x_{1}+x_{2}$ and weights $\left(\alpha_{1}, \alpha_{2}\right)=(0,1)$.

Definition 3.1. Let E be a vector bundle on an irreducible nonsingular curve X over an algebraically closed base field k.

A generalised parabolic structure σ on E over a Cartier divisor D consists of
(1) a flag \mathscr{F} of vector subspaces of $E\left|D, \mathscr{F}: F_{0}=E\right| D \supset F_{1} \supset F_{2} \supset \ldots \supset F_{r}=0$, where $E_{\mid \mathrm{D}}:=H^{0}\left(E \otimes \mathcal{O}_{D}\right)$
(2) real numbers $\alpha_{1}, \ldots, \alpha_{r},\left(0 \leqq \alpha_{1}<\alpha_{2}<\ldots<\alpha_{r}<1\right)$ called weights.

Let $m_{i}=\operatorname{dim} F_{i-1} / F_{i}, i=1, \ldots, r$. Define

$$
w t \cdot E \mid D=\sum_{i=1}^{r} m_{i} \alpha_{i}
$$

If E has generalised parabolic structure over finitely many divisors D_{j}, we call E with this structure a generalised parabolic vector bundle. Define wt $E=\sum_{j} w t \cdot E \mid D_{j}$, parabolic degree of $E=$ degree of $E+w t \cdot E$.

Definition 3.2. Every subbundle K of E gets a natural structure of a generalised parabolic bundle. The induced flag is given by $\mathscr{F}(K)=K \mid D \supseteqq\left(F_{1} \cap K \mid D\right) \supseteqq \ldots \supseteqq F_{r}=0$, if β_{j} is the weight associated to $F_{j} \cap K \mid D$, then $\beta_{j}:=\alpha_{j}$ where F_{j} is the smallest subspace in \mathscr{F} containing $F_{j} \cap K \mid D$. By a subbundle of a generalised parabolic bundle E we will always mean a subbundle with this induced parabolic structure.

Definition 3.3. A generalised parabolic vector bundle E is semistable (respectively stable) if for every (respectively proper) subbundle K of E, parabolic degree of $K /$ rank of $K \leqq($ resp. <) parabolic degree of $E /$ rank of E.

Definition 3.4. Induced parabolic stucture on a quotient bundle. Let $p: E \rightarrow Q$ be a quotient of E. The parabolic structure on E over D induces one on Q as follows.

Let $\mathscr{F}=\left\{F_{i}(E)\right\}$ be the flag on $E \mid D$ with weights $\left\{\alpha_{i}(E)\right\}, i \in I$. Let $\bar{p}=p \mid D$. Then $\bar{p}(\mathscr{F})$ induces a flag $\overline{\mathscr{F}}$ on $Q \mid D, \overline{\mathscr{F}}=\left\{F_{j}(Q)\right\}, j \in J \subseteq I$. The weights $\left\{\alpha_{j}(Q)\right\}$ for this flag are determined as follows. Given $F_{j}(Q)$, there exists $F_{i}(E)$ such that $\bar{p}\left(F_{i}(E)\right)=\left(F_{j}(Q)\right)$, take i_{0} largest such i and define $\alpha_{j}(Q)=\alpha_{i_{0}}(E)$.

Definition 3.5. A generalised parabolic vector bundle E is semistable (respectively stable) if for every nonzero quotient bundle Q of E, parabolic degree of $E / \mathrm{rank} E \leqq$ (respectively <) parabolic degree of $Q /$ rank Q.

Remark. It is easy to see that Definitions 3.3 and 3.5 are equivalent.
Definition 3.6. Let $i=1,2$ and let E_{i} be a generalised parabolic bundle with parabolic structure over D with flag $\left\{F_{j}\left(E_{i}\right)\right\}$ and weights $\left\{\alpha_{j}\left(E_{i}\right)\right\}$. A morphism of generalised parabolic bundles is a homomorphism $f: E_{1} \rightarrow E_{2}$ of vector bundles such that for all $j, f\left(F_{j}\left(E_{1}\right)\right) \subset F_{l+1}\left(E_{2}\right)$ whenever $\alpha_{j}\left(E_{1}\right)>\alpha_{l}\left(E_{2}\right)$, where $f=f \mid D$.

Lemma 3.7. Let E be a semistable (resp. stable) generalised parabolic bundle. If $\operatorname{par} \mu(E)=$ parabolic degree of $E /$ rank $E>($ resp. $\geqq) 2 g-1$, then $\left(H^{1}(E)\right)=0$.

Proof. Suppose that $H^{1}(E) \neq 0$. By Serre' duality, this implies that there exists a nonzero homomorphism $f: E \rightarrow K, K$ being the canonical line bundle. Then one has

$$
\operatorname{par} \mu(E) \leqq \operatorname{par} \mu(K)=2 g-2+\omega t K \leqq 2 g-1
$$

if E is semistable (resp. < for E stable). Hence if E is semistable (or stable) with par $\mu>($ or $\geqq) 2 g-1$ then $f=0$, i.e. $H^{1}(E)=0$.

Lemma 3.8. Let $f: E_{1} \rightarrow E_{2}$ be a morphism of semistable generalised parabolic bundles (D fixed) of same rank and same parabolic degree. Then f is of constant rank. Further, if one of E_{1} or E_{2} is stable, then either $\alpha=0$ or α is an isomorphism.

Proof. The morphism f factors through a generic isomorphism h as follows.

Let $\mu=\operatorname{par} \mu\left(E_{1}\right)=\operatorname{par} \mu\left(E_{2}\right)$. By semistability of E_{1}, E_{2} one has $\mu=\operatorname{par} \mu\left(E_{1}\right) \leqq$ par $\mu\left(I_{1}\right)$, par $\mu\left(K_{2}\right) \leqq \mu$. Since h is a generic isomorphism $\operatorname{deg} \cdot I_{1} \leqq \operatorname{deg} K_{2}$, also wt $I_{1} \leqq w t K_{2}$, hence par $\mu\left(K_{2}\right)$. Thus $\mu \leqq \operatorname{par} \mu\left(I_{1}\right) \leqq \operatorname{par} \mu\left(I_{1}\right) \leqq \operatorname{par} \mu\left(K_{2}\right) \leqq \mu$, i.e. par $\mu\left(I_{1}\right)=$ par $\mu\left(K_{2}\right)=\mu$. Thus parabolic degrees of I_{1} and K_{2} are same, it follows that degree $I_{1}=$ degree K_{2},wt $I_{1}=w t K_{2}$ and so h is an isomorphism i.e. f is of constant rank. The last assertions of the lemma are now clear.

Corollary 3.9. If E is a stable generalised parabolic vector bundle, then any morphism of E into itself is a scalar.

Proof. Lemma 3.8 shows that any nonzero morphism f of E into itself is an isomorphism. Let $x \in X$ and c be an eigenvalue of f_{x}. Then the morphism f-cId is not an isomorphism and hence must be zero.

Proposition 3.10. The category S of all semistable generalised parabolic bundles E on X with parabolic structure on a divisor D and with fixed par $\mu=\mu_{0}$ is an abelian category. The simple objects in this category are the stable generalised parabolic bundles. By Jordan-Hölder theorem, for $E \in S$, there exists a filtration in S

$$
E=E_{n} \supset E_{n-1} \supset \ldots \supset E_{0}=0
$$

such that E_{i} / E_{i-1} is' a stable generalised parabolic bundle with par $\mu=\mu_{0}$ for all i and $\mathrm{gr} E=\oplus_{i} E_{i} / E_{i-1}$ is unique upto isomorphism.

Proof. This follows from 3.8 and 3.9.
Definition 3.11. We define E_{1}, E_{2} in S to be equivalent if $\mathrm{gr} E_{1} \approx \mathrm{gr} E_{2}$.
Theorem 1. Let X be an irreducible nonsingular projective curve over an algebraically closed field. Then there exists a course moduli space M for equivalence classes of semistable generalised parabolic bundles E of rank k on X with fixed degree and parabolic structure given by deg $D=2$, weights $\left(\alpha_{1}, \alpha_{2}\right) \equiv(0, \alpha)$ and $\mathscr{F}: F_{0}(E)=$ $\left.E\right|_{D} \supset F_{1}(E) \supset 0$. The space M is a normal projective variety. If rank and degree of E are coprime, α is close to 1 and $\operatorname{dim} F_{1}(E)=k$ then M is nonsingular. One has $\operatorname{dim} M=k^{2}(g-1)+1+\operatorname{dim} F, F$ being flag variety of type \mathscr{F}.

The proof of this theorem is on similar lines as that of the main theorem in [V]. The construction uses geometric invariant theory, the choice of weights and degree of D corresponds to the choice of a polarisation. This choice is a bit tricky. A choice similar to the one in [SM] [V] fails for degree $D>1$, so we have to look for a new candidate. This was the main difficulty in the construction below. Note that unlike in [SM], [V] we do not assume here that parabolic degree of $E=0$.

Let S denote the set of all semistable generalised parabolic bundles E of the type specified in the statement of the theorem. Let b denote the fixed parabolic degree of $E \in S$, without loss of generality, may assume $b \leqq k$. Then S is bounded, there exists m_{0} such that for $m \geqq m_{0}$, one has $H^{1}(E(m))=0$ and the canonical map $H^{0}(E(m)) \rightarrow H^{0}(E(m) / D)$ is a surjection. By arguments similar to those on p. 226, [SM] we can choose an integer $m \gg g, g=$ genus of X, such that $H^{1}(F(m))=0$ and $H^{0}(F(m)) \rightarrow H^{0}\left(F(m) \otimes \mathcal{O}_{D}\right)$ is surjective for $F \in S$ or $F \subset E, E$ in S and parabolic degree of $F>(b-(g+2 \alpha) k)$. Let P be the Hilbert polynomial of E in S and let $n=\operatorname{dim} \cdot H^{0}(E(m))$. Denote by Q the Quot scheme i.e. the Hilbert scheme of co-
herent sheaves on X which are quotients of \mathcal{O}_{X}^{n} and have Hilbert polynomial P. Let U denoie the universal family on $Q \times X$ and R denote the subscheme $\left\{q \in Q \mid H^{1}\left(U_{q}\right)=0, H^{0}\left(U_{q}\right) \approx \mathcal{O}_{X}^{n}, U_{q}\right.$ is locally free and generically generated by global sections\}. R is a nonsingular variety and contains the subset determined by $E(m)$, $E \in S$ by our choice of m. Let $V=\left(p_{1}\right)_{*}(U \mid R \times D), p_{1}: R \times D \rightarrow R$. Let $G(V)$ be the flag bundle over R of the type determined by the parabolic structure and let \tilde{R} be the total space of $G(V)$. It is easy to see that \tilde{R} has the local universal property for generalised parabolic bundles. Let the subsets of \tilde{R} corresponding to semistable (respectively stable) generalised parabolic bundles be denoted by $\tilde{R}^{s S}\left(\widetilde{R}^{S}\right)$. The group $S L(n)$ acts on $R, \widetilde{R}^{S S}$ and \widetilde{R}^{S} via its action on \mathscr{O}_{x}^{n}. We want to give an affine injective $S L(n)$-equivariant morphism from \tilde{R} to a projective variety Y with $S L(n)$-action such that the geometric invariant theoretic quotient $Y / S L(n)$ is known to exist.

For a while, let us forget about the parabolic structure. Following Gieseker, we define a 'good pair' (F, φ) to be a flat family $F \rightarrow T \times X$ of vector bundles on X such that F_{t} is generated by its global sections at the generic point of $t \times X$ and $\varphi: \mathcal{O}_{X}^{n} \rightarrow p_{*}(F)$ is an isomorphism. Let $c=\operatorname{degree} E(m), E \in S, A=\operatorname{Pic}^{c}(X)$, $g: X \times A \rightarrow A$ projection and M the Poincare' bundle on $X \times A$. Let $Z=$ $\mathbf{P}\left(\operatorname{Hom}\left(\Lambda^{k} \mathcal{O}_{A}^{n}, g_{*} M\right)^{*}\right)$. Given a good pair (F, φ) one gets a morphism $T(F, \varphi): T \rightarrow Z$. For $t \in T, T(F, \varphi)(t)$ is the composite $\Lambda^{k} K^{n} \rightarrow \Lambda^{k} H^{0}\left(F_{t}\right) \xrightarrow{\psi} H^{0}\left(\Lambda^{k} F_{t}\right.$, where the first map is $\Lambda^{k} \varphi$ and the second map ψ is the natural map $\psi\left(s_{1} \Lambda \ldots \Lambda s_{k}\right)=s$, where $s(x)=s_{1}(x) \Lambda \ldots \Lambda s_{k}(x) . \quad S L(n)$ acts on Z preserving the fibres over A.

If, in addition, F is a family of generalised parabolic vector bundles the flag on $F_{t} \mid D$ induces, via φ, a flag on $K^{n}=H^{0}\left(F_{t}\right)$

$$
K^{n}=F_{0}\left(H^{0}\left(F_{t}\right)\right) \supset F_{1}\left(H^{0}\left(F_{t}\right)\right) \supset F_{2}\left(H^{0}\left(F_{t}\right)\right)
$$

$F_{2}\left(H^{0}\left(F_{t}\right)\right)=$ kernel of $e: H^{0}\left(F_{t}\right) \rightarrow F_{t} \mid D$ and $F_{1}\left(H^{0}\left(F_{t}\right)\right)=e^{-1}\left(F_{1}\left(F_{t}\right)\right)$. Hence we have a morphism f from T into the flag variety G of flags in K^{n}. Thus the good pair (F, φ) determines a morphism $\tilde{T}(f, \varphi): T \rightarrow Z \times G, \tilde{T}(F, \varphi)=T(f, \varphi) \times f$. Let $T: \tilde{R} \rightarrow Z \times G$ be the induced morphism. T maps $\tilde{R}^{S S}$ into $G r=\Pi G_{n, f}$ where $G_{n, i}$ denotes the Grassmannian of f_{i}-dimensional subspaces of $K^{n}, f_{i}=\operatorname{dim} F_{i}\left(H^{0}(E)\right)$, $i=0,1,2$. On $Z \times G r$ we take the polarisation $\left.L^{\otimes a k} \otimes \mathcal{O}_{Z}(k(m+1-2 \alpha-g)+b)\right)$, where L is the generator of $\operatorname{Pic}\left(G_{n, 1}\right), b=$ parabolic degree of E in S. For this polarisation, a point ($\tau,\left(F_{i}\right)$) in $Z \times G r$ is semistable (or stable) if and only if for any subspace $W \subset V, K^{n}=V$, one has

$$
\begin{aligned}
\sigma_{W}= & {[k(m-1-g)+b](d \operatorname{dim} V-k \operatorname{dim} W) } \\
& +k \alpha\left[\operatorname{dim} W \operatorname{dim} F_{1}(V)-\operatorname{dim} V \operatorname{dim}\left(W \cap F_{1}(V)\right)\right] \geqq 0 \quad(\text { or }>0)
\end{aligned}
$$

where d is the maximum of the cordinalities of τ-independent subsets of W. Let $\left(Z \times G_{r}\right)^{s s}$ (or $\left(Z \times G_{r}\right)^{s}$) denote the set of semistable (or stable) points in $Z \times G r$.

Proposition 3.12.

(a) $q \in \tilde{R}^{s s} \Rightarrow T(q) \in(Z \times G r)^{s s}$
(b) $q \in \widetilde{R}^{s} \Rightarrow T(q) \in(Z \times G r)^{s}$
(c) $q \in \tilde{R}, T(q) \in Z \times G r, q \notin \tilde{R}^{s s} \Rightarrow T(q) \notin(Z \times G r)^{s s}$
(d) $q \in \tilde{R}^{s s}-\tilde{R}^{s} \Rightarrow T(q) \notin(Z \times G r)^{s}$

Proof. For $F \subset E$, define

$$
\begin{gathered}
\chi_{F}=[k(m+1-g)+b]\left[r k F \cdot h^{0}(E(m))-r k E \cdot h^{0}(F(m))\right] \\
+k\left[h^{0}(F(m)) \cdot w t E-h^{0}(E(m)) w t F\right] .
\end{gathered}
$$

We first make a few observations.
(1) For E with $h^{1}(E)=0$,

$$
\chi_{F}=n(d b-k \text { parabolic degree } F)-n k h^{1}(F(m))
$$

where $d=\operatorname{rank} F, n=h^{0}(E(m))$.
Proof. Rearranging the terms one has

$$
\begin{aligned}
\gamma_{F}= & h^{0}(E(m))[(k(m+1-g)+b) d-k w t F] \\
& k h^{0}(F(m))(w t E-k(m+1-g)-b) \\
= & h^{0}(E(m))\left[k(m+1-g) d+b d-k w t F-k h^{0}(F(m))\right]
\end{aligned}
$$

since wt $E-k(m+1-g)-b=h^{0}(E(m))$ by Riemann-Roch theorem. Similarly $h^{0}(F(m))-h^{1}(F(m))=$ parabolic degree $F-$ wt $F+d(m+1-g)$, hence one gets

$$
\chi_{F}=n\left[b d-k \text { parabolic } \operatorname{deg} \cdot F-k h^{1} F((m))\right] .
$$

(2) If $\left.h^{1}(E(m))=0=h^{1}(F)(m)\right)$, par $\mu=\frac{\text { parabolic degite }}{\text { rank }}$, then

$$
\chi_{F}=n d k(\operatorname{par} \mu(E)-\operatorname{par} \mu(F))
$$

Proof. Obvious.
(3) If $W=H^{0}(F(m)), \quad V=H^{0}(E(m)), \quad H^{0}(F(m)) \rightarrow F(m) \otimes \mathcal{O}_{D}, \quad H^{0}(E(m)) \rightarrow$ $E(m) \otimes \mathcal{O}_{D}$ are surjections and $h^{1}(F(m))=0=h^{1}(E(m))$, then

$$
\sigma_{W}=\chi_{F}
$$

This follows by straightforward computation. We now come to the proof of the proposition. Assertions (c) and (d) follow exactly as in the proofs of proposition 2(c), (d) in [V] using (2) and (3) above.

Proof of (a) and (b). Let E be a generalised parabolic semistable (or stable) bundle ($E \in S$). Let W be a subspace of V and let $F(m)$ be the subbundle of $E(m)$ generically generated by W.

Case (i). If W satisfies the conditions of (3) above, we have $\sigma_{W}=\chi_{F} \geqq 0(>0)$ if E is semistable (stable) as a generalised parabolic bundle.

Case (ii). Parabolic degree $F>b-(g+2 \alpha) k$. By our choice of $m, H^{1}(F(m))=0$ and $H^{0}(F(m)) \rightarrow F(m) \otimes \mathcal{O}_{D}$ is surjective. Let $W^{\prime}=H^{0}(F(m))$. If $W^{\prime}=W$, we are through by case (i); so may assume $W^{\prime} \neq W$. By (2) above, $\chi_{F} \geqq 0(>0)$ if E is semistable (stable) as a generalised parabolic bundle. Therefore, it suffices to show that $\sigma_{W}-\chi_{F} \geqq 0$. It is easy to see that

$$
\begin{aligned}
\frac{1}{k}\left(\sigma_{W}-\chi_{F}\right) & =k\left(\operatorname{dim} W^{\prime}-\operatorname{dim} W\right)\left[(k(m+1-g-2 \alpha)+b)-\alpha \operatorname{dim} F_{1}(V)\right] \\
& +\alpha \operatorname{dim} V\left(\operatorname{dim} W^{\prime} \cap F_{1}(V)-\operatorname{dim} W \cap F_{1}(V)\right) \geqq 0
\end{aligned}
$$

as, by Riemann-Roch theorem, the term in the square bracket is $(1-\alpha) \operatorname{dim} V$ while the terms in round brackets are nonnegative.

Case (iii). Parabolic degree $F \leqq b-(g+2 \alpha) k$. Let $W^{\prime}=H^{0}(F(m))$, then $W^{\prime} \supseteqq W$. Regrouping terms and after simplifications one gets $\sigma_{W}-\chi_{F} \geqq-2 \alpha n k d$ as follows.

$$
\begin{aligned}
\sigma_{W}-\chi_{F}= & k \operatorname{dim} V\left(-2 d \alpha+w t F-\alpha \operatorname{dim} F_{1}(V) \cap W\right) \\
& +k\left(\operatorname{dim} W^{\prime}-\operatorname{dim} W\right)\left(k(m+1-2 \alpha-g)+b-\alpha F_{1}(V)\right) \\
& +k \operatorname{dim} W^{\prime}\left(2 k \alpha-w t E+\alpha \operatorname{dim} F_{1}(V)\right)
\end{aligned}
$$

Using the fact that $2 k \alpha-w t E+\alpha \operatorname{dim} F_{1}(V)=\alpha \operatorname{dim} V$, we have

$$
\begin{aligned}
\sigma_{W}-\chi_{F}= & k \operatorname{dim} V\left(-2 d \alpha+w t F+\alpha \operatorname{dim} W^{\prime}-\alpha \operatorname{dim} F_{1}(V) \cap W\right) \geqq-2 k \alpha d n, \\
& \text { since } w t F \geqq 0 \quad \text { and } \quad \operatorname{dim} W^{\prime}-\operatorname{dim} F_{1}(V) \cap W \geqq 0 .
\end{aligned}
$$

Now, since $F(m)$ is generically generated by sections, one has $h^{0}(F(m)) \leqq \operatorname{deg} F(m)+d$ or equivalently, $-h^{1}(F(m)) \geqq-g d$. By (1) above

$$
\chi_{F}=n b d-n k h^{1}(F(m))-n k \operatorname{par} \operatorname{deg}(F) \geqq n d b-n g d k-n k \operatorname{par} \operatorname{deg}(F) .
$$

If $\operatorname{par} \operatorname{deg}(F) \leqq b-(g+2 \alpha) k$, we have

$$
\sigma_{W}=\left(\sigma_{W}-\chi_{F}\right)+\chi_{F} \geqq n[((g+2 x) k-b)(k-d)] \geqq 0 .
$$

Thus the proof of the proposition is completed.
Proposition 3.13. The morphism $T: \widetilde{R}^{s s} \rightarrow(Z \times G r)^{s s}$ is proper and injective.

Proof. The properness of T can be proved exactly as in proposition 3 [V]. The injectivity of T follows from the fact that \tilde{R} is a bundle over R with fibre flag variety corresponding to the parabolic structure and the morphism $T: \widetilde{R}^{s s} \rightarrow Z$ is injective (lemma 4.3 [G 2]).

We are now in a position to complete the proof of the theorem. Since a proper injective morphism is affine, T is an affine morphism. Since the existence of a good quotient of $(Z \times G r)^{s s}$ modulo $S L(n)$ is well-known, the existence of a good quotient M of $\tilde{R}^{\text {ss }}$ modulo $S L(n)$ follows as T is an affine morphism. Since \tilde{R} is a nonsingular projective variety of dimension $k^{2}(g-1)+1+n^{2}-1+\operatorname{dim} F, M$ is a normal projective variety of dimension $k^{2}(g-1)+1+\operatorname{dim} F$.

If rank E and degree of E are coprime and $F_{1}(E)$ has dimension equal to rank of E, then E is parabolic semistable if and only if E is parabolic stable i.e. $\tilde{R}^{s s}=\widetilde{R}^{s}$. Also, by corollary 3.19 if E is stable then the only automorphisms (keeping the generalised parabolic structure invariant) of the generalised parabolic bundle E are scalars. Hence it follows that in this case there exists a nonsingular geometric quotient M of $\tilde{R}^{s s}=\tilde{R}^{s}$.

Lemma 3.14. Let C be a nonsingular curve, $\mathscr{E} \rightarrow C \times X$ a flat family of generalised parabolic vector bundles in S. Let P be a point in C and $\mathscr{E}_{q} \approx E=\operatorname{gr} E$ for all $q \neq P$ in C. Then $\mathscr{E}_{P} \cong E$.

Proof. This follows as in lemma 4.7 [G 2] using lemma 3.8.
Proposition 3.15. Let h be the canonical morphism from $\tilde{R}^{s s}$ onto M. Let \mathscr{E} denote the pull back to $\tilde{R}^{s s}$ of the universal family U on $R \times X$. Then for p, q in $\tilde{R}^{s s}$, $h(p)=h(q)$ if and only if $\mathrm{gr} \mathscr{E}_{p}=\mathrm{gr} \mathscr{E}_{q}$.

Proof. By construction $h(p)=h(q)$ if and only if closures of $S L(n)$-orbits of p and q intersect. Lemma 3.14 implies that $S L(n)$-orbit of $E=\operatorname{gr} E$ is closed. If $E \cong \mathrm{gr} E$, then $\mathrm{gr} E$ is in the closure of the orbit of E. Since E is a successive extension of stable generalised parabolic bundles (proposition 3.10) there exists a family $\left\{\mathscr{E}_{t}\right\}$ with $\mathscr{E}_{t} \approx E$ for $t \neq 0, t \in \mathbf{A}^{1}$ and $\mathscr{E}_{0} \approx g r E$. Thus, if [E] denotes a point in $\tilde{R}^{s s}$ corresponding to a generalised parabolic bundle E, then $h([E])=h([g r E])$. If $p, q \in \tilde{R}^{s s}$ are such that $\operatorname{gr} \mathscr{E}_{p} \approx \operatorname{gr} \mathscr{E}_{q}$, then $h(p) \equiv h\left(\left[\mathscr{E}_{p}\right]\right)=h\left(\operatorname{gr}\left[\mathscr{E}_{p}\right]\right)=h\left(\operatorname{gr}\left(\mathscr{E}_{q}\right)\right)=$ $h\left(\left[\mathscr{E}_{q}\right]\right) \equiv h(q)$ i.e. $h(p)=h(q)$. Conversely, $h(p)=h(q) \Rightarrow h\left(\left[\operatorname{gr} \mathscr{E}_{p}\right]\right)=h\left(\left[g r \mathscr{E}_{q}\right]\right)$. Since $S L(n)$-orbit of any gr E is closed, this implies that $\operatorname{gr} \mathscr{E}_{p} \approx \mathrm{gr} \mathscr{E}_{q}$.

Proposition 3.16. If rank and degree are coprime, $\operatorname{dim} F_{1}(E)=r a n k E$ (degree $D=2$, and weights are $(0, \alpha)$) then the moduli space M of stable generalised parabolic bundles (theorem 1) is a fine moduli space.

Proof. The proof is exactly as in $\S 5$, Chapter 5 of [N], so we only indicate the necessary modifications. In lemma $5.10[\mathrm{~N}], \operatorname{Hom}\left(E_{1}, E_{2}\right)$ has to be replaced by $\operatorname{Mor}\left(E_{1}, E_{2}\right)$ Mor denoting homomorphisms of parabolic bundles, and one
uses lemma 3.8 and corollary 3.9 to prove that if E_{1}, E_{2} are two families of stable generalised parabolic bundles as above, with $\left(E_{1}\right)_{s} \cong\left(E_{2}\right)_{s} \forall s \in S$ then there exists a line bundle L on S such that $E_{2} \cong E_{1} \otimes p_{s}^{*} L$, in fact one takes $L=\left(p_{s}\right)_{*} \operatorname{Mor}\left(E_{1}, E_{2}\right)$. It remains to prove the existence of a universal family on $M \times X$. The universal family $\mathscr{E} \rightarrow \widetilde{R}^{s s} \times X$ has a $G L(n)$ action, but no $P G L(n)$-action as the matrix λ Id acts on it by scalar λ. As in lemma $5.11[\mathrm{~N}]$, if rank and degree are coprime, one can find a line bundle L on $\widetilde{R}^{s s}$ such that λ Id acts on it by scalar λ^{-1}. Then $\operatorname{PGL}(n)$ action on $\tilde{R}^{s s}$ lifts to $\mathscr{E} \otimes L$ and the quotient gives required universal bundle on $M \times X$. We need lemma 3.7 here to construct L. This completes the sketch of the proof of the proposition.
3.17. Henceforth we restrict ourselves to semistable generalised parabolic bundles E of rank 2, degree d, with parabolic structure over $D=x_{1}+x_{2}$ given by $E \mid D \supset$ $F_{1}(E) \supset 0, \operatorname{dim} \cdot F_{1}(E)=2$, and weights $\left(\alpha_{1}, \alpha_{2}\right)=(0, \alpha) \alpha$ near 1 . The moduli space M of equivalence classes (definition 3.11) of such bundles is a normal projective variety which is nonsingular if d is odd. Let p_{1} and p_{2} denote the projections from $F_{1}(E)$ to $E_{x_{1}}$ and $E_{x_{2}}$ respectively. Let M_{2} be the open subset of M corresponding to generalised parabolic bundles such that p_{1} and p_{2} are both isomorphisms. Let M_{1} be the subset of M defined by the condition that only one of p_{1} and p_{2} is an isomorphism and the other is of rank one. Let M_{0} be the subset of M defined by the condition that either p_{1} and p_{2} are both of rank one or $p_{1}=0$ or $p_{2}=0$. Clearly, M is the disjoint union of $M_{a}, a=0,1,2$. We can now sum up the main results of sections 1 and 2 (particularly $1.11,2.3,2.4$) as follows.

Theorem 2. Let X be an irreducible projective curve defined over an algebraically closed field with only one node x_{0} as a singularity. Let π : $\tilde{X} \rightarrow X$ be its normalisation. Let M be the moduli space of bundles on \widetilde{X} as in theorem 1 with $D=\pi^{-1}\left(x_{0}\right)$. Let U be the moduli space of semistable torsionfree sheaves of rank 2, degree d on $X, U=\bigcup_{a=0}^{2} U_{a}$ where $U_{a}=\left\{F \mid F_{x_{0}} \approx a \Theta_{x_{0}} \oplus(2-a) m_{x_{0}}\right\}$. Then one has the following.
(1) There exists a surjective morphism $f: M \rightarrow U$ such that $f^{-1}\left(U_{a}\right)=M_{a}, a=0,1,2$ and the restriction of f gives an isomorphism of M_{2} onto U_{2}.
(II) Let \bar{J} be the compactified Jacobian of X and let P be its desingularisation (proposition 2.2). Then there exist morphisms φ, ψ extending the determinant morphisms such that the diagram

commutes.
Remark 3.18. (a) For α near 1 , stability for weights $(0,1) \Rightarrow$ stability for weights $(0, \alpha) \Rightarrow$ semistability for $(0, \alpha) \Rightarrow$ semistability for $(0,1)$.
(b) In general, when X has more than one node, say $y_{i}, i=1, \ldots, m . M$ in the above theorem will be replaced by the moduli space M of equivalence classes of semistable generalised parabolic bundles of rank 2 , degree d with parabolic structure over $D_{i}=\pi^{-1}\left(y_{i}\right)=x_{i, 1}+x_{i, 2}$ given by $E \mid D_{i}=E_{x_{i}, 1} \oplus E_{x_{i}, 2} \supset F_{1}(E) \supset 0$, where $\operatorname{dim} F_{1}^{i}(E)=2$ and weights $\left(\alpha_{i, 1}, \alpha_{i, 2}\right)=(0, \alpha)$. One still has semistable $=$ stable in this case if d is odd. M is the disjoint union of $M_{i, a}, i=1, \ldots, m ; a=0,1,2 . M_{i a}$ is defined by the conditions on p_{1}, p_{2} at D_{i} as in 3.17. One also has $U=U_{i, a} U_{i a}$ where $U_{i, a}=\left\{F \mid F_{y_{i}} \approx a \Theta_{y_{i}} \oplus(2-a) m_{y_{i}}\right\}, f^{-1}\left(U_{i a}\right)=M_{i a}$ and $f: \bigcup_{i} M_{i 2} \rightarrow U_{i} U_{i 2}$ is an isomorphism.

Remark 3.19. If d is odd, then M (in 3.17) is a desingularisation of U.
Remark 3.20. Let U_{2}^{L} be the subset of U_{2} corresponding to vector bundles on X with fixed determinant L and $\overline{U_{2}^{L}}$ its closure in U. Let $M_{2}^{L}=f^{-1}\left(U_{2}^{L}\right)$. Clearly, $f\left(\overline{M_{2}^{L}}\right) \subset\left(f\left(M_{2}^{L}\right)\right)^{-}$. Now, $f\left(M_{2}^{L}\right) \subset f\left(\bar{M}_{2}^{L}\right)$ and f being proper $f\left(\bar{M}_{2}^{L}\right)$ is closed, it follows that $\left(f\left(M_{2}^{L}\right)\right)^{-} \subset f\left(\bar{M}_{2}^{L}\right)$. Thus $f\left(\bar{M}_{2}^{L}\right)=\left(f\left(M_{2}^{L}\right)\right)^{-}=\bar{U}_{2}^{L}$. Hence to find \bar{U}_{2}^{L}, suffices to determine the closure of its isomorphic copy in M. The considerations in 2.3 and Part (II) of theorem 2 show that $\overline{M_{2}^{L}} \cap M_{1}=\phi$ i.e. $\bar{U}_{2}^{L} \cap U_{1}=\phi$ and \bar{U}_{2}^{L} contains all points corresponding to torsionfree sheaves of the form $\pi_{*}\left(E_{0}\right)$, where E_{0} is a stable rank two vector bundle on \bar{X} with $\operatorname{det} E_{0} \approx\left(\pi^{*} L\right)\left(-x_{1}-x_{2}\right)$. $\bar{U}_{2}^{L}-U_{2}^{L}$ consists of only such sheaves, and in general when X has many nodes, $\bar{U}_{2}^{L}-U_{2}^{L}$ consists of points corresponding to direct images on X of stable vector bundles with suitable determinants on partial normalisations of X.

4. Generalisation to rank \boldsymbol{n}

4.1. It is possible to generalise our results to rank n sheaves. We consider generalised parabolic vector bundles (E, σ) on \tilde{X}, E of rank n, degree d and σ is given by $D=x_{1}+x_{2}, \mathscr{F}: F_{0}=E \mid D \supset F_{1}(E) \supset 0, \operatorname{dim} F_{1}(E)=n,\left(\alpha_{1}, \alpha_{2}\right)=(0, \alpha) \alpha \leqq 1$. (Definition 3.1.) To (E, σ), we associate a torsionfree sheaf F of rank n and degree d on X defined by

$$
0 \rightarrow F \rightarrow \pi_{*} E \rightarrow \pi_{*}(E) \otimes k\left(x_{0}\right) / F_{1}(E) \rightarrow 0 .
$$

Proposition 4.2. (a) If F is a stable torsionfree sheaf then (E, σ) is a stable generalised parabolic bundle (with cots $(0,1)$).
(b) Converse of (a) holds.
(c) Statements (a) and (b) are true for 'stable' replaced by 'semistable'.

Proof. (a) Let K be a subbundle of E of rank r. Let $F_{1}(K)=F_{1}(E) \cap\left(K_{x_{1}} \oplus K_{x_{2}}\right)$ have dimension s. Define K_{1} on X by $0 \rightarrow K_{1} \rightarrow \pi_{*} K \rightarrow\left(\pi_{*} K\right) \otimes k\left(x_{0}\right) / F_{1}(K) \rightarrow 0, K_{1}$
is a subsheaf of F. One has $\operatorname{deg} K_{1}=\operatorname{deg} K+r-(2 r-s)=\operatorname{deg} K+s-r$. Stability of F implies that $\left(\operatorname{deg} K_{1}\right) / r<(\operatorname{deg} F) / n$. This last condition holds if and only if $(\operatorname{deg} K+s-r) / r<(\operatorname{deg} F) / n$ i.e. $(\operatorname{deg} K+s) / r<(\operatorname{deg} E+n) / n$ i.e. (E, σ) is a stable parabolic bundle (definition 3.3). (b) and (c) follow similarly noting that K is the subbundle of E generated by the image of $\pi^{*} K_{1} /$ torsion in E.

Proposition 4.3. Let p_{1} and p_{2} be the canonical projections from $F_{1}(E)$ to $E_{x_{1}}$ and $E_{x_{2}}$ respectively.
(1) If p_{1} and p_{2} are both isomorphisms, then $F_{x_{0}} \approx n \mathcal{O}_{x_{0}}$ i.e. F is locally free.
(2) If only p_{1} or p_{2} is an isomorphism and the other is of rank r, then

$$
F_{x_{0}} \approx r \mathscr{O}_{x_{0}} \oplus(n-r) m_{0}
$$

(3) If $F_{1}(E)=M_{1} \oplus M_{2}, M_{i} \subset k\left(x_{i}\right)^{n}$, then $F_{x_{0}} \approx n m_{0}$.

Proof. In cases (1) and (2), at least one of p_{1} or p_{2} is an isomorphism. Suppose that p_{1} is an isomorphism. Then $F_{1}(E)$ is the graph Γ_{σ} of the homomorphism $\sigma=p_{2} \circ p_{1}^{-1}$ from $E_{x_{1}}$ to $E_{x_{2}}$. In case (1), σ is an isomorphism while in case (2), σ is of rank r. For simplicity of notations, let $\left(\mathcal{C}_{x_{0}}, m_{0}\right)=(A, m)$. Let \bar{A} denote the normalisation, it is a semilocal ring with two maximum ideals m_{1} and $m_{2} . A$ is a Gorenstein local ring of dimension one with $m^{*} \approx \bar{A}, m_{1} \approx m_{2} \approx m$, also $m \approx \bar{A}$ (p. 164, [S]). We have a nonzero k-linear map $\sigma: k_{1}^{n} \rightarrow k_{2}^{n}$ where $k_{i}=\bar{A} / m_{i}, i=1,2$. Let $g: \bar{A} \rightarrow \bar{A} \otimes_{A} k=k_{1} \oplus k_{2}$ be the natural map. F is defined by the exact sequence

$$
0 \rightarrow F \rightarrow \bar{A}^{n} \xrightarrow{p}\left(k_{1} \oplus k_{2}\right)^{n} / \Gamma_{\sigma} \rightarrow 0,
$$

where p is the composite of $n g$ with the natural map $\left(k_{1} \oplus k_{2}\right)^{n} \rightarrow\left(k_{1} \oplus k_{2}\right)^{n} / \Gamma_{\sigma}$ i.e. $F=(n g)^{-1} \Gamma_{\sigma}, n g=g \oplus \ldots \oplus g \quad n$-times. We want to show that $F \approx A^{r} \oplus \bar{A}^{n-r}, r=$ rank of σ.

Proof of (1). Suppose first that σ is an isomorphism. Let $\left\{x_{i}\right\},\left\{y_{i}\right\}$ denote the coordinates in k_{1}^{n} and k_{2}^{n} respectively. Let $\left(B_{i j}\right)$ be the matrix of σ and let $\left(B_{i j}^{-1}\right)$ be the inverse matrix. Define $\psi:\left(k_{1} \oplus k_{2}\right)^{n} \rightarrow\left(k_{1} \oplus k_{2}\right)^{n}$ by $\psi\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right)=$ $\left(x_{1}, \sum B_{1 j}^{-1} y_{j}, x_{2}, \sum B_{2 j}^{-1} y_{j}, \ldots\right)$. Then one has $\Gamma_{\sigma}=\left(x_{1}, \sum B_{11} x_{i}, x_{2}, \sum B_{2 i} x_{i}, \ldots\right)$ and $\psi\left(\Gamma_{\sigma}\right)=\left(x_{1}, x_{1}, x_{2}, x_{2}, \ldots\right)=$ graph $\Gamma_{I d}$ of the identity automorphism of k^{n}. Choose $C_{i j} \in \bar{A}$ such that $g\left(C_{i j}\right)=\left(\delta_{j}^{i}, B_{i j}^{-1}\right)$. Then $\left(C_{i j}\right) \in G L(\bar{A})$ as $g\left(\operatorname{det}\left(C_{i j}\right)\right)=$ (1 , det $\cdot B_{i j}^{-1}$) is a unit. The automorphism φ of \bar{A}^{n} defined by $\left(C_{i j}\right)$ lifts ψ i.e. $\psi \circ n g=$ $n g \circ \varphi$. It follows that $p^{-1}\left(\Gamma_{I d}\right) \approx p^{-1}\left(\Gamma_{\sigma}\right)=F$. Since g^{-1} (diagonal in $\left.k_{1} \oplus k_{2}\right)=A$, it follows that $F \approx A^{n}$.

Proof of (2). The above proof shows that given any $f \in G L\left(k^{n}\right)$ (replacing σ^{-1} by f in the above proof), one can define a homomorphism $\psi:\left(k_{1} \oplus k_{2}\right)^{n} \rightarrow\left(k_{1} \oplus k_{2}\right)^{n}$ which lifts to an automorphism φ of \bar{A}^{n}. Since ψ maps Γ_{σ} onto $\Gamma_{f \circ \sigma}$, we can replace
Γ_{σ} by $\Gamma_{f \circ \sigma}$. Now, changing σ to $f \circ \sigma$ is equivalent to changing the matrix of σ by row transformations. We now need the following lemma.

Lemma 4.4. Let B be a nonzero $n \times n$ matrix of rank r. Then by row transformations B can be transformed to a matrix of the form

$$
\left(\begin{array}{cccccc}
I_{r_{2}} & * & 0 & * & 0 & \ldots \\
& 0 & 0 & 0 & 0 & \ldots \\
& & I_{r z} & * & 0 & \ldots \\
0 & & & 0 & 0 & \ldots \\
- & - & - & - & - & -
\end{array}\right)
$$

where I_{t} denotes the identity matrix of rank $t, 0 \leqq r_{i} \leqq \sum r_{i}=r$.
Proof. We shall prove the result by induction on n. We write $B \sim C$ if C can be obtained from B by row transformations.

Case (i). Suppose that the first column of A is not identically zero. By row transformations we may assume that $B_{11}=1, B_{j 1}=0 \quad \forall j>1$, i.e. $B \sim\left(\begin{array}{ll}1 & * \\ 0 & C\end{array}\right)$. If M is an $s \times s$ submatrix of C, then B has an $(s+1) \times(s+1)$ submatrix of the form $N=\left(\begin{array}{cc}1 & * \\ 0 & M\end{array}\right)$ and $\operatorname{det} M=\operatorname{det} N$. So if all the minors of B of size $(s+1)$ vanish, then all the minors of C of size s also vanish. Hence rank $C \leqq r a n k B-1=r-1$. Also, by above, no $r \times r$ submatrix of B is contained in C. Hence any $r \times r$ submatrix of B is of the form N. It follows that C has a nonzero minor of size $r-1$ and rank $C=r-1$. By induction, the result is true for C. Thus

$$
B \sim\left(\begin{array}{lllll}
1 & & * & & \\
& I_{s_{1}} & * & 0 & * \\
0 & & 0 & 0 & 0 \\
& & & I_{s_{2}} & * \\
& 0 & & & \ddots
\end{array}\right)
$$

$0 \leqq s_{i} \leqq r-1, \sum s_{i}=r-1$. Then

$$
B \rightarrow\left(\begin{array}{cccccc}
1 & 0 & * & 0 & * & \ldots \\
& I_{s_{1}} & * & 0 & * & \ldots \\
& & 0 & 0 & 0 & \ldots \\
& 0 & & I_{s_{2}} & * & \ldots \\
& & & & & \ldots
\end{array}\right)
$$

Letting $s_{1}+1=r_{1}$ and $s_{i}=r_{i}$ for $i>1$ we get the result.

Case (ii). Suppose that the first column of A is identically zero. By switching rows if necessary we have $B \sim\left(\begin{array}{ll}0 & * \\ 0 & C\end{array}\right)$, rank $C=r$.

Applying induction to C, we get

$$
B \sim\left(\begin{array}{cccccc}
0 & 0 & b_{1} & 0 & b_{2} & \ldots \\
& I_{r_{1}} & * & 0 & * & \ldots \\
0 & & 0 & 0 & 0 & \ldots \\
& & & I_{r_{2}} & * & \ldots \\
& 0 & & & \ldots
\end{array}\right), \quad \sum r_{i}=r, \quad 0 \leqq r_{i} \leqq r
$$

Consider the minor

$$
\operatorname{det}\left(\begin{array}{cccccc}
0 & b_{1} & 0 & 0 & - & - \\
I_{r_{1}} & * & 0 & 0 & - & - \\
& & I_{r_{2}} & 0 & & 0 \\
& & & I_{r_{3}} & & \\
& 0 & & & \ddots & \\
& & & 0 & & I_{r_{m}}
\end{array}\right)= \pm b_{1}
$$

of size $r+1$. Since A has rank r, it follows that $b_{1}=0$. Similarly, $b_{i}=0$ for all i. Thus we have

$$
B \sim\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & - & - \\
& I_{r_{1}} & * & 0 & * & - \\
& & 0 & 0 & 0 & - \\
& & & I_{r_{2}} & * & - \\
0 & & & & & -
\end{array}\right), \quad \sum r_{i}=r, \quad 0 \leqq r_{i} \leqq r
$$

Proof of 4.3 (2) (continued). In view of lemma 4.4 we may assume that the matrix B of σ is of the form given by lemma 4.4. Then there exist coordinates $\left\{u_{i}\right\}$, $\left\{w_{j}\right\}$ of $k^{n}(i=1, \ldots, r ; j=1, \ldots, n-r)$ such that $\sigma u_{i}=u_{i}+\sum b_{i j} w_{j}, \sigma\left(w_{j}\right)=0$ so $\Gamma_{\sigma}=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right)$ where if $x_{i}=u_{i}, y_{i}=u_{i}+\sum b_{i j} w_{j}$, if $x_{i}=w_{i}, y_{i}=0$. Let pr be the projection $\left(k_{1} \oplus k_{2}\right)^{n} \rightarrow\left(k_{1} \oplus k_{2}\right)^{n-r}$ corresponding to $x_{i}=w_{i}$ coordinates. Then $\operatorname{pr}\left(\Gamma_{\sigma}\right)=\left(k_{1} \oplus 0\right)^{n-r}, \operatorname{Ker} \operatorname{pr} \cap \Gamma_{\sigma}=\left\{\left(x_{i}, y_{i}\right)_{i}, \mid\right.$ if $x_{i}=w_{i}$, then $x_{i}=0=y_{i}$, if $x_{i}=u_{i}$, $\left.y_{i}=u_{i}\right\}=\Delta^{r}$, where Δ denotes the diagonal of $k_{1} \oplus k_{2}, \Delta^{r}$ is embedded in $\left(k_{1} \oplus k_{2}\right)^{r}$ corresponding to $\left\{u_{i}\right\}$ coordinates. Let \bar{p} denote the projection $\bar{A}^{n} \rightarrow \bar{A}^{n-r}$ lifting $p r$; one has prong $=(n-r) g \circ \bar{p}$. Now, $(n-r) g \cdot \bar{p}(F)=p r \circ n g(F)=p r\left(\Gamma_{\sigma}\right)=\left(k_{1} \oplus 0\right)^{n-r}$, so that $\bar{p}(F)=m_{2}^{n-r}$. If K is the kernel of the restriction of \bar{p} to $F, K=$ Ker $\bar{p} \cap F=$ $\left(\bar{A}^{r} \oplus 0\right) \cap F=\left(\bar{A}^{r} \oplus 0\right) \cap(n g)^{-1} \Gamma_{\sigma}$. Hence $(n g) K=\Delta^{r}$ or $K \approx A^{r}$. Thus we have an exact sequence $0 \rightarrow A^{r} \rightarrow F \rightarrow m_{2}^{n-r} \rightarrow 0$. Since $\operatorname{Ext}_{A}^{1}\left(m_{2}, A\right) \approx \operatorname{Ext}_{A}^{1}(\bar{A}, A)=0$ this sequence splits giving the required result.

Proof of (3). In the above notations, in this case, we have an exact sequence

$$
0 \rightarrow F \rightarrow \bar{A}^{n} \xrightarrow{p}\left(k_{1} \oplus k_{2}\right)^{n} / M_{1} \oplus M_{2} \rightarrow 0
$$

and we want to determine F up to isomorphism. Let $\operatorname{dim} M_{1}=r$. Let $h_{1} \in$ Aut k_{i}^{n}, $i=1,2$ be such that $h_{1}\left(M_{1}\right)=\left(k_{1} \oplus 0\right)^{r} \oplus 0, h_{2}\left(M_{2}\right)=0 \oplus\left(0 \oplus k_{2}\right)^{n-r}, h_{1}\left(M_{1}\right)$ (resp. $h_{2}\left(M_{2}\right)$) mapping in the first r factors (resp. last $n-r$ factors) in $\left(k_{1} \oplus k_{2}\right)^{n}$. Let ($a_{i j}$) and $\left(b_{i j}\right)$ be the matrices of h_{1} and h_{2} (with respect to the canonical basis). Let $a_{i j} \in \bar{A}$ be such that $g\left(c_{i j}\right)=\left(a_{i j}, b_{i j}\right)$. Then $g\left(\operatorname{det}\left(c_{i j}\right)\right)=\left(\operatorname{det}\left(a_{i j}\right)\right.$, $\left.\operatorname{det}\left(b_{i j}\right)\right)$ and hence $\left(c_{i j}\right) \in G L\left(\bar{A}^{n}\right)$. Thus $h=h_{1} \oplus h_{2}$ lifts to an automorphism of \bar{A}^{n}. Hence one can replace $M_{1} \oplus M_{2}$ by $h\left(M_{1} \oplus M_{2}\right)$ i.e. $F \approx(n g)^{-1}\left(h\left(M_{1} \oplus M_{2}\right)\right)=m_{1}^{n-r} \oplus m_{2}^{r}$.
4.5. Let M be the moduli space of semistable generalised parabolic bundles on \tilde{X} of type described in 4.1. For $r=1, \ldots, n$ let $M_{r} \subset M$ be the subset of M corresponding to (E, σ) such that at least one of p_{1}, p_{2} is an isomorphism and the other is of rank r. Let M_{0} be the subset of M corresponding to (E, σ) such that none of p_{1}, p_{2} is an isomorphism or $p_{1}=0$ or $p_{2}=0$. Clearly $M=\bigcup_{r=0}^{n} M_{r}$. As in 2.4, one can obviously globalise the construction in 4.1 to get a morphism $f: M \rightarrow U$, U being the moduli space of semistable torsionfree sheaves of rank n, degree d on X. One has $U=\bigcup_{r=0}^{n} U_{r}$, where U_{r} corresponds to torsionfree sheaves F such that $F_{x_{0}} \approx r \mathscr{O}_{x_{0}} \oplus(n-r) m_{0}$. In particular, U_{n} is the open subset of U corresponding to locally free sheaves. Proposition 4.3 shows that $f\left(M_{r}\right) \subset U_{r}$ for $r=1, \ldots, n$. In fact one has the following theorem.

Theorem 3. Let X be an irreducible projective curve defined over an algebraically closed field, with only one node x_{0} as a singularity. Let $\pi: \tilde{X} \rightarrow X$ be the normalisation. Let M be the moduli space of semistable generalised parabolic bundles E of rank n, degree d and parabolic structure given by $D=\pi^{-1}\left(x_{0}\right),\left.E\right|_{D} \supset F_{1}(E) \supset 0, \operatorname{dim} F_{1}(E)=n$, $\left(\alpha_{1}, \alpha_{2}\right)=(0, \alpha) \alpha$ near 1. Let U be the moduli space of semistable torsionfree sheaves of rank n, degree d on $X, U=\bigcup_{r=0}^{n} U_{r}$ where $U_{r}=\left\{F \mid F_{x_{0}} \approx r \Theta_{x_{0}} \oplus(n-r) m_{0}\right\}$. Then there exists a surjective morphism $f: M \rightarrow U$ such that $f\left(M_{r}\right) \subseteq U_{r}$ for all $r=1, \ldots, n$ and the restriction of f gives an isomorphism of M_{n} onto U_{n}. In particular, if n and d are coprime, then M is a desingularization of U.

Proof. We have only to check that (i) $f \mid M_{r}$ is a surjection for all r and (ii) $f \mid M_{n}$ is an isomorphism onto U_{n}. This can be done on similar lines as in proposition 1.11, so we only sketch the proof with necessary modifications. For (ii), the inverse f^{-1} is given as follows. For $F \in U_{n}$ (i.e. corresponding to an element of U_{n}) define $E=\pi^{*} F, F_{1}(E)=F \otimes k\left(x_{0}\right) \subset F \otimes \pi_{*} \mathcal{O}_{\boldsymbol{R}} \otimes k\left(x_{0}\right)=\pi_{*} E \otimes k\left(x_{0}\right)$. Since the above inclusion is essentially given by the inclusion $\mathcal{O}_{x_{0}} \subset \overline{\mathcal{O}}_{x_{0}}$ and $\mathcal{O}_{x_{0}}$ maps onto the diagonal in $k^{2}=\overline{\mathcal{O}}_{x_{0}} \otimes k\left(x_{0}\right)$, it follows that p_{1} and p_{2} are isomorphisms. Define $f^{-1}(F)=$
($E, F_{1}(E)$). (i) If $F \in U_{0}, F=\pi_{*}\left(E_{0}\right)$ for a unique vector bundle E_{0} on \tilde{X}. Take any E given by an extension of the form

$$
0 \rightarrow E_{0} \rightarrow E \xrightarrow{h} k\left(x_{1}\right)^{r} \oplus k\left(x_{2}\right)^{n-r} \rightarrow 0, \quad 0 \leqq r \leqq n
$$

and $F_{1}(E)=$ kernel of $h \mid x_{1}+x_{2}$. Then $f\left(E, F_{1}(E)\right)=F$. If $F \in U_{r}, 0<r<n$, the result can be proved as in proposition 1.11(3). In this case, $E_{0}=\pi^{*} F /$ torsion, E is given by

$$
0 \rightarrow E_{0} \rightarrow E \rightarrow k\left(x_{2}\right)^{n-r} \rightarrow 0
$$

or

$$
0 \rightarrow E_{0} \rightarrow E \rightarrow k\left(x_{1}\right)^{n-r} \rightarrow 0 .
$$

4.6. The determinant map.

Let (E, σ) be as in 4.1. We shall generalise the results of 2.3 to define the "determinant" of (E, σ) when at least one of p_{1} or p_{2} (see 4.3) is an isomorphism. The space $F_{1}(E)$ is an element of the Grassmanian of n dimensional subspaces of $E_{x_{1}} \oplus E_{x_{2}}$. By Plücker embedding, G is embedded in $P\left(\Lambda^{n}\left(E_{x_{1}} \oplus E_{x_{2}}\right)\right)$. Now, $\Lambda^{n}\left(E_{x_{1}} \oplus E_{x_{2}}\right)$ contains $\Lambda^{n} E_{x_{1}} \oplus \Lambda^{n} E_{x_{2}}$ as a direct summand, let d be the projection $\mathbf{P}\left(\Lambda^{n}\left(E_{x_{1}} \oplus E_{x_{2}}\right)\right) \rightarrow \mathbf{P}\left(\Lambda^{n} E_{x_{1}} \oplus \Lambda^{n} E_{x_{2}}\right)=\mathbf{P}^{1}$. Let $\left(e_{1}, \ldots, e_{n}\right)$ and $\left(f_{1}, \ldots, f_{n}\right)$ be the bases of $E_{x_{1}}$ and $E_{x_{2}}$. Then a basis of $F_{1}(E)$ is of the form ($\left.u_{i}=\sum a_{i j} e_{j}+\sum b_{i j} f_{j}\right)_{i=1, \ldots, n}$. The point P in G corresponding to $F_{1}(E)$ is given by $u_{1} \Lambda \ldots \Lambda u_{n}=\operatorname{det}\left(a_{i j}\right) e_{1} \Lambda \ldots$ $A e_{n}+\operatorname{det}\left(b_{i j}\right) f_{1} \Lambda \ldots A f_{n}+$ other mixed terms. Hence $d(P)=\left(\operatorname{det}\left(a_{i j}\right), \operatorname{det}\left(b_{i j}\right)\right)=$ $\left(\operatorname{det} p_{1}, \operatorname{det} p_{2}\right)$. We define $\operatorname{det}(E, \sigma)=\left(\operatorname{det} E ;\left(\operatorname{det} p_{1}, \operatorname{det} p_{2}\right)\right), p_{1}$ and p_{2} being the projections from $F_{1}(E)$ to $E_{x_{1}}$ and $E_{x_{2}}$ respectively. Note that $\left(\operatorname{det} p_{1}\right.$, det p_{2}) defines a one dimensional subspace of $(\operatorname{det} E)_{n_{1}} \oplus(\operatorname{det} E)_{x_{2}}$, so $\operatorname{det}(E, \sigma)$ is a generalised parabolic line bundle.

It is easy to see that (see 2.4) this construction gives a morphism det: $\bigcup_{i=1}^{n} M_{i} \rightarrow P, P$ being the moduli space of generalised parabolic line bundles (2.1, 2.2). We shall show that det goes down to a morphism det: $U_{n} \cup U_{n-1} \rightarrow \bar{J}(X)$. Let $F \in U_{n}, f\left(E, F_{1}\right)=F$. Then $F_{1}(E)$ is the graph of a morphism say $g: E_{x_{1} \rightarrow E_{x_{2}}}$ and F is obtained by identifying $E_{x_{1}}$ with $E_{x_{2}}$ via g. Hence $\operatorname{det} F$ is obtained by identifying det $E_{x_{1}}$ with $\operatorname{det} E_{x_{2}}$ via det g i.e. it is the generalised parabolic line bundle (det $E, \Gamma_{\operatorname{det} g}$). Note that $g=p_{2} \circ p_{1}^{-1}$ so $\operatorname{det} g$ is the point $(1, \operatorname{det} g) \sim$ $\left(\operatorname{det} p_{1}, \operatorname{det} p_{2}\right)$ in \mathbf{P}^{1}. Thus det $\mid M_{n}$ is the same as the determinant morphism $U_{n} \rightarrow J(X)$ under the identification by $f \mid M_{n}$. By the proof of theorem $3, F \in U_{r}$, and element ($E, F_{1}(E)$) in M_{r} on the fibre of f over F is obtained from an extension of the type
(a) $0 \rightarrow E_{0} \rightarrow E \rightarrow k\left(x_{1}\right)^{n-r} \rightarrow 0$ or
(b) $0 \rightarrow E_{0} \rightarrow E \rightarrow k\left(x_{2}\right)^{n-r} \rightarrow 0$.

Let $L=\operatorname{det} E_{0}=\operatorname{det}\left(\pi^{*} F /\right.$ torsion $)$. Then one has either
(c) $\operatorname{det}\left(E, F_{1}(E)\right)=\left(L\left((n-r) x_{1}\right), F_{1}(L)=L_{x_{2}}\right)$ or
(d) $\operatorname{det}\left(E, F_{1}(E)\right)=\left(L\left((n-r) x_{2}\right), F_{1}(L)=L x_{1}\right)$.

If $n-r=1$ i.e. $F \in U_{n-1}$, then (c) and (d) map into the same element of $\bar{J}(X)-J(X)$ under the normalisation morphism $P \rightarrow \bar{J}(X)$. Thus det induces a morphism $\operatorname{det}: U_{n-1} \bar{J}(X)-J(X)$. Note that det does not induce a morphism on $U_{r}, r \leqq n-1$ as (c) and (d) give different elements in $\bar{J}(X)-J(X)$. Thus we have proved the following.

Proposition 4.7. (1) The morphism det: $U_{n} \rightarrow J(X)$ lifts to a morphism $M_{n} \rightarrow P$. The latter extends to a morphism $d: \cup_{r>0} M_{r} \rightarrow P$.
(2) The morphism d descends to a morphism det: $U_{n} \cup U_{n-1} \rightarrow \bar{J}(X)$. But d does not induce a morphism on $\bigcup_{r<n-1} U_{r}$ extending det.

Examples 4.8. Consider the rank two torsionfree sheaf $\odot \oplus \mathscr{M}$. We claim that $\Lambda^{2}(\mathcal{O} \oplus \mathscr{M}) /$ torsion $\approx \mathscr{M}$. Since both \mathcal{O} and \mathscr{M} are trivial outside x_{0}, the problem is local at x_{0}. Let $\left(\mathcal{O}_{x_{0}}, m_{0}\right)=(A, m)$. One has the inclusion $i: A \oplus m \rightarrow A \oplus A$. Let (e_{1}, e_{2}) be the canonical basis of $A \oplus A$ and let x, y be the generators of $m, i\left(e_{1}\right)=e_{1}$, $i(x)=x e_{2}, i(y)=y e_{2}$. Then $\Lambda^{2} i: \Lambda^{2}(A \oplus m) \rightarrow A$ maps the torsion to zero and $\Lambda^{2}(A \oplus m)$ /torsion $\approx I=$ Image of $\Lambda^{2} i$. The three generators $e_{1} \Lambda x, e_{1} \Lambda y, x \Lambda y$ of $\Lambda^{2}(A \oplus m)$ map respectively to $x e_{1} A e_{2}, y e_{1} A e_{2}$ and 0 . Thus $I=m$ and hence $\Lambda^{2}(\mathscr{O} \oplus \mathscr{M}) /$ torsion $\approx \mathscr{M}$. Similarly, $\Lambda^{n}\left(\mathcal{O}^{n-1} \oplus \mathscr{M}\right) /$ tor $\approx \mathscr{M}$. Notice that degree $\left(\mathcal{O}^{n-1} \oplus \mathscr{M}\right)=$ degree $\mathscr{M}=-1$.
(2) Consider now the rank two torsionfree sheaf $\mathscr{M} \oplus \mathscr{M}$. As above, we need only to compute $\Lambda^{2}(m \oplus m) /$ torsion. Writing $m \oplus m=m_{1} \oplus m_{2}$, let $\left(x_{j}, y_{j}\right)$ be the generators of $m_{j}, j=1,2, i: m_{1} \oplus m_{2} \rightarrow A \oplus A$ the inclusion, $i\left(x_{j}\right)=x_{j} e_{j}, i\left(y_{j}\right)=y_{j} e_{j}$, (e_{1}, e_{2}) being the canonical basis of $A \oplus A$. One sees that $\operatorname{Ker}\left(\Lambda^{2} i\right)$ is generated by $x_{1} \Lambda y_{1}, x_{2} \Lambda y_{2}$ while $I=\operatorname{Im}\left(\Lambda^{2} i\right)$ is generated by $x^{2} e_{1} \Lambda e_{2}, x y e_{1} \Lambda e_{2}, y^{2} e_{1} \Lambda e_{2}$ i.e. $I=m^{2}$. Thus $\Lambda^{2}(\mathscr{M} \oplus \mathscr{M}) /$ torsion $\approx m^{2}$. Note that $\operatorname{degree}\left(\Lambda^{2}(\mathscr{M} \oplus \mathscr{M})\right) /$ torsion $=$ -3 while degree $(\mathscr{M} \oplus \mathscr{M})=-2$. Similarly, $\Lambda^{r+s}\left(\mathcal{O}^{r} \oplus \mathscr{M}^{\oplus s}\right) /$ torsion $\approx \mathscr{M}^{s}$ and degree $\left(\mathscr{O}^{\oplus} \oplus \mathscr{M}^{\oplus s}\right)=-s$ while degree $\mathscr{M}^{s} \neq-s$ if $s>1$. This also explains why the determinant morphism does not extend to $U_{r}, r<n-1$.

Remark 4.9. Let U_{L} be the subset of U_{n} corresponding to vector bundles on X with a fixed determinant L and let \bar{U}_{L} be its closure in U. Let M_{L} be the isomorphic image of U_{L} under $\left(f \mid U_{n}\right)^{-1}$. Since f is proper and $f \mid U_{n}$ is an isomorphism, as in remark 3.20, we see that $f\left(\bar{M}_{L}\right)=\bar{U}_{L}$. From proposition 4.7(1) it follows that $\bar{M}_{L} \cap\left(\bigcup_{r>0} M_{r}\right)=\phi$ i.e. $\bar{M}_{L} \subset M_{L} \cup M_{0}$ and hence $\bar{U}_{L} \subset U_{L} \cup U_{0}$.

References

G. Gieseker, D.: A degeneration of the moduli space of stable bundies, J. Differential Geom. 19 (1984), 173-206.
G 2. Gieserer, D.: On the moduli of vector bundles on algebraic surfaces, Ann. Math., 106 (1977), 45-60.
L. Lange, H., Narasimhan, M. S.: Maximal subbundles of rank two vector bundles on curves. Math. Ann. 266 (1983), 55-72.
N. Newstead, P. E.: Introduction to moduli problems and orbit spaces. Tata Institute, Bombay, Springer-Verlag (1978).
S. Seshadri, C. S.: Fibres vectoriels sur les courbes algébriques, Astérisque 96 (1982).

SM. Mehta, V. B. and Seshadri, C. S.: Moduli of vector bundles on curves with parabolic structures. Math. Ann. 248 (1980), 205-239.
SN. Sundaram, N.: Special divisors and vector bundles, Tohoku Math. Journ. 39 (1987), 175213.
V. Bhosle, U. N.: Parabolic vector bundles on curves, Arkiv för Matematik vol. 27 (1989) No. 1, 15-22.

Received May 11, 1990
in revised form August 10, 1990
U. Bhosle

School of Mathematics
Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400005
INDIA

