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Introduction 

Let X be an irreducible nonsingular projective curve over an algebraically closed 
field. Let E be a vector bundle of  rank k and degree d on X. We define generalised 
parabolic vector bundles (or GPB's) by extending the notion of a parabolic structure 
at a point of X to a parabolic structure over a divisor on X as follows. 

Definition 1. A parabolic structure on E over a divisor D consists of 1) a flag ~" 
of  vector subspaces of the vector space Eio=E| 

2) real numbers 
to the flag. 

g~: Fo(E) = Eio D Fx(E) D ... ~ F,(E) = 0 

~x, . . . ,~,  (with 0 -<_~ ,<~< . . .<~ ,<1 )  called weights associated 

Definition 2. A GPB is a vector bundle E together with parabolic structures 
over finitely many divisors Di. 

We define semistability, stability of GPB's, study their properties and construct 
moduli spaces in some important cases. The main results are the following: 

Result 1. (Proposition 2.2.) The moduli space P of  generalised parabolic line 
bundles L with ~" given by Fo(L)=Lx@LxDFx(L)Do; xx, x ~ X ,  dimf~(L)= 1, is 
a nonsingular projective variety, it is in fact a P:-bundle over Pic X. 

Result 2. (Theorem 1.) There exists a coarse moduli space M(k,  d, a) of equiv- 
alence classes of semistable GPB's of rank k, degree d and with a parabolic structure 
over a divisor D of degree 2 given by ~ ' :  Fo(E)=EIDwFI(E)Do, a=dimFxE,  
weights (~:, ~tz)=(0, c 0. This space is a normal projective variety of  dimension 
k ~ ( g - 1 ) + l + d i m F ,  F being the flag variety of flags of type ~ .  If  k and d are 
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mutually coprime, ~t near 1 and a=k, then M(k, d, k) is nonsingular and is a 
fine moduli space. 

We have an interesting application of GPB's to the study of the moduli space 
U(k, d) of torsionfree coherent sheaves of rank k and degree d on a nodal curve X0. 
Let 7r: X~Xo be the normalisation map. For simplicity of exposition, let us as- 
sume that X0 has a unique node x0 and let xl,  xo. be two points in X lying over x0, 
D=xI +x2. 

Result 3. The moduli space P (result 1) is a desingularisation of the compactified 
Jacobian J of X 0. 

Result 4. (Theorem 3.) There is a birational surjective morphismf:  M(k, d, k) 
U(k, d). If Ukc U(k, d) is the open subset corresponding to locally free sheaves, 
then the restriction o f f  induces an isomorphism o f f - l (Uk)  onto Uk- 

In particular from results 2 and 4 it follows that if (k, d) = 1, then M=M(k, d, k) 
is a desingularization of U(k, d). The moduli space U =  U(k, d) has a stratifica- 
tion. U=(_Jk=o U, where Uo={Flstalk F~o~a~o@(k-a)mo }, ~o and m0 being 
the local ring and maximum ideal at Xo. The space M also has a stratification M =  
U,k=0 Mr such that f(M,) c= U,, for all r > 0  (proposition 4.3). We have a morphism 
det: Uk~J defined by det F=AkF. An interesting question to ask is: Does this 
morphism extend to U? 

Result 5. (Proposition 4.7.) 
(1) The morphism det: Uk~J lifts to a morphism Mk--P. The latter extends 

to a morphism d: 0,>0 M,-~P. 
(2) The morphism d descends to a morphism det: UkWUk_a-~3. But d does 

not induce a morphism on wU, for r<k--1 extending the det morphism. 
Having found a negative answer to our first question, further questions arise: 

What is the closure of  the graph of  the det morphism in U •  What is the closure 
of  a fibre of  the det morphism in U? Let UL be the closed subset of Uk corre- 
sponding to vector bundles with a fixed determinant L and let Uz, be its closure 
in U. We show that (3.20, 4.9) ULcUzuUo, and in case of rank two UL=ULw 
{Ir, Eldet E=Tr*L(-xl-x2), E stable}. 

I am grateful to P. E. Newstead and C. S. Seshadri for very useful discussions. 
I would like to thank the University of Liverpool for hospitality and excellent working 
conditions. I would also like to thank Amit Roy for the proof of  proposition 1.8 
and N. Hitchin and P. M. H. Wilson for some inspiring remarks. 
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1. Generalised parabolic bundles 

Notation 1.1. 

Let Xbe an irreducible curve with only nodes as singularities over an algebraically 
closed field k. Let ~r: a~-~X be the normalisation map. For simplicity of exposi- 
tion we shall assume that X has a single node x0, the results can be seen to generalise 
easily to the general case. Let xl,  x~ be the two points of a r lying over x0, D = xx + x2. 
Let 0.~o, mo denote the local ring and its maximum ideal at xo. 

We want to study the moduli space U of  semistable torsion free sheaves of  
rank two and degree d on X. This space has been studied by Seshadri IS] and Giese- 
ker [G]. Our approach is different from either of them, it is closer to the former. 
One has a stratification of U given by U =  Uo=o Ua, where Uo denotes the subset 
of U consisting of points corresponding to sheaves F such that Fxo~aO~o@(2-a)mo; 
Us is an open dense subset of the (irreducible) complete variety U corre- 
sponding to locally free sheaves F. Let U~ denote the subset of Us corre- 
sponding to F such that determinant of F is a fixed line bundle L. We are 
particularly interested in studying U~ and its closure in U. It can be shown that 
the determinant morphism from Us to the generalised Jacobian of  X can be extended 
to U~wUo., it seems that it is not extendable to U0. In [S], a bijective correspondence 
between sheaves F corresponding to elements in U~ and bundles on ~ with addi- 
tional structures at x~ and x~ is given (theorem 17, p. 178, [S]). But this correspondence 
is different on each stratum and does not preserve degrees. Hence it is not of much 
use in studying the moduli space U as a whole. In our approach, we get sheaves 
F in U from "generalised parabolic bundles" E on ,~' of same degree as F. 

Definition 1.2. A Generalised parabolic vector bundle of rank 2 on �9 is a vector 
bundle E of rank two on X together with a two-dimensional k-subspace F~(E) of 

Definition 1.3. A generalised parabolic vector bundle E is stable (semistable) if 
for every line subbundle L of  E, 

degree L + dim (F~ (E) r~ (L~ ~ L~,)) <,  ~) ~ (degree E + dim Fx (E)) 
i.e. 

deg. L + dim (F~ (E) cn LD) <~ ~ j/~ (E) + 1. 

Remark. 1.4. If  degree E is odd, then stability is equivalent to semistability for 
the generalised parabolic bundle of rank two. 

Definition 1.5. A homomorphism of  generalised parabolic bundles El,  E2 of  
rank two is a vector-bundle homomorphism of Et into E~ which maps F~(E~) into 
F~ (E~). 
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1.6. We now want to associate to a generalised parabolic bundle E of rank 2 
and degree d on a ~ a torsionfree sheaf F on X of rank two and degree d. We have 
n . ( E ) |  (p. 175, [S]) and hence a surjective morphism rc,(E)--- 
Ex~E~,/F~(E). Define F to be the kernel of this surjection i.e. F is given by 

(1.7) 0-~ F- -  n.E-~;r.(E)|  --, O. 

Proposition 1.8. Let Pl and P2 denote the canonical projections from F~(E) to 
E~, and E~, respectively. 

(1) l f  pl and p~ are both isomorphisms, then F correspond~ to an element in U 2 i.e. 
F is locally free. 

(2) I f  only one of  p 1 or p2 is an isomorphism and the other is of  rank one, then F cor- 
responds to an element in U 1. 

(3) I f  pl and p2 are both of  rank one or one of  them is zero, then F corresponds to an 
element in U ~ 

Proof. (3) Note that if neither of Px or Ps is an isomorphism, then Pl, P, satisfy 
the conditions of  (3). 

In case bo thp l ,  P2 are of  rank 1, Fx(E)=kl~k2 ,  k~cEx,, i=1 ,  2. Then clearly 
F =  n,  (E0), where E0 is defined by 

0 ~ Eo ~ E ~ E,,Jkx ~ Ex,/k, ~ O. 

If  ps=0,  ~ ( E ) = E x ,  and F=n.(E0) ,  with E0 defined by O ~ E o ~ E - - E ~ O  i.e. 
Eo=E(-xz ) .  Similarly, if p l = 0 ,  F = n . ( E ( - x l ) ) .  

(1) and (2). In cases (1) and (2), one of  Pl and P2 say Pl is an isomorphism. 
Then usingpx, F~(E) can be regarded as the graph of  a homomorphism tr: E:,-~E~,, 
a being an isomorphism in case (1) and of  rank one in case (2). Since FIX-xo~-  
n . ( E ) l X - x o  is locally free, our problem is local at x0. So we are reduced to the 
following situation. Let A be the local ring at x0, it is a Gorenstein local ring with 
maximum ideal m, ,4 is a semi local ring with two maximum ideals ml, ms; 
tr: ~ / m ~ / m ~ - ~ / m 2 @ ~ / m  2 a nonzero linear map with graph F,. We write 
ki=A/mi,  A i=A,  i = 1 , 2  and hi: Ai-kx~)k~ canonical maps, for i=1,2 .  F is 
an A-module given by 

0 -.-,- F ..-,- AI @ ,4s --"p ( (kl  @ k2) �9 (kx @ k2)) / I ' , ,  --'- 0 

where p is the composite of  the map (nl~n2) with the quotient map kx@k2r 
k ~ k , . ~ ( k l @ k s @ k l ~ k 2 ) / F  ~. Thus F=(nl@nz)-lF, .  We want to show that 
F.~A@A or A~,4  according as a is of  rank two or one. Note that .~, m, mx and 
m2 are all isomorphic. Fix a basis ex, es of  k 2. With respect to the basis ex, e2, let the 

matrix of  tr be (g b ) a n d l e t t h e m a t r i x o f  tr -1 be (C G D B) i f t r i s  o f rank two .  Since 
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n=ni: .4~kl@k,  is a surjection, there exist ~t, fl, ~, 6 in A such that n(ct)=(1, G), 

n(fl)=(O,B), n(~)=(0, C ) a n d  n(6)=(1, D). Then the matrix (~ ~ ] ~ G L ( . 4 ) a s  
OJ 

n(~h-fl~)=(l,  G D - B C )  is a unit in .4 modulo the conductor m, ~ / rn~ /m~@ 
A]mz. This matrix defines an automorphism (p of  A@A which induces the homo- 
morphism ~b: kl~)k,@ka@ks~kl~k,@kx@k 2 given by 

~O (xx, Yl, x, ,  y,) = (xa, Gyl + By,, xa, CyI + Dy,). 

We have F~={(xl, gxx+bx,, x,,  cxl+dxs)[(xl, x2)Ckl@k,}. Since a - l o t r = I d  it fol- 
lows that ~ (F~) = Fld. Since ~O lifts to the automorphism tp i.e. ~ (nl @ n2) = (nl @ n2) o ~b, 
it follows that (nlfi)n,)-lFo ~(nl(~ng)-l/]d ~ A  @A. 

Now let ~ be of  rank one. In the above proof, we lifted the homomorphism ~O 
defined by t~-a~GL(k 2) to an automorphism ~p of  ,45,4. We can do it for any 
f~GL(k2); then ~ will map F, into/ ' so  . .  Hence we can replace Fo by FIo ~. Since 
a - - fo  tT is equivalent to change by row transformations of  the matrix of  a, we may 
replace the matrix of  tT by any matrix obtained by doing row transformations. 
(Note that column transformations are not allowed e.g. ~b: (x~,yx, x~,y~)--- 
(xa, y~-xs ,  xs, y,) cannot be lifted to an automorphism of  ,4~),4.) By row trans- 
formations, any matrix tr of  rank 1 can be reduced to one of  the following forms 

The following can be seen easily. In case (i), (nlSns)-XF,=A@rns. In case (ii) 
(nl@n2)-lF~=mx@A. In case (iii), we need a little more work. We have F ,=  
{(xl, xa + bx,, x,., 0)[(xa, x2)~ kl fi) ka}. Consider 

.,~1(~).~2 - " ~ ' * -  kl(~)ks(~)kl(~)k ~ 

I p, !P; 

Then p~(n~@n2)F=p;(I'~)={(x~,O)lx,s Now L.H.S.=n,~p2(F), so 
nz~p,(F)=kl@O i.e. p,.(F)=rn~. Let K=Ker p~IF=(Ax@O)c~F. As (n~@n~)(K)= 
(na@ns)(A@O)r~q={(x,,xa, O,O)lxx~k~} we have K=A@O. Thus we have an 

exact sequence O ~ A - - F  P', ~ m , ~ O .  Since ExtXa (,4, A)=0,  this sequence splits 
giving F~.A~.~. 

This finishes the proof  of  the proposition. 

Proposition 1.9. I f  F is a semistable (respectively stable) torsionfree sheaf on 
X, then E is a semistable (respectively stable) generalised parabolic bundle on f{. 
The converse is also true. 
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Proof. Suppose that F~ is stable. Let L c E  be a line subbundle. We want to show 
that degL+dim(F~(E)c~(L~| Let dim(F~(E)c~(L~@L~,))=a, 
a=0 ,1  o r2 .  

(i) a=0 :  One has an exact sequence on X 

0 -4-/_,1 -* rc, L -.- (Lx, DL~..) -~ 0, (L~,@L~,) ~ n,L@k(xo), 

with L~c F. The stability of F implies that deg. La</z(F) i.e. deg L -  1 < 
/t(E) i.e. deg L+a<lt(E) ~- 1. 

(ii) a =  1 : One has O~L~--.n,L~n,L|176 with / . acF,  deg .L l=deg  L. 
Hence deg L~</t(F) implies that deg. L + a < p ( E ) + l .  

(iii) a=2 :  In this case, Lt=rc,L so that deg. L a - d e g . L + l .  The stability of F 
implies that deg. L + 2 </t  (E) + 1. 

Thus F is stable implies that E is a stable generalised parabolic bundle. The proof 
in the semistable case is obtained by replacing ' < ' by ' _~' in the above proof. 

We now prove the converse. Let L 1 be a torsionfree subsheaf of F of rank 1. 
One has rc*L~/torsioncr~*F/torsion and (a sheaf inclusion) n*F/torsion-*E. Let 
L be the line subbundle of E generated by rc*L1/torsion; a=d im (FI(E)n(L~L~I)).  
As seen above, if a=0 ,  L~=n,(L(-xl-x .z))  so that deg. L < p ( E ) + l  implies 
that deg. LI</~(F). If a =  1, as seen above,/.1 is locally free and deg L~ =deg L. 
Hence deg L+a<p(E)+ 1 implies that deg La</~(F). If a=2 ,  L~=n,L, deg. LI=  
d e g L + l  and we again get degLl<~t(F). Thus F is stable (semistable) if E is 
stable (semistable) generalised parabolic bundle. 

Remark 1.10. In 1.6, we defined a mapping f from the set S of isomorphism 
classes of generalised parabolic vector bundles of rank 2 and degree d on �9 to the 
set R of isomorphism classes of torsionfree sheaves of rank 2 and degree d on X. 
Proposition 1.9 shows that f (E,  F~(E))=F is semistable (stable)/ff (E, F~(E)) is 
so. Let 02, 01 and t7 ~ be the subsets of S corresponding to generalised parabolic 
bundles which satisfy the conditions (1), (2) and (3) respectively in proposition 1.8. 
T h e n f m a p s  t7 i into U i, i=0,  1, 2. Here U i denotes the subset of R consisting of 
torsionfree sheaves F such that the stalk Fx, of F at x0 is isomorphic to iOx,@ 
(2- i) mo. 

Proposition 1.11. (1) f maps 02 bijectively onto U r (2) f maps ~ onto U ~ ( 3 ) f  
maps ~1 onto U 1. 

Proof. (1) We give the inverse o f f  on U 2. Let FEU ~. Define E=n*F, FI(E)= 
F|174 O~|174 It is easy to see that (E, FI(E)) is a 
generalised parabolic bundle which maps to F under f 
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(2) Let FCU ~ Then F=n,Eo for a unique vector bundle E0 on X (proposi- 
tion 10, p. 174 [S]). The fibre o f f  over F consists of  generalised parabolic bundles 
of the following type. 

a) E=Eo(x2), FI (E)=Ex .  
b) E=eo(xx), Fx(E)=ex .  
c) E given by an extension of  the type O-*Eo--.E~k(xa)Ok(xz)-*O, F~(E)= 

Ker (E| + ~ -~k(xx)@k(xs)). 

Now, Extl(k(xl)~3k(x~),Eo)~(Eo|174 and given k l =  
(Eo)~, ks=(Eo)x,, kx~.ks~k, there exists a unique extension of the above type 
with kernel ((Eo)~Ex,)=k~, i =  1, 2. Thus the set of  generalised parabolic bundles 
of type c) is isomorphic to p1 • pa (= p ((E0)~) • P ((E0))~,). 

(3) Before proving that q~101 is a surjection onto U 1, let us analyse ~010 x. In 
this case, we can write F~(E) as the graph /', of a homomorphism a: Ex--.E~, 
of rank one if Pl is an isomorphism, Pl being the projection of FI(E) to E~. (The 
case when Ps is an isomorphism can be dealt with similarly.) Let F=f(E, Fa(E)), 
Eo=n*(F)/torsion. Then one has exact sequences O~Eo-*E~E~,/Image a-~O and 

0 ~ [~-~ n .E --,- Ex, GE:o./F~ --~ O. 

Hence (Eo)o,-=,-Ex, canonically, let NI denote the isomorphic image of  kernel r 
in (E0)~. Since O~k~(Eo):-*Ex~Ex/Image r (Eo)x~ contains a one dimensi- 
onal N2 such that (Eo)x,/N2 ~Image or. Let 0 denote the isomorphism (Eo)xJN,-=~- 
(Eo)x,/N2 induced by the composite (Eo)o, --=*.Ex, ", Image r F 
is defined by 

I"(U, F) = {sO'(n-lU, E)ls(x2) = as(x0} 

= {s~/ '(z -1U, Eo)ls(x2) mod Ns = 0 (s(xO mod Na)}. 

Now start with an F~ U 1. Define E0 = n* F/torsion. Since the stalk Fx, ~ m0 G 0~ o, 
(Eo)~NiGAi, Ni~moO~| Ai-~O~o| i=1 ,2 ,0~  being the normalisa- 
tion of 0~. Define the vector bundle E on ~' by 0-~E0~E-~k(x2)-~0 with the con- 
dition Ker ((Eo)x--,E~,)=N~, it is easy to see that such E exists. By theorem 17, 
p. 178 [S], there is a natural bijection between the set of isomorphism classes of 
torsionfree sheaves F of rank 2, degree d on X with ~o~-Oxo@rno and the set of 
isomorphism classes of  triples (E0, A1, As, 6), E0 being a vector bundle of  rank 2 
on ~ of degree d -  1, A i are one-dimensional subspaces of (Eo)~,, i =  1, 2 and 
ff is an isomorphism AI~A ~. Since Ax, As both come from O~,cF~ o, we have an 
isomorphism if: AI--'As. Define a as the composite E,,---~(Eo),,-~Aa ~, A2-..,-Ex. 
and FI (E)=F, .  From our analysis of f l01,  it is easy to see that f(E, F~(E))=F i.e. 
f m a p s  01 onto U 1. 
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Lemma 1.12. I f  E is a stable generalised parabolic vector bundle of  rank 2, then 
either E is stable as a vector bundle or E has a unique (maximum) line subbundle L 
of  degree dl, where dl=p(E)  i f  degree of E is even and dx=/l(E)+-~ i f  degree of  
E is odd. Moreover one has Fx(E)c~(Lx@L~,) is zero. 

Proof. Let L be a line subbundle of E and a=dim (FI(E)c~(Lx@L,~,)). If a =  1 
or 2, stability of E as a generalised parabolic bundle implies that degree L</~(E). 
If a=0 ,  it implies that degree L < p ( E )  + 1. Hence i fE  is not a stable vector bundle, 
there must exist a line subbundle L of degree dl such that p(E)<=dl<p(E)+ 1 and 
a=0.  It is easy to see that such a line bundle is unique, even the former condition 
suffices for uniqueness. 

Lemma 1.13. (i) 1./" E is a generalised parabolic bundle (of rank two). Then the 
following condition (C) is satisfied. 

(C) For any line subbundle L of  E with 

[ / t (E)- -~  if degE is odd 
degL / 

t / ~ (E ) - I  if degE is even, 

one has a(L)<2. Here a(L)=dim FI(E)c~(Lxl@Lx,). 
(ii) l f  E is a stable vector bundle ~atisfying condition (C) for Fx(E ) cEr iSEs ,  then 

E together with FI(E ) is a stable generalisedparabolic vector bundle. 

Proof. Proofs are straightforward (using definitions). 

Remark 1.14. (g_~2). Given a stable vector bundle E of odd degree there 
exists F~(E)=k~@k2, k, cE~, such that a (L)~2  i.e. k l @ k 2 ~ L x ~ L ,  q for any 
line subbundle L of  degree= /z (E) -~ .  In fact if degree E is odd, rank E=2,  E 
can have at most 4 line subbundles of degree/~(E)-~- (proposition 4.2 ILl). By 
corollary 4.6 [L], the variety of maximal line subbundles of E has dimension _~ 1 
for any vector bundle E of rank 2. 

2. Generalised parabolic line bundles and extension of the determinant map 

Definition 2.1. A generalised parabolic line bundle on .~ is a line bundle L on 
Ji' together with a one dimensional subspace F~(L) of LxI@L,, ,. 

Proposition 2.2. The moduli space P of  generalised parabolic line bundles on .~ 
of  fixed degree d (degree L=d)  is a Pl-bundle over the Jacobian J (~)  of  �9 of  line 
bundles of  degree d. The variety P is a desingularisation of  the compactified Jacobian 
JCX) of X. 
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Proof. Let V be the Poincar6 bundle on J(~)X,~.  Let ~-(V) denote the flag 
variety over J07)X)7 of type determined by the generalised parabolic structure 
(i.e. k2DkDO) and let P denote its restriction to J(PT)• x2}. Let p: P - J ( ~ )  
be the composite P-~J(.()X(xl, x2)-~J(~). Clearly p: P--,J(~) is a Pl-bund!e 
over J(Ar), and P is the moduli space of generalised parabolic line bundles of degree d. 

Consider the universal bundle (p• on P• We have a surjection 
(p • V-~(p • • {xx, x2}). Let Pl be the projection PX,~ ' -P .  On P, 
there is a surjection VlJ(~)• x2}~Op(1)~O. Since p~(VlJ(~)X{xx,x2})= 
(pxid)*VIJ(~)•  x2}, we get a surjection 

q~: ( idxn) , (p•  V ~  (idxzr),(pXid)* VlP• xo ~ p~ Oe(1)lP• xo, p" : P• X -*- P. 

Since Or(l) is free over P, it follows that /r ~0 is flat over P. For every 
g=(L, FI(L))~P, we have an exact sequence 

(S) 0 ~ K l g X X  ~ n . L  ~"~ (n.L)| -* O. 

Thus K is a family of torsionfree sheaves on X of degree d flat over P, so it gives 
a morphism h of P to the compactified Jacobian J(X) of X. J(X) contains J(X), 
the generalised Jacobian of X as a dense open subset. We shall now show that h 
is a surjective morphism which is an isomorphism from h-l(J(X)) onto J(X) and 
fibre over each point in J ( X ) - J ( X )  consists of two points. In the sequence (S), 
write LI=KIj •  It is easy to see that if F~(L)~L~ or L~,, then L1 is obtained 
by identifying fibres Lx~ and Lx, by an isomorphism a whose graph is F~(L) and 
s is locally free with 7z*LI:L. In case FI=L~I, Ll=rc . (L(-x2))  and ~z*L1/tor- 
sion=L(--x2). If F~=L~, L~=n.(L(--Xl)), n*L~/torsion~L(-Xl). Thus if L~ is 
locally free it comes from a unique generalised parabolic line bundle (L = n*La, F1 (L)), 
FI(L)=F,,  tr: (rc*L~)~--=-~(n*La)x, canonical isomorphism. If L1 is not locally 
free, the fibre over L~ consists of two points viz. 

((n*Lx/torsion)(x2) = L, F~(L) = L~), (L = (n*L1/torsion)(xO, FI(L) = Lx~). 

Thus P is the disjoint union of J(X) and two copies of {J(,~)-~J(X)-J(X)}. This 
finishes the proof of the proposition. 

2.3. Extension of the determinant map to t.7 a and UL 

Consider a generalised parabolic vector bundles (E, F~(E)) on )7. If we fix E, 
then FI(E ) varies over G(2, 4)=the grassmannian of 2-dimensional subspaces of 
E~@E~. G(2,4) is embedded as a quadric in Ps=P(A2(Ex@E~)). Fixing a 
basis (ej, e2) of E~ and (e3, e4) of E~,, a basis of p5 is given by (eiAej)i< J. An 
element of ps is of the form Z~<j P~je~Aej, P~j being the Pliicker coordinates. Then 
G2.~c~(P~2~O, Pa~O)~G2,~ is the open subset corresponding to elements (E, F~(E)) 
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in 0 s. A=a(2,4)n{(B~O)u(P**~O)} corresponds to elements (E, Fx(E)) in 
01uO s. Ac=(Plz=O=P~)c~G(2, 4) corresponds to elements (E, Fx(E)) in /7 ~ The 
set (Px,#0) (respectively (P~#0))  can be identified with Hom (E~,, E~,) (respec- 
tively Hom(Ex, ,E~))  by identifying aEHom(E~,,E~,) with its graph F.. If 
a(e0=~e3+re4, a(e0=/3e3+6e, ,  then F. as an element of  p6 has coordinates 
P~2=l, P~=de t  a, P~3=/~, Px4=8, P~3=-~,, P24=-~  i.e. it is a point with homo- 
geneous coordinates (1, det a, /~, b, -ct ,  - y )  in ps. If a is an isomorphism, the 
graph o f a  -x is the point (d -x, 1,/~d -x, 6d -1, - u d  -1, - yd-X), d = d e t  a, which is the 
same point as F.. Thus, for (E, Fx (E) = F.) in /Txu/72 we can define its determinant 
as the pair (detE,  p(F.)) where p: ps p~ is defined by the projection (Pij)i<jo 
(P~a, P~t) in homogeneous coordinates i.e. det (E, F.) is the generalised parabolic 
line bundle (det E, Fd.t. ). Thus we get a map from /Txu/Tz onto the variety P of 
generalised parabolic line bundles. 

Now consider the subset of  G(2,4) defined by (P~2(x)#O)n(P~(x)~O)c~ 
(p (x) = fixed). Let (x0, 3o) be the homogeneous coordinates of p(x) for an x in 
this set. Thus a point in this set looks like (txo, tyo, *, *, *, *)  showing that 
the closure of  this set in G(2, 4) is given by (this set)w(G(2, 4)c~(P~=0=P~).  
The subset (Pxz=0=P~)c~G(2, 4) corresponds to elements (E, Fx(E)) in /70. No- 
tice also that fixing the determinant of  (E, F~ (E)) is equivalent to fixing the deter- 
minant of  F=f(E ,  F~(E)) for (E, F~(E)) in 0 ~. We clearly have a commutative 
diagram 

O~ det+ h_l(j(X) ) 

§ § 
U ~ dot , J ( X ) .  

We now want to show that the determinant map / 7x -~P-h - l ( J (X) )  goes down 
to a map Ux-. . . I (X)-J(X) .  

If F~U 1, any (E, FI(E))~01 mapping to F is obtained either from an exten- 
sion of  type 

(i) 

or of  type 

(ii) 

and one has 

(i)' 

o r  

(ii)' 

0 -~ n'F/torsion ~ E ~ k(Xl) --. 0 

0 ~ n'F/torsion ~ E ~ k(x~) ~ 0 

det (E, F~(E)) = (L = (det rt*F/torsion)(xl), F~(L) = L~,) 

det (E, F~(E)) = (L = (det n*Htorsion)(x~), F~(L) = Lx:). 
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(See the proof of proposition 1.11(3).) As seen in the proof of proposition2.2, 
R.H.S. of both (i)' and (ii)' map into the same point in 3 ( X ) - J ( X )  under h, we 
define this point as the determinant of F. Thus we have the required commutative 
diagram 

t71 e_h-l( j (x))  

+ + 

U 1 a~t . 3 ( X ) - J ( X ) .  

For simplicity, let (xl, x~, x3, x4, xs, x6) denote the homogeneous coordinates 
in ps, with xl=P~2, x~=P34 and let G(2, 4) be defined by the quadratic equation 
xlx~+xax4+xsxe=O. Fix a point (Yl, Y2) in p1, we normalise Yx, Y~ by yly~= - I. 
Let ~, fl, r, b, 2, t~k. Define CI,~(t)CI ~ by Cl,~(t)=(ty 1, ty 2, 2t+~, t+fl, ( 2 -  1)t+y, 
- t+6) .  Then CI.~(t)EG(2, 4) iff 2 ( f l + 6 ) + ~ - ~ - 6 = 0 ,  fl~+y6 =0, CI, a(t)EG(2, 4)c~ 
{ (x l~0)n(x~0)}  for t~k* and CI,~(O)~A c. Hence {Cla(t)},r parametrizes 
a family of parabolic vector bundles on �9 with a fixed determinant or equivalently 
a family of vector bundles on X with a fixed determinant (2.4) and the limit point 
C1,a(0)=(0,0,~,/~,y, 6) corresponds to an element of /.7 ~ Define D1.a(t)= 
(t, O, ~, ~, y, 6), {Dl, x(t)}t~k, parametrices a family of elements in 01 with the same 
limit and with a fixed determinant. It is easy to see that any point (0, 0, a,/~, y, 6) in A c 
is of the form C~, ~(0) for some i, 2 where C2, a(t) =(tyl, ty2, 2t+a,  t+/L t+~, 6 -  (2y,)), 
Ca, a(t)=(tyl, ty2, ~, fl, t+ y, t -y ) ,  C,.~.(t)=(tyx, ty,., t+~, 2t+fl, t+ y, 6 - ( 2 - 1 ) t ) .  

A point in U0 corresponds to a torsionfree sheaf n.Eo, Eo being a stable vector 
bundle on ~. Let E be a bundle ocurring in an extension of the form 0-~E0--E-- 
k(xa)@k(x~)-*O. Then (E, FI(E)) with F~(E)=(0, O, ~, [3, y, 6)EG(2, 4) is a point 
in 17 0 lying over the point [n.E0] in U0. Let L=(det.Eo)(Xl+X2)=det.E. Let 
p: P - ~ P i c ~  and h: P ~ 3  be as in proposition2.2. Varying (Yl,Y~) over P~ 
in the above discussion, we see that C~,~'s parametrise families of bundles on X 
with determinant a fixed line bundle M, where M varies over h(p-l(L))c~Pic X. 
Define D2,~(t)=(0, t, ~, fl, y, b). Then DI.~ (respectively D~,a) parametrices a family 
of torsionfree sheaves (which are not locally free) on X with a fixed determinant 
7r.(L(-x~)) (respectively 7r . (L(-x0))  belonging to h(p-X(L)). This shows that 
the fibre over (n.Eo) of the closure (in U• of the graph of the determinant 
map (which is a rational morphism) contains h(p-~(L))~P 1. 

2.4. We now want to "globalise" the construction of 1.6. Let g ~ T •  be a 
family of vector bundles on ~ of rank 2, degree d flat over T. Let G(r be the Grass- 
mannian bundle over T• D=xx+X~, such that G(g),~G(2, (g,)o), the Grass- 
mannian of  two dimensional subspaces of glt• On G(g), we have an exact se- 
quence O-+U-+glT• Q being the universal quotient bundle. Letp:  G(r 
TXD-* T, px : G(g) X~-*G(g),  p~ : G(g) XX-*G(g) bethenaturalmaps. Theabove 
sequence gives a surjection p~(glT• and hence (l•215 
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(1Xn),p• Q. One has (1X~),p* Q=p~* Q; also (1Xn) ,p t r  ~((1Xn) ,g) lTxxo.  
The restriction map 8 ~ 8 [ T X D  gives a homomorphism 

(1Xn) , (p  X 1) '8  -* (1X n),(p X 1)* (SITxD) = (1Xrc),p'~(81TXD). 

Composition gives a homomorphism (1X n),(p X 1)*g-~p~* Q. Let ~- be defined by 
the exact sequence 

(2.5) 0 --- ~'-~ (1 X n), (p X 1)* 8 ~ p[* Q -~ o. 

Since zc is a finite morphism and 8 is flat over T, it follows that (1Xrc),(p X 1) '8  
is flat over G(8). Since Q is locally free over G(8), p~*Q is flat over G(8). It follows 
that 5 is flat over G(8). Thus ~ is a flat family of torsionfree sheaves of rank two, 
degree d on X parametrised G(8). Let G(8)~,(G(g),) be the open subset of G(g) 
corresponding to g~ G(8) such that ~ is semistable (stable). Then we have a mor- 
phism e:  G(8)ss-*U mapping G(8)s to stable points in U. 

We have 

G(8) c P(A*(~IT• = P(A*(8[T•215 A2(SIT•215 

has A~g[TXxl@A2g[T• as a direct summand and hence a projection onto it. 
Hence we get a rational morphism G(g)-*P(detg[T•215 this is 
nothing but the extended determinant map of (2.3), as det 8l T• a ~ and VIJ (~) •  a~ 
are locally isomorphic, V being the universal bundle on J ( ~ ) •  

2.5. In the notations of 2.4, let now T=M, where M is the moduli space of 
stable vector bundles of rank two and odd degree on X and let 8 be the universal 
bundle on M• Let L be a fixed line bundle on X and let M ~ denote the subvari- 
ety of M corresponding to bundles E with determinant n* L. Let G = G(8), = G (g),, 
(remark 1.4). Let G,=cp-~(U3, i=0,  1,2, G~=~p-I(U~) (notations 1.1) G, is a fibra- 
tion over M with fibre GL(2) and hence is of dimension 4 8 -  3 and G[ is a closed sub- 
variety of G2 of dim. 3 g -  3. The restriction of ~p to G2 is an isomorphism onto an open 
dense subset U~ of U,, mapping G~ isomorphically onto U~ z contained in U,Z; U~ L 

being open and dense in U~. Using 2.3, it follows that the closure of G~ in G = ~ =  
{(E, F~(E))IE~ M ~ Fl(E)=k~@k2, k~cE,,,, (E, F~(E)) parabolic stable i.e. E has 
no line subbundles L' of degree (/a(E)--~) such that L':,@L'~=k~@k2} and 

~o(G~)= {n,(Eo)lEo (stable) bundle given by an extension of the form 

0 ~ Eo ~ E --~E~,@E~JF,(E) -- O, (E, F~(E))EG~}. 

Note that det Eo=(~*L)(-xi-x2). We claim that any stable bundle Eo can be 
obtained by an extension of the above form. Now, the extensions of the above form 
(i.e. O--Eo-~E--.k(x,)@k(x2)--O ) are parametrised by (Eo|174 
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(E0)~ @(Eo)~, and given kic(Eo)~, one dimensional subspaces, there is a (unique) 
extension such that Ker ((E0)~, ~E~,) =ks, i =  1, 2. Choose k~, k~, such that k ~ k z  
L ~ L ~ ,  for any line subbundle L'  of Eo of degree p ( E ) - ~  (remark 1.14). Then 

E obtained for such a choice is stable and parabolic stable. Thus tp (G~)= {re. E01E0 
stable bundle on )7 with determinant (rc*L)(-x~-x~}. 

2.6. The case g( ,~ )= l .  In this case M ~  point corresponding to a stable 
bundle E. Then (E, FI(E)), Fl(E)=kl@k2, all give the same bundle E 0 as there is a 
unique stable vector bundle E0 of  rank 2 and fixed determinant (n*L) ( - xx -x z )  
on .~. Moreover, (E, FI(E)) with E = N ~ ( ~ * L |  Fx(E)=kt@k ~, degree 
N = ~  (degree L +  1) also give the same Eo for the same reason. 

Lemma 2.7. Let X be an irreducible complete curve with the only singularity a 
single node at Xo. Let R be a discrete valuation ring, T=spec R, To the closed point 
of  T. Let F ~ X •  be a family of  torsionfree sheaves on X, flat over T, with the 
generic member locally free and FlxoXTo~.aOxo~bmo, a > 0 ,  mo being the maximum 
ideal of  0~o. Assume that H~ generates F. Then one can find an exact sequence 
0 ~ 0  ~ F ~ G  ~O, where G is a family of  torsionfree sheaves on X flat over T and G is 
a torsionfree sheaf. 

Proof. Write F~xo.ro)=0xo@M , M is the direct sum (a-1)O~o~bmo. Since 
H~ generates F~xo.r~ there exists el in H~ such that e~(xo, T0)=(1, 0), l~0xo. 
Define V={s~H~ cx~0}. Then for any s in the open set V, s maps 
into 0~~ at x0. Since F I ( X -  x0) • T is locally free, there exists an open set W c H~ (F) 
such that for s in W, the map OI(X--x ) •215  is injective. Then for 
any s in Vc~W, we have an exact sequence 

(x) O ~ O ~ F - * G - - , O .  

We shall now check that G is torsionfree and is flat over T. Since R is a discrete 
valuation ring, to check that G is fiat over T, it suffices to check that G is fiat over 
To. Tensorising the sequence (I) by Or,, we have 0~Tors  (G, Or)--.Oro~FITo-~ 
GITo---0. Since, b y  our construction, O~FITo, is an injection, it follows that 
Toq  (G, Or)=O i.e. G is fiat over To. 

Since G is fiat over T, it has no T-torsion. So G can have only X-torsion, say 
G'; so that G/G" is torsionfree. Since G and G/G" are fiat over T, it follows that 
G' if flat over T. This implies that O--,G'ITo~GITo~(G/G')ITo~O is exact. By our 
choice of  s, G/T o is torsionfree, so that G'ITo=0 and hence G'=O. Thus G is 
torsion free. 

Remark 2.8. If  F is of rank two, we can define the determinant of  FIX• as 
~lXx~. 
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In the general case i.e. rank F=n, Fxo, ro~(n-1)Oxo@mo write G=G1. Ap- 
plying the above lemma to G1, we get a torsionfree quotient Ga flat over To. Repeating 
the process, we get a torsionfree rank one sheaf G,-1 flat over T. We can define 
the determinant of  FIX• as Gn_xlX• 

3. Generalisations and construction of the moduli space 

The generalised parabolic bundles defined before (definitions 1.2, 1.3 and 2.1) 
are special cases of the more general definition below (3.1). A good generalisation 
of the concept of  a parabolic structure at a point seems to be a parabolic structure 
on a divisor. On singular curves one seems to get naturally vector bundles E with 
flags on EID, D being a Cartier divisor concentrated at the singular point. Defini- 
tion 1.2 is obtained from 3.1 by taking D=xl+x~ and weights (cq, ~t0=(0, 1). 

Definition 3.1. Let E be a vector bundle on an irreducible nonsingular curve X 
over an algebraically closed base field k. 

A generalised parabolic structure tr on E over a Cartier divisor D consists of  

(I) a flag ~" of vector subspaces of EID, ~ :  Fo=EIDDF~DF2D...DF,=O, where 
EIo:=H~174 

(2) real numbers cq . . . .  , ~,, ( 0 ~ _ ~ < ~ 2 < . . . < c t , < l )  called weights. 

Let ms=dim F~_~/F~, i=  1, ..., r. Define 

wt. EID = ~7=l mioti" 

If  E has generalised parabolic structure over finitely many divisors D~, we call E with 
this structure a generalised parabolic vector bundle. Define wt.E=z~j wt.EID~, 
parabolic degree of  E=degree of  E+wt. E. 

Definition 3.2. Every subbundle K of E gets a natural structure of  a generalised 
parabolic bundle. The induced flag is given by ~-(K) = KID D= (F~ c~KID) D=... D= F, = O, 
if flj is the weight associated to FinKID, then /~:=at~ where F~ is the smallest 
subspace in o~" containing FjnK]D. By a subbundle of  a generalised parabolic 
bundle E we will always mean a subbundle with this induced parabolic structure. 

Definition 3.3. A generalised parabolic vector bundle E is semistable (respec- 
tively stable) if for every (respectively proper) subbundle K of  E, parabolic degree of  
K/rank of  K~_ (resp. < )  parabolic degree of E/rank of E. 

Definition 3.4. Induced parabolic stucture on a quotient bundle. Let p: E--.Q 
be a quotient of  E. The parabolic structure on E over D induces one on Q as follows. 
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Let ~r={F/(E)} be the flag on EID with weights {cq(E)}, i~l. Let P=pID. Then 
~(~') induces a flag ~" on QID, ~r__ {FAQ)} ' j~Jc=I. The weights {%(Q)} for 
this flag are determined as follows. Given Fj(Q), there exists F~(E) such that 
~(F~(E))=(Fj(Q)), take i 0 largest such i and define ot~(Q)=~t,o(E). 

Definition 3.5. A generalised parabolic vector bundle E is semistable (respec- 
tively stable) if for every nonzero quotient bundle Q of E, parabolic degree of 
E/rank E_<- (respectively < )  parabolic degree of Q/rank Q. 

Remark. It is easy to see that Definitions 3.3 and 3.5 are equivalent. 

Definition 3.6. Let i= 1, 2 and let E~ be a generalised parabolic bundle with 
parabolic structure over D with flag {Fj(Ei)} and weights {~tj(Ei)}. A morphism 
of generalised parabolic bundles is a homomorphism f :  EI-*E2 of vector bund- 
les such that for all j,f(Fj(EI))cFt+I(E~) whenever ctj(E1)>~t(E~), where f=f[D. 

Lemma 3.7. Let E be a semistable (resp. stable) generalixed parabolic bundle. 
I f  par p(E)=parabolic degree of E/rank E>(resp. >-)2g-l, then (HI(E))=0.  

Proof. Suppose that HI(E)#O. By Serre' duality, this implies that there 
exists a nonzero homomorphism f :  E-*K, K being the canonical line bundle. 
Then one has 

par/~(E) _~ par #(K) = 2g-2+o~tK ~_ 2g-  1. 

if E is semistable (resp. < for E stable). Hence if E is semistable (or stable) with 
par #> (o r  _~)2g-1 then f = 0 ,  i.e. H i (E)=0 .  

I~mma 3.8. Let f: EI~Ea be a morphism of semistable generalised parabolic 
bundles (D fixed) of same rank and same parabolic degree. Then f is of constant 
rank. Further, if one of Ex or E~ is stable, then either o~=0 or �9 is an isomorphism. 

Proof. The morphism f factors through a generic isomorphism h as follows. 

0 ~ KI -* Ex -* 11 ~ 0 

l , l .  
0 *-/2 ~ E, *- K~ *- 0. 

Let p=par/a(Ex)=par/~(E~). By semistability of El, Ez one has #=par  #(Ex) ~ _ 
par/~(Ix), par/~(K2)~-p. Since h is a generic isomorphism deg. Ix~_degKi, also 
wt Ii<_wt Ks, hence par #(Kz). Thus #~_par p(/a)~_par #(Ix)~_par tt(Kl)~_ta, i.e. 
par/~(I1) =par/~(K~) =p.  Thus parabolic degrees of Ix and Kt are same, it follows 
that degree Ix=degreeK2, wtI~=wtK~ and so h is an isomorphism i.e. f i s  of  
constant rank. The last assertions of the lemma are now clear. 
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Corollary 3.9. I f  E is a stable generalised parabolic vector bundle, then any 
morphism of E into itself is a scalar. 

Proof. Lemma 3.8 shows that any nonzero morphism f of E into itself is an 
isomorphism. Let x 6 X  and c be an eigenvalue offx.  Then the morphism f - c l d  
is not an isomorphism and hence must be zero. 

Proposition 3.10. The category S of all semistable generaliyed parabolic bundles 
E on X with parabolic structure on a divisor D and with fixed par #=P0 is an abelian 
category. The simple objects in this category are the stable generalised parabolic 
bundles. By Jordan--H61der theorem, for EC S, there exists a .filtration in S 

E = E, D E,_x D ... ~ Eo = O 

such that Ei]E~-a is a stable generalised parabolic bundle with par P=P0 for all i 
and gr E= G~ Ei/Ei-a is unique upto isomorphism. 

Proof. This follows from 3.8 and 3.9. 

Definition 3.11. We define El, E2 in S to be equivalent if grE~.grE2.  

Theorem 1. Let X be an irreducible nonsingular projective curve over an alge- 
braically closed field. Then there exists a course moduli space M for equivalence 
classes of semistable generalised parabolic bundles E of rank k on X with fixed degree 
and parabolic structure given by deg D=2,  weights (~1, ~z)=-( O, ~) and ~ :  F0(E)= 
EIoDFx(E)D0. The space M is a normal projective variety. I f  rank and degree 
of  E are coprime, ~ is close to 1 and dim Fa(E)=k then M is nonsingular. 
One has dim M =  k2(g - 1)+ 1 + dim F, F being flag variety of  type ~ .  

The proof of this theorem is on similar lines as that of the main theorem in [3/]. 
The construction uses geometric invariant theory, the choice of weights and de- 
gree of D corresponds to the choice of a polarisation. This choice is a bit tricky. 
A choice similar to the one in [SM] [31] fails for degree D > 1, so we have to look 
for a new candidate. This was the main difficulty in the construction below. Note 
that unlike in [SM], [V] we do not assume here that parabolie degree of E=0.  

Let S denote the set of all semistable generalised parabolic bundles E of the 
type specified in the statement of the theorem. Let b denote the fixed parabolic 
degree of ECS, without loss of generality, may assume b<=k. Then S is bounded, 
there exists m0 such that for m>=mo, one has HX(E(m))=O and the canonical 
map H~176 is a surjection. By arguments similar to those on 
p. 226, [SM] we can choose an integer m>>g, g=genus of X, such that HX(F(m))=O 
and H~176 | OD) is surjective for F~ S or F c E ,  E in S and parabolic 
degree of F>(b- (g+2oOk  ). Let P be the Hilbert polynomial of E in S and let 
n=d im.  HO(E(m)). Denote by Q the Quot scheme i.e. the Hilbert scheme of co- 
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herent sheaves on X which are quotients of 6] and have Hilbert polynomial P. 
Let U denote the universal family on Q x X  and R denote the subscheme 
{q ~ Q IH 1 (U~) = O, H o (Uq) ~ t~, U, is locally free and generically generated by global 
sections}. R is a nonsingular variety and contains the subset determined by E(m), 
EES by our choice of m. Let V=(p~),(UIRXD), Pl: R X D ~ R .  Let G(V) be 
the flag bundle over R of the type determined by the parabolic structure and let J~ 
be the total space of G(V). It is easy to see that J~ has the local universal property 
for generalised parabolic bundles. Let the subsets of ~ corresponding to semistable 
(respectively stable) generalised parabolic bundles be denoted by ~ss(~s). The group 
SL(n) acts on/~, ~ss and _~s via its action on 6;.  We want to give an affine injective 
SL(n)-equivariant morphism from J~ to a projective variety Y with SL(n)-action 
such that the geometric invariant theoretic quotient Y/SL(n) is known to exist. 

For a while, Iet us forget about the parabolic structure. Following Gieseker, 
we define a 'good pair' (F, q~) to be a fiat family F ~  TXX of vector bundles 
on X such that F, is generated by its global sections at the generic point of t X X  
and tp: O ~ p , ( F )  is an isomorphism. Let c=degreeE(m), ECS, A=PicC(X), 
g: X X A - ~ A  projection and M the Poincare' bundle on X X A .  Let Z =  
P (Hom (AkO~, g. M)*). Given a good pair (F, tp) one gets a morphism T(F, tp): T ~ Z .  
For tET, T(F, ~p)(t) is the composite A~K"~AkH~ where the 
first map is A~tp and the second map ~b is the natural map ~/(siA...Ask)=s, where 
s(x)=s~(x)A...Ask(x). SL(n) acts on Z preserving the fibres over A. 

If, in addition, F is a family of generalised parabolic vector bundles the flag 
on FtID induces, via ~0, a flag on K"=H~ 

= = 

F2(H~ of e: H~ and FI(H"(F,))=e-'(F~(F,)). Hence we 
have a morphism f from T into the flag variety G of flags in K". Thus the good 
pair (F, ~0) determines a morphism T(f, ~0): T-.ZXG, 7 (F, ~0)----T(f, ~0)Xf. Let 
T: ~-~ZXG be the induced morphism. T maps f{ss into Gr=ff G.,I, where 
G.,i denotes the Grassmannian offl-dimensional subspaces of K", fi = dim Fi(H a (E)), 
i = 0, 1, 2. On Z >< Gr we take the polarisation L | ~k | ~9 z (k (m + 1 -- 20t-- g) + b)), where 
L is the generator of Pie (G~,x), b=parabolic degree of  E in S. For this polafisa- 
tion, a point (z, (F~)) in ZXGr  is semistable (or stable) if and only if for any sub- 
space W c  V, K ~= V, one has 

trw = [k(m - 1 - g) + b] (ddim V-  k dim W) 

+k~ [d imWdimFl(V)-d im Vdim(Wc~F~(V))] ~_ 0 (or > 0) 

where d is the maximum of the cordinalities of ~-independent subsets of W. Let 
(Z><G,) ss (or (ZXG,) s) denote the set of semistable (or stable) points in Z• 
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P r o p o s i t i o n  3 . 1 2 .  

(a) qE/~ ~ ==, T(q)E(ZXGr)  ~ 

(b) qE~ ~ ::~ T(q)E(Z>(Gr) s 

(c) q E/~, T(q) EZ • Gr, q r R~ ~ T(q) ~ (Z X Gr) ~ 

(d) qE/~'~-/~ ~ ~ T(q)r215 ~ 

Proof. For F c E ,  define 

gr : [k(m + I - g )  + b] [rk F. h ~ (E(m)) - rk E .  h ~ (F(m))] 

+ k [h ~ (F(m)) �9 wt E -  h ~ (E (m)) wt F]. 

We first make a few observations. 

(1) For E with h i (E)=0 ,  

Xv = n ( d b -  k parabolic degree F) - nkh x (F(m)) 

where d = r a n k  F, n=h~ 

Proof. Rearranging the terms one has 

zF = h ~ (E(m))  [(k(m + l - g) + b) d -  k wt F] 

kh ~ (r(m)) (wt E -  k(m + l - g ) -  b) 

= h ~ (E(m)) [k (m + 1 - g) d + b d -  k wt F -  kh ~ (F(m))], 

since w t E - k ( m + l - g ) - - b = h ~  by Riemann--Roch theorem. Similarly 
h~ h~(F(m)) = parabolic degree F -  wt F+d(m + 1 - g ) ,  hence one gets 

"Zv = n [ b d -  k parabolic deg. F -  kh x F((rn))]. 

parabolic deg;ee then (2) lfh~(E(m))=O=h~(F)(m)),  par/~= r, ok ' 

~Z r = n dk (par/~ (E) - par/1 (F)). 

Proof. Obvious. 

(3) I f  W=H~ V=HO(E(m)), H~174 H~ 
E(m)| are surjections and hX(F(m))=O=hl(E(m)), then 

a W  : ZF" 

This follows by straightforward computation. We now come to the proof of the 
proposition. Assertions (c) and (d) follow exactly as in the proofs of proposition 2(c), 
(d) in [V] using (2) and (3) above. 
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Proof of(a) and (b). Let E be a generalised parabolic semistable (or stable) 
bundle (E6 S). Let W be a subspace of  V and let F(m) be the subbundle of  E(m) 
generically generated by W. 

Case (i). I f  W satisfies the conditions of  (3) above, we have aw=XF-~0(>0) 
if E is semistable (stable) as a generalised parabolic bundle. 

Case (ii). Parabolic degree F > b -  (g+2~)k.  By our choice of m, HI(F(m))=O 
and H~ 174  is snrjective. Let W ' = H ~  If  W ' = W ,  we are 
through by case (i); so may assume W ' ~ W .  By (2) above, Xr=>0(>0) i r e  is 
semistable (stable) as a generalised parabolic bundle. Therefore, it suffices to show 
that aw-Zv>=O. It is easy to see that 

~- (aw - 7~v) = k (dim W' - dim W) [(k(m + 1 - g -  2a) + b) - a dim Fx (V)] 

+ ~ dim V(dim W' n Fa(V) - dim Wn F~(V)) -> 0 

as, by Riemann--Roch theorem, the term in the square bracket is ( 1 - a ) d i m V  
while the terms in round brackets are nonnegative. 

Case (iii). Parabolie degree F<= b -  (g + 2~) k. Let W" = H~ F(m)), then W'  D W. 
Regrouping terms and after simplifications one gets a w -  Zr >= - 2~nkd as follows. 

aw-- Zr = k dim V ( -  2d~ + wt  F -  ~ dim Ft (V) n W) 

+ k (dim W' - dim W) (k(m + 1 - 2~ - g )  + b - aFt(V)) 

+ k d i m  W ' ( 2 k a -  w t E + g  dim F~(V)). 

Using the fact that 2 k ~ - w t E + ~ d i m  F~(V)=~dim V, we have 

a w - X v  = kdim V ( - 2 d ~ + w t F + ~  dim W ' - ~  dim FI(V) n W) >= - 2 k ~ d n ,  

since wtF>: 0 and d i m l 4 " - d i m F ~ ( V ) n W :  > 0. 

Now, since F(m) is generically generated by sections, one has h ~ (F(m))~_ deg F(m) + d 
or equivalently, -h l (F(m) )>=-gd .  By (1) above 

Zv = n b d -  nk I~ a (F(m)) - nk par deg (F) -~ n db - n g  dk - nk par deg (F). 

If  par deg (F)<=b-(g+2~)k ,  we have 

: --> 0 .  

Thus the proof of the proposition is completed. 

Proposition 3.13. The morphism T: - ~  ~ ( Z X  Gr) ~ is proper and injeetive. 
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Proof. The properness of T can be proved exactly as in proposition 3 IV]. 
The injectivity of T follows from the fact that/~ is a bundle over R with fibre flag 
variety corresponding to the parabolic structure and the morphism T: ~ " ~ Z  is 
injective (lemma 4.3 [G 2]). 

We are now in a position to complete the proof of the theorem. Since a proper 
injective morphism is affine, T is an atfine morphism. Since the existence of a good 
quotient of (Z• ~s modulo SL(n) is well-known, the existence of a good quotient 
M of/~,s modulo SL(n) follows as T is an affme morphism. Since _~ is a nonsingular 
projective variety of dimension k2(g - 1)+ I +n  ~-  I +dim F, M is a normal pro- 
jective variety of dimension k2(g - 1)+ 1 + dim F. 

If rank E and degree of E are coprime and F~(E) has dimension equal to rank 
of E, then E is parabolic semistable if and only if E is parabolic stable i.e. /~ss=~,. 
Also, by corollary 3.19 if E is stable then the only automorphisms (keeping the 
generalised parabolic structure invariant) of the generalised parabolic bundle E 
are scalars. Hence it follows that in this case there exists a nonsingular geometric 
quotient M of ~ = J ~ .  

/.emma 3.14. Let C be a nonsingular curve, 8 - - ,C•  a flat family of  generalised 
parabolic vector bundles in S. Let P be a point in C and 8q~E=gr  E for all q ~ P  
in C. Then 8z,-~E. 

Proof. This follows as in lemma 4.7 [G 2] using lemma 3.8. 

Prolmsitlou 3.15. Let h be the canonical morphism from ~ onto M. Let 8 
denote the pull back to l~ s~ of  the universal family U on R•  Then for p, q in ~ ,  
h(p)=h(q) i f  and only i f  gr go=gr g~" 

Proof. By construction h(p)=h(q) if and only if closures of SL(n)-orbi ts  
ofp  and q intersect. Lemma 3.14 implies that SL(n) -orbi t  of E = g r  E is closed. 
If E ~ g r  E, then gr E is in the closure of the orbit of E. Since E is a successive 
extension of stable generalised parabolic bundles (proposition 3.10) there exists a 
family {gt} with g,~.E for t#0 ,  tEA 1 and 80~gr E. Thus, if [E] denotes a point 
in ~ss corresponding to a generalised parabolic bundle E, then h([E])=h([gr El). 
If p, q ~  are such that gr 8p~gr Cv, then h(p)---h([Sp])=h(gr [Sp])=h(gr (gv))= 
h([g~])=h(q) i.e. h(p)=h(q). Conversely, h(p)=h(q)=~h([grgo])=h([grgq] ). Since 
SL(n)-orbit of any gr E is closed, this implies that gr gp~gr ~'~. 

Prolmsition3.16. I f  rank and degree are coprime, dim Fx(E)=rankE (de- 
greeD=2,  and weights are (0, ~)) then the moduli space M of  stable generalised 
parabolic bundles (theorem 1) is a fine moduli space. 

Proof. The proof is exactly as in w 5, Chapter 5 of [N], so we only indicate 
the necessary modifications. In lemma 5.10 [N], Hom (El, Ez) has to be replaced 
by Mor (El, E~) Mor denoting homomorphisms of parabolic bundles, and one 
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uses lemma 3.8 and corollary 3.9 to prove that if EI, E2 are two families of stable 
generalised parabolic bundles as above, with (E1)s~(E2)~ VsES then there exists 
a line bundle L on S such that Ez~-EI| in fact one takes L=(ps) .  Mor (El, E2). 
It remains to prove the existence of a universal family on M>(X. The universal 
family 8 ~ •  has a GL(n) action, but no PGL(n)-action as the matrix 2 Id 
acts on it by scalar 2. As in lemma 5.11 [N], if rank and degree are coprime, one 
can find a line bundle L on/~s~ such that 2 Id acts on it by scalar 2 -1. Then PGL(n) 
action o n / ~  lifts to 8 |  and the quotient gives required universal bundle on 
M• We need lemma 3.7 here to construct L. This completes the sketch of the 
proof of the proposition. 

3.17. Henceforth we restrict ourselves to semistable generalised parabolic bun- 
dles E of rank 2, degree d, with parabolic structure over D =x~ +x2 given by EID D 
FI(E)~0, dim. FI(E)=2, and weights (~x, ctz)=(0, ct) ~ near 1. The moduli space M 
of equivalence classes (definition 3. I 1) of such bundles is a normal projective variety 
which is nonsingular if d is odd. Let Pl and P2 denote the projections from F~ (E) 
to Ex, and Ex, respectively. Let M2 be the open subset of M corresponding to gen- 
eralised parabolic bundles such that px and p~ are both isomorphisrns. Let M~ be 
the subset of M defined by the condition that only one ofp~ and p~ is an isomorphism 
and the other is of rank one. Let M0 be the subset of M defined by the condition that 
either pl andp2 are both of rank one or p~=0 or p2=0. Clearly, M is the disjoint 
union of M~, a =  0, 1, 2. We can now sum up the main results of sections 1 and 2 
(particularly 1.11, 2.3, 2.4) as follows. 

Theorem 2. Let X be an irreducible projective curve defined over an algebraically 
closed fieM with only one node xo as a singularity. Let ~ : ~ X  be its normalisa- 
tion. Let M be the moduli space of  bundles on 5{ as in theorem 1 with D=n-l(Xo). 
Let U be the moduli space of semistable torsionfree sheaves of  rank 2, degree d on 

U 2 X, =U,=0 Ua where U,={FIFxo.~atPx,~(2-a)m J .  Then one has the following. 

(I) There exists a surjective morphism f:  M ~ U  such that f -1(U~)=M,,  a=0 ,  1, 2 
and the restriction of  f gives an isomorphism of  M~ onto U,. 

(II) Let Y be the compactified Jacobian of X and let P be its desingularisation (prop- 
osition 2.2). Then there exist morphisms tp, ~ extending the determinant morphisms 
such that the diagram 

M~ u M2 ~- P 

commutes. 

Remark 3.18. (a) For ~ near 1, stability for weights (0, I)=~ stability for 
weights (0, ~) =~ semistability for (0, ~) =, semistability for (0, 1). 
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(b) In general, when X has more than one node, say y~, i =  1 . . . .  , m. M in the 
above theorem will be replaced by the moduli space M of equivalence classes of  
semistable generalised parabolic bundles of  rank 2, degree d with parabolic struc- 
ture over Di=~-X(y~)=x~,l+x~,~ given by EIDi=Ex,,10Ex,,~Fli(E)~O, where 
dim Fl*(E) =2  and weights (~i, l ,~,2)=(0, cz). One still has semistable=stable in 
this case if d is odd. M is the disjoint union of Mi,~, i =  1 . . . .  , m; a = 0 ,  1, 2. Mi, is 
defined by the conditions on Pl, P~ at D~ as in 3.17. One also has U=  ~t,o U~o where 
Ui,,={FlFy,."~aOy,~(2--a)my,}, f-l(Uia)=nia and f :  uini2-*Ui Ui~ is an iso- 
nmrphism. 

Remark 3.19. If  d is odd, then M (in 3.17) is a desingularisation of U. 

Remark 3.20. Let U~ be the subset of  U2 corresponding to vector bundles on 

X with fixed determinant L and ~ its closure in U. Let M~=f-I(U~). Clearly, 
f(M-~2 L) c (f(M~))-. Now, L --L f(Mz)cf(M2) and f being proper f(M~) is closed, it 
follows that (f(M~))- c f ( ~ ) .  Thus f ( , ~ )  = (f(M~))- = U~. Hence to find U~, 
suffices to determine the closure of its isomorphic copy in M. The considerations in 

2.3 and Part(II)  of theorem2 show that M--~nMI=r i.e. U~nUI=r and U L 
contains all points corresponding to torsionfree sheaves of  the form n, (E0), where 
E0 is a stable rank two vector bundle on .~ with detEo~(g*L)(-x~--x2). 
U~-- U~ consists of  only such sheaves, and in general when X has many nodes, 
U ~ - U ~  consists of  points corresponding to direct images on X of  stable vector 
bundles with suitable determinants on partial normalisations of X. 

4. Generalisation to rank n 

4.1. It is possible to generalise our results to rank n sheaves. We consider 
generalised parabolic vector bundles (E, a) on )?, E of  rank n, degree d and a is 
given by D=xl+x~, ~ :  Fo=EID~FI(E)DO, dim F~(E)=n, (~1, ~2)=(0, ~) ~ _  1. 
(Definition 3.1.) To (E, a), we associate a torsionfree sheaf F of  rank n and 
degree d on X defined by 

0 -~ F ~  n.E -~ 7t,(E)| -~ O. 

Proposition 4.2. (a) I f  F is a stable torsionfree sheaf then (E, a) is a stable 
generalised parabolic bundle (with cots (0, 1)). 

(b) Converse of (a) holds. 
(c) Statements (a) and (b) are true for 'stable" replaced by 'semistable'. 

Proof. (a) Let K be a subbundle of E of  rank r. Let Fx(K)=F~(E)n(Kx@Kx,) 
have dimension s. Define K 1 on X by O--*Kl~rr.K~(n.K)| KI 
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is a subsheaf of  F. One has d e g K x = d e g K + r - ( 2 r - s ) = d e g K + s - r .  Stability 
of F implies that (deg K1)/r<:(deg F)/n. This last condition holds if and only if 
(degK+s-r ) / r<(deg  F)/n i.e. ( d e g K + s ) / r < ( d e g E + n ) / n  i.e. (E, a) is a stable 
parabolic bundle (definition 3.3). (b) and (c) follow similarly noting that K is the 
subbundle of  E generated by the image of  z*Kx/torsion in E. 

Proposition 4.3. Let Pl and pz be the canonical projections from Fx(E) to E~I 
and E~, respectively. 

(1) l f  p 1 amt p~ are both isomorphisms, then F~o.~nt9~o i.e. F is locally free. 
(2) I f  only Pl or P2 is an isomorphism and the other is of  rank r, then 

F~o .~ rO~o~(n--r)mo. 

(3) I f  FI(E)=MI@M2, Mick(xi)", then F~o~nm o. 

Proof. In cases (1) and (2), at least one o f p t  or p~ is an isomorphism. Suppose 
that p~ is an isomorphism. Then F~(E) is the graph /'~ of  the homomorphism 
a=p2op-~ ~ from Ex, to E~.  In case (1), a is an isomorphism while in case (2), o is 
of rank r. For simplicity of notations, let (C~ 0, m0)=(A, m). Let .4 denote the 
normalisation, it is a semilocal ring with two maximum ideals ml and mz. A is a 
Gorenstein local ring of dimension one with m* ~-A, nq ~m2 ~m,  also m ~ A (p. 
164, IS]). We have a nonzero k-linear map a: k~k'~ where ki=A/mi, i=1 ,  2. 
Let g: A ~AQAk=ka|  " be the natural map. F is defined by the exact sequence 

0 --- F -* .4"---~P~ (kl �9 ko)"/F~ ~ O, 

where p is the composite of ng with the natural map (klOk2)"~(kx~3k2)"/F, i.e. 
F=(ng)-XF,, n g = g ~ . . . ~ g  n-times. We want to show that F~.A'@A"-',  r= 
rank of a. 

Proof of (1). Suppose first that a is an isomorphism. Let {xi}, {Yi} denote 
the coordinates in k~. and k.~ respectively. Let (B,j) be the matrix of a and let (B~ ~) 
be the inverse matrix. Define if: (kl@k,)"-~(ka@k~)" by q/(xl,yx, x2, y2, . . . )=  
(xl, ~ B ~ a y i ,  x~, z~B~ttyl . . . .  ). Then one has Fo=(xx, z~Bllxl, x~, ~B2~xt . . . .  ) 
and ~O(Fo)=(x~,xl, x2, x2, . . . )=graph Ftd of the identity automorphism of  k ". 
Choose Ci~.4 such that g(Co)=(f j ,  B~t). Then (C~j)~GL(g) as g(det(C~))= 
(1, det.  B/j 1) is a unit. The automorphism q~ of .4" defined by (Cii) lifts ~b i.e. ~bong= 
ngoq~. It follows that p-a(F~d)~p-a(F,)=F. Since g-X (diagonal in k~@k2)=A, 
it follows that F.~A". 

Proof of(2) .  The above proof shows that given any fEGL(k") (replacing o --1 
by f in the above proof), one can define a homomorphism ~b: (kx@k2)" ~(k l  ~ka)" 
which lifts to an automorphism tp of  .4". Since ~ maps Fo onto Ffo ~, we can replace 
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F,, by I'r Now, changing a to f o a  is equivalent to changing the matrix of a by 
row transformations. We now need the following lemma. 

Lemma 4.4. Let B be a nonzero n •  matrix of rank r. Then by row transforma- 
tions B can be transformed to a matrix o f  the form 

/:.0 0 i 0000, 000 
where It denotes the identity matrix o f  rank t, O~=ri~_~ r~=r. 

Proof. We shall prove the result by induction on n. We write B~,,C i fC  can be 
obtained from B by row transformations. 

Case (i). Suppose that the first column of A is not identically zero. By row 

we may assume that B n = l ,  Bj I=0 Vj>I ,  i.e. B,-,[0 C}" transformations If 

M is an s •  submatrix of  C, then B has an ( s+  1 ) •  I) submatrix of the form 

N = ( 0  MI and det M = d e t  N. So if all the minors of B of  size ( s+  1) vanish, 

then all the minors of C of size s also vanish. Hence rank C~_rank B - 1  = r - I .  
Also, by above, no r X r  submatrix of B is contained in C. Hence any r X r  sub- 
matrix of B is of the form N. It follows that C has a nonzero minor of size r -  1 
and rank C = r -  1. By induction, the result is true for C. Thus 

B 

O~-si_~r--1, Z s ~ = r -  I. Then 

I . 
0 0 0 

0 ". 

B _.,. [ 1 0 �9 0 ~*... ] 
I~l* 0 - . . .  

0 0 0 . . .  
0 I,, * ... 

. o .  

Letting s l + l = r l  and s~=rt for i>1 we get the result. 
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Case (ii). Suppose that the first column of A is identically zero. By switching 

(~ *) r a n k C = r .  rows if necessary we have B ~  C ' 

Applying induction to C, we get 

L , * 0 *  
B ~  0 0 0 0 , ~ r i = r ,  O~_ri~_r. 

I, 2 * 

0 

Consider the minor 

' O b ,  O 0 
I , , *  0 0 

det, I,~ 0 0 = + b ~  
h3 

0 ". 

o 

of  size r + l .  Since A has rank r, it follows that bl=0.  Similarly, b i=0 for all i. 
Thus we have 

t 
0 0 0 0 -  - 

h i *  0 *  
B..~ 0 0 0 , ~ r i = r ,  O<=ri<=r. 

10 
Proof of  4.3 (2)(continued). In view of lemma 4.4 we may assume that the 

matrix B of a is of  the form given by lemma 4.4. Then there exist coordinates {ui}, 
{wj} of  k" ( i=1 . . . . .  r ; j = l  . . . . .  n - r )  such that au~=ui+~bl]w], a(w])=0 so 
F,=(xl ,y l ,  x2, y2 . . . .  ) where if xi=ui, yi=u~+~b~]w], if xi=wi, yi=O. Let 
pr be the projection (kl@k2)"~(kl@k,) "-r corresponding to xi=wi coordinates. 
Then pr(F,)=(kl@O) n-', Ker prc~F,= {(x~, Yi)i,I if xi=w,, then xi=O=yi, if  xi=u~, 
yi=u~}=A', where A denotes the diagonal of k~@k,, A" is embedded in (k~@k2)" 
corresponding to {us} coordinates. Let ~ denote the projection .4"~.,t"-" lifting 
pr; one has prong=(n-r)gop.  Now, ( n - r ) g .  ff(F)=prong(F)=pr(F~)=(k~@O)"-', 
so that /3(F)=ra~-' .  I f  Kis the kernel of  the restriction of/5 to F, K = K e r  f f n F =  
(A'@O)nF=(A'@O)n(ng)-aF,. Hence (ng)K=A" or K~A' .  Thus we have an exact 
sequence O~A'~F~m~- '~O.  Since Ext] (m2, A)~Ext ]  (,4, A)=0  this sequence 
splits giving the required result. 
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Proof of (3). In the above notations, in this case, we have an exact sequence 

0 -,. e - .  ~" ~ (k, r k~)"lM1 r M~ -,- 0 

and we want to determine F up to isomorphism. Let dim Ml=r. Let hlEAUt k~, 
i = 1 , 2  be such that hx(M~)=(kx@O)'GO, h~(Mz)=O@(O@k2) ~-', h~(M~) (resp. 
hz(Mz)) mapping in the first r factors (resp. last n - r  factors) in (k~@k~)". Let 
(au) and (bu) be the matrices of hx and h~ (with respect to the canonical basis). Let 
auC,4 be such that g(cu)=(a u, bo). Then g(det (cu))=(det (au), det (bu)) and 
hence (cu)~GL(A"). Thus h=h~@h2 lifts to an automorphism of  .4". Hence one 
can replace M I ~ M  2 by h(M10M2) i.e. F~.(ng)-a(h(MiE3M~))=rn~-'~m'~. 

4.5. Let M be the moduli space of  semistable generalised parabolic bundles 
on a e of type described in 4.1. For r = l  . . . .  , n  let M, c M  be the subset of  M 
corresponding to (E, a) such that at least one of Pl, P2 is an isomorphism and the 
other is of rank r. Let M0 be the subset of M corresponding to (E, or) such that 
none of P1, p~ is an isomorphism or p~=0 or p2=0. Clearly M=U,~=0M,. As 
in 2.4, one can obviously globalise the construction in 4.1 to get a morphism f :  M ~ U, 
U being the moduli space of  semistable torsionfree sheaves of  rank n, degree d 
on X. One has u = u : = 0  U,, where U, corresponds to torsionfree sheaves F such 
that Fxo~r~oO(n-r)m o. In particular, U, is the open subset of  U corresponding 
to locally free sheaves. Proposition 4.3 shows that f ( M , ) c  U, for r =  1 . . . . .  n. In 
fact one has the following theorem. 

Theorem 3. Let X be an irreducible projective curre defined over an algebraically 
closed field, with only one node xo as a singularity. Let n: ~ X be the normalisation. 
Let M be the rnoduli ~pace of  ~emistable generalised parabolic bundles E of rank n, 
degree d and parabolic structure given by D = n-1 (x0), Ely D FI (E) D 0, dim F1 (E) = n, 
(~1, ~ )= ( 0 ,  ~) ~ near 1. Let U be the moduli space of  semistable torsionfree sheaves of 
rankn,  degreed on X, U=U~=o U, where U,={FlF~o~rd)xo@(n-r)mo}. Then 
there exists a surjective morphism f: M--,U such that f(M,)C= Ur for all 
r= 1, ..., n and the restriction o f f  gives an isomorphism of M, onto U,. In particular, 
i f  n and d are coprime, then M is a desingularization of U. 

Proof We have only to check that (i) f [M,  is a surjection for all r and (ii) f l M ,  
is an isomorphism onto U,. This can be done on similar lines as in proposition 1.11, 
so we only sketch the proof with necessary modifications. For (ii), the inverse f - 1  
is given as follows. For F~ [_7, (i.e. corresponding to an element of  U,) define 
E=zc*F, Fl(E)=F|174174174 Since the above inclu- 

sion is essentially given by the inclusion ~0c~x0 and ~x0 maps onto the diagonal 

in ka=r176174 it follows that Pl and P2 are isomorphisms. Define f - l ( F ) =  



Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves 213 

(E, FI(E)). (i) If  F~ U0, F=zr.(E0) for a unique vector bundle E0 on s Take any 
E given by an extension of  the form 

O ~ E o ~ E--An* k ( x O ' O k ( x 2 ) " - ' ~  O, O<= r <= n 

and F~(E)=kernel of  h]Xl+X~. Then f (E ,F~(E) )=F.  If F~U,, 0<r<:n ,  the 
result can be proved as in proposition I. 11 (3). In this case, E0 = n* F/torsion, E is 
given by 

O -~ Eo -.  E - ~  k(x2)"- ' -~  O 

o r  

0 ~ Eo -~ E ~ k(xx)"-" ~ O. 

4.6. The determinant map. 

Let (E, or) be as in 4.1. We shall generalise the results of  2.3 to define the "de- 
terminant" of  (E, ~r) when at least one of  Pl or Pz (see 4.3) is an isomorphism. 
The space Fx(E ) is an element of  the Grassmanian of  n dimensional subspaces 
of  E x @ E x .  By Pliicker embedding, G is embedded in P ( A " ( E x @ E x )  ). Now, 
A"(Ex1@E~,) contains A"Ex|  as a direct summand, let d be the projection 
P(A"(E~@E~))~P(A"E~I|  Let (el . . . .  , e,) and (fl  . . . .  , f ,)  be the bases 
of  E~, and E~.  Then a basis of  FI(E) is of  the form (ui=~aigeg+~blj f j )~=1 ...... �9 
The point P in G corresponding to F~(E) is given by u~A. . .Au ,=de t (ao)e~A. . .  

Ae,+de t  (b i j ) faA . . .A f ,+other  mixed terms. Hence d ( e ) = ( d e t  (a~j), det (b~))= 
(detp~, detp2). We define det (E, a )=(de t  E; (detp~, detp2)), p~ and p~ being the 
projections from F~ (E) to E~1 and E.~, respectively. Note that (det px, det P2) def- 
ines a one dimensional subspace of  (det E) ,  @(det E)~,, so det (E, tr) is a general- 
ised parabolic line bundle. 

It is easy to see that (see 2.4) this construction gives a morphism 
det: ' " U~=I Mi ~ P ,  P being the moduli space of generalised parabolic line bundles 
(2.1, 2.2). We shall show that det goes down to a morphism det: U, wU,_~-*J(X).  
Let F E U , , f ( E ,  F~)=F. Then F~(E) is the graph of  a morphism say g: E~-*E~, 
and F is obtained by identifying Ex, with E~, via g. Hence det F is obtained by 
identifying detEr ,  with detEx, via de tg  i.e. it is the generalised parabolic line 
bundle (detE,  Fd~tg)- Note that g=p2op;  ~ so de tg  is the point (I, detg)~.  
(det Pl, det P2) in p1. Thus detlM, is the same as the determinant morphism U, -~J(X) 
under the identification by f [ M , .  By the proof  of  theorem 3, FE U,, and element 
(E, F~ (E)) in M, on the fibre o f f  over F is obtained from an extension of  the type 

(a) 0 ~ E0 ~ E ~ k(x0"-"  ~ 0 or 

(b) 0 ~ Eo ~ E-,-  k(x2)"-" ~ O. 
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Let L=de t  E0=det (n'F/torsion). Then one has either 

(c) det(E, Fl(E)) = (L((n-r)xO, F~(L) = Lx~) or 

(d) det(E, F~(E)) = (L((n-r)x2), FI(L) = Lx~). 

If n - r =  1 i.e. FE Un-1, then (c) and (d) map into the same element of J (X) -J (X)  
under the normalisation morphism P-2(X) .  Thus det induces a morphism 
det: U~_IJ(X)-J(X ). Note that det does not induce a morphism on U,, r~_n- 1 
as (c) and (d) give different elements in J(X)-J(X) .  Thus we have proved the 
following. 

Proposition 4.7. (1) The morphisrn det: U~-~J(X) lifts to a morphism Mn-*P. 
The latter extends to a morphism d: U,>o M,~P.  

(2) The morphism d descends to a morphism det: U, wU~_I--,J(X). But d does 
not induce a morphism on U,<~-I U, extending det. 

Examples 4.8. Consider the rank two torsionfree sheaf d~3~r162 We claim that 
A2(~@Jr Since both t9 and J [  are trivial outside x0, the problem is 
local at x0. Let (d~x0, m0)=(A, m). One has the inclusion i: A@m~A@A. Let 
(el, e2) be the canonical basis of A@A and let x, y be the generators of m, i(el)=el, 
i(x)=xe2, i(y)----ye2. Then A2i: A~(A~)m)~A maps the torsion to zero and 
A2(A~m)/torsion-~I=Image of A2i. The three generators exAx, elAy, xAy of 
A2(A~)nO map respectively to xelAe2, ye~Ae2 and 0 .  Thus I=m and 
hence A~(0@Jg) / to rs ion~ '. Similarly, An(tV'-~eg)/tor~dL Notice that 
degree (~n-1 @ J  D =degree ~r - 1. 

(2) Consider now the rank two torsionfree sheaf ~r162 As above, we need 
only to compute A2(m@m)/torsion. Writing m@m=mt@m~, let (x~,yj) be the 
generators ofm~, j =  1, 2, i: ml@m2~A@A the inclusion, i(xj)=xjej, i(yj)=yjej, 
(el, e~) being the canonical basis of A@A. One sees that Ker (AS/) is generated by 
XlAyl, x~Ay 2 while I=Im(A2i) is generated by x2exAe~, xyelAe2, y~elAe2 i.e. 
I=m ~. Thus A2(~Cl@.Al)/torsion~m ~. Note that degree(A2(~t'@~'))/torsion= 
- 3  while degree ( ~ ' ~ , / / ) = - 2 .  Similarly, A'+S(~@Jl**)/torsion-~,g * and 
degree (dT"@~l/*s)= --s while degree d / * # - s  if s > l .  This also explains why 
the determinant morphism does not extend to U,, r<n-1 .  

Remark 4.9. Let U z be the subset of Un corresponding to vector bundles on 
X with a fixed determinant L and let UL be its closure in U. Let ML be the isomorphic 
image of UL under (flUn) -1. Sincefis  proper and flUn is an isomorphism, as in 
remark 3.20, we see that f(M.L)=UL. From proposition4.7(1) it follows that 
~Lc~([.J,>oM,)=~b i.e. MLcMLuMo and hence U L C U L k . J U o  �9 
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