Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves

Usha Bhosle

Introduction

Let X be an irreducible nonsingular projective curve over an algebraically closed field. Let E be a vector bundle of rank k and degree d on X. We define generalised parabolic vector bundles (or GPB's) by extending the notion of a parabolic structure at a point of X to a parabolic structure over a divisor on X as follows.

Definition 1. A parabolic structure on E over a divisor D consists of 1) a flag \mathscr{F} of vector subspaces of the vector space $E_{1D} = E \otimes O_D$:

$$\mathscr{F}: F_0(E) = E_{|D} \supset F_1(E) \supset \ldots \supset F_r(E) = 0$$

2) real numbers $\alpha_1, ..., \alpha_r$ (with $0 \le \alpha_1 < \alpha_2 < ... < \alpha_r < 1$) called weights associated to the flag.

Definition 2. A GPB is a vector bundle E together with parabolic structures over finitely many divisors D_i .

We define semistability, stability of *GPB's*, study their properties and construct moduli spaces in some important cases. The main results are the following:

Result 1. (Proposition 2.2.) The moduli space P of generalised parabolic line bundles L with \mathscr{F} given by $F_0(L) = L_{x_1} \oplus L_{x_2} \supset F_1(L) \supset o$; $x_1, x_2 \in X$, dim $f_1(L) = 1$, is a nonsingular projective variety, it is in fact a P¹-bundle over Pic X.

Result 2. (Theorem 1.) There exists a coarse moduli space M(k, d, a) of equivalence classes of semistable GPB's of rank k, degree d and with a parabolic structure over a divisor D of degree 2 given by $\mathscr{F}: F_0(E) = E_{|D} \supset F_1(E) \supset o$, $a = \dim F_1 E$, weights $(\alpha_1, \alpha_2) = (0, \alpha)$. This space is a normal projective variety of dimension $k^2(g-1)+1+\dim F$, F being the flag variety of flags of type \mathscr{F} . If k and d are

mutually coprime, α near 1 and a=k, then M(k, d, k) is nonsingular and is a fine moduli space.

We have an interesting application of *GPB's* to the study of the moduli space U(k, d) of torsionfree coherent sheaves of rank k and degree d on a nodal curve X_0 . Let $\pi: X \rightarrow X_0$ be the normalisation map. For simplicity of exposition, let us assume that X_0 has a unique node x_0 and let x_1, x_2 be two points in X lying over x_0 , $D = x_1 + x_2$.

Result 3. The moduli space P (result 1) is a desingularisation of the compactified Jacobian \overline{J} of X_0 .

Result 4. (Theorem 3.) There is a birational surjective morphism $f: M(k, d, k) \rightarrow U(k, d)$. If $U_k \subset U(k, d)$ is the open subset corresponding to locally free sheaves, then the restriction of f induces an isomorphism of $f^{-1}(U_k)$ onto U_k .

In particular from results 2 and 4 it follows that if (k, d) = 1, then M = M(k, d, k)is a desingularization of U(k, d). The moduli space U = U(k, d) has a stratification. $U = \bigcup_{r=0}^{k} U_r$ where $U_a = \{F | \text{stalk } F_{x_0} \approx a \mathcal{O}_{x_0} \oplus (k-a) m_0\}$, \mathcal{O}_{x_0} and m_0 being the local ring and maximum ideal at x_0 . The space M also has a stratification $M = \bigcup_{r=0}^{k} M_r$ such that $f(M_r) \subseteq U_r$, for all r > 0 (proposition 4.3). We have a morphism det: $U_k \rightarrow J$ defined by det $F = A^k F$. An interesting question to ask is: Does this morphism extend to U?

Result 5. (Proposition 4.7.)

(1) The morphism det: $U_k \rightarrow J$ lifts to a morphism $M_k \rightarrow P$. The latter extends to a morphism $d: \bigcup_{r>0} M_r \rightarrow P$.

(2) The morphism d descends to a morphism det: $U_k \cup U_{k-1} \rightarrow \overline{J}$. But d does not induce a morphism on $\cup U_r$ for r < k-1 extending the det morphism.

Having found a negative answer to our first question, further questions arise: What is the closure of the graph of the det morphism in $U \times \overline{J}$? What is the closure of a fibre of the det morphism in U? Let U_L be the closed subset of U_k corresponding to vector bundles with a fixed determinant L and let \overline{U}_L be its closure in U. We show that (3.20, 4.9) $\overline{U}_L \subset U_L \cup U_0$, and in case of rank two $\overline{U}_L = U_L \cup$ $\{\pi_* E | \det E = \pi^* L(-x_1 - x_2), E \text{ stable}\}.$

I am grateful to P. E. Newstead and C. S. Seshadri for very useful discussions. I would like to thank the University of Liverpool for hospitality and excellent working conditions. I would also like to thank Amit Roy for the proof of proposition 1.8 and N. Hitchin and P. M. H. Wilson for some inspiring remarks.

1. Generalised parabolic bundles

Notation 1.1.

Let X be an irreducible curve with only nodes as singularities over an algebraically closed field k. Let $\pi: \tilde{X} \to X$ be the normalisation map. For simplicity of exposition we shall assume that X has a single node x_0 , the results can be seen to generalise easily to the general case. Let x_1, x_2 be the two points of \tilde{X} lying over $x_0, D = x_1 + x_2$. Let θ_{x_0}, m_0 denote the local ring and its maximum ideal at x_0 .

We want to study the moduli space U of semistable torsion free sheaves of rank two and degree d on X. This space has been studied by Seshadri [S] and Gieseker [G]. Our approach is different from either of them, it is closer to the former. One has a stratification of U given by $U = \bigcup_{a=0}^{2} U_{a}$, where U_{a} denotes the subset of U consisting of points corresponding to sheaves F such that $F_{x_0} \approx a\theta_{x_0} \oplus (2-a)m_0$; U_2 is an open dense subset of the (irreducible) complete variety U corresponding to locally free sheaves F. Let U_2^L denote the subset of U_2 corresponding to F such that determinant of F is a fixed line bundle L. We are particularly interested in studying U_2^L and its closure in U. It can be shown that the determinant morphism from U_2 to the generalised Jacobian of X can be extended to $U_1 \cup U_2$, it seems that it is not extendable to U_0 . In [S], a bijective correspondence between sheaves F corresponding to elements in U_a and bundles on \tilde{X} with additional structures at x_1 and x_2 is given (theorem 17, p. 178, [S]). But this correspondence is different on each stratum and does not preserve degrees. Hence it is not of much use in studying the moduli space U as a whole. In our approach, we get sheaves F in U from "generalised parabolic bundles" E on \tilde{X} of same degree as F.

Definition 1.2. A Generalised parabolic vector bundle of rank 2 on \tilde{X} is a vector bundle E of rank two on X together with a two-dimensional k-subspace $F_1(E)$ of $E_{x_1} \oplus E_{x_2}$.

Definition 1.3. A generalised parabolic vector bundle E is stable (semistable) if for every line subbundle L of E,

degree
$$L + \dim \left(F_1(E) \cap (L_{x_1} \oplus L_{x_2})\right) < (\leq) \frac{1}{2} \left(\text{degree } E + \dim F_1(E) \right)$$

i.e.

$$\deg \cdot L + \dim \left(F_1(E) \cap L_D \right) <_{(\leq)} \mu(E) + 1.$$

Remark 1.4. If degree E is odd, then stability is equivalent to semistability for the generalised parabolic bundle of rank two.

Definition 1.5. A homomorphism of generalised parabolic bundles E_1 , E_2 of rank two is a vector-bundle homomorphism of E_1 into E_2 which maps $F_1(E_1)$ into $F_1(E_2)$.

1.6. We now want to associate to a generalised parabolic bundle E of rank 2 and degree d on \tilde{X} a torsionfree sheaf F on X of rank two and degree d. We have $\pi_*(E) \otimes k(x_0) = E_{x_1} \oplus E_{x_2}$ (p. 175, [S]) and hence a surjective morphism $\pi_*(E) \rightarrow E_{x_1} \oplus E_{x_2}/F_1(E)$. Define F to be the kernel of this surjection i.e. F is given by

(1.7)
$$0 \rightarrow F \rightarrow \pi_* E \rightarrow \pi_*(E) \otimes k(x_0)/F_1(E) \rightarrow 0.$$

Proposition 1.8. Let p_1 and p_2 denote the canonical projections from $F_1(E)$ to E_{x_1} and E_{x_2} respectively.

- (1) If p_1 and p_2 are both isomorphisms, then F corresponds to an element in U^2 i.e. F is locally free.
- (2) If only one of p_1 or p_2 is an isomorphism and the other is of rank one, then F corresponds to an element in U^1 .
- (3) If p_1 and p_2 are both of rank one or one of them is zero, then F corresponds to an element in U^0 .

Proof. (3) Note that if neither of p_1 or p_2 is an isomorphism, then p_1 , p_2 satisfy the conditions of (3).

In case both p_1 , p_2 are of rank 1, $F_1(E) = k_1 \oplus k_2$, $k_i \subset E_{x_i}$, i=1, 2. Then clearly $F = \pi_*(E_0)$, where E_0 is defined by

$$0 \to E_0 \to E \to E_{x_1}/k_1 \oplus E_{x_2}/k_2 \to 0.$$

If $p_2=0$, $F_1(E)=E_{x_1}$ and $F=\pi_*(E_0)$, with E_0 defined by $0 \to E_0 \to E \to E_{x_2} \to 0$ i.e. $E_0=E(-x_2)$. Similarly, if $p_1=0$, $F=\pi_*(E(-x_1))$.

(1) and (2). In cases (1) and (2), one of p_1 and p_2 say p_1 is an isomorphism. Then using p_1 , $F_1(E)$ can be regarded as the graph of a homomorphism $\sigma: E_{x_1} \rightarrow E_{x_2}$, σ being an isomorphism in case (1) and of rank one in case (2). Since $F|X-x_0 \approx \pi_*(E)|X-x_0$ is locally free, our problem is local at x_0 . So we are reduced to the following situation. Let A be the local ring at x_0 , it is a Gorenstein local ring with maximum ideal m, \overline{A} is a semi local ring with two maximum ideals m_1, m_2 ; $\sigma: \overline{A}/m_1 \oplus \overline{A}/m_1 \rightarrow \overline{A}/m_2 \oplus \overline{A}/m_2$ a nonzero linear map with graph Γ_{σ} . We write $k_i = \overline{A}/m_i$, $\overline{A}_i = \overline{A}$, i = 1, 2 and $n_i: \overline{A}_i \rightarrow k_1 \oplus k_2$ canonical maps, for i = 1, 2. F is an A-module given by

$$0 \to F \to \overline{A}_1 \oplus \overline{A}_2 \to_p ((k_1 \oplus k_2) \oplus (k_1 \oplus k_2)) / \Gamma_{\sigma} \to 0$$

where p is the composite of the map $(n_1 \oplus n_2)$ with the quotient map $k_1 \oplus k_2 \oplus k_1 \oplus k_2 \oplus (k_1 \oplus k_2 \oplus k_1 \oplus k_2)/\Gamma_{\sigma}$. Thus $F = (n_1 \oplus n_2)^{-1}\Gamma_{\sigma}$. We want to show that $F \approx A \oplus A$ or $A \oplus \overline{A}$ according as σ is of rank two or one. Note that \overline{A} , m, m_1 and m_2 are all isomorphic. Fix a basis e_1 , e_2 of k^2 . With respect to the basis e_1 , e_2 , let the matrix of σ be $\begin{pmatrix} g & b \\ c & d \end{pmatrix}$ and let the matrix of σ^{-1} be $\begin{pmatrix} G & B \\ C & D \end{pmatrix}$ if σ is of rank two. Since

 $n=n_i: \overline{A} \to k_1 \oplus k_2$ is a surjection, there exist α , β , γ , δ in \overline{A} such that $n(\alpha)=(1, G)$, $n(\beta)=(0, B), n(\gamma)=(0, C)$ and $n(\delta)=(1, D)$. Then the matrix $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL(\overline{A})$ as $n(\alpha\delta - \beta\gamma)=(1, GD-BC)$ is a unit in \overline{A} modulo the conductor m, $\overline{A}/m \approx \overline{A}/m_1 \oplus \overline{A}/m_2$. This matrix defines an automorphism φ of $\overline{A} \oplus \overline{A}$ which induces the homomorphism $\psi: k_1 \oplus k_2 \oplus k_1 \oplus k_2 \to k_1 \oplus k_2 \oplus k_1 \oplus k_2$ given by

$$\psi(x_1, y_1, x_2, y_2) = (x_1, Gy_1 + By_2, x_2, Cy_1 + Dy_2).$$

We have $\Gamma_{\sigma} = \{(x_1, gx_1 + bx_2, x_2, cx_1 + dx_2) | (x_1, x_2) \in k_1 \oplus k_2\}$. Since $\sigma^{-1} \circ \sigma = \text{Id}$ it follows that $\psi(\Gamma_{\sigma}) = \Gamma_{\text{Id}}$. Since ψ lifts to the automorphism φ i.e. $\psi(n_1 \oplus n_2) = (n_1 \oplus n_2) \circ \phi$, it follows that $(n_1 \oplus n_2)^{-1} \Gamma_{\sigma} \approx (n_1 \oplus n_2)^{-1} \Gamma_{\text{Id}} \approx A \oplus A$.

Now let σ be of rank one. In the above proof, we lifted the homomorphism ψ defined by $\sigma^{-1} \in GL(k^2)$ to an automorphism φ of $\overline{A} \oplus \overline{A}$. We can do it for any $f \in GL(k^2)$; then ψ will map Γ_{σ} into $\Gamma_{f \circ \sigma}$. Hence we can replace Γ_{σ} by $\Gamma_{f \circ \sigma}$. Since $\sigma \rightarrow f \circ \sigma$ is equivalent to change by row transformations of the matrix of σ , we may replace the matrix of σ by any matrix obtained by doing row transformations. (Note that column transformations are not allowed e.g. $\psi: (x_1, y_1, x_2, y_2) \rightarrow (x_1, y_1 - x_2, x_2, y_2)$ cannot be lifted to an automorphism of $\overline{A} \oplus \overline{A}$.) By row transformations, any matrix σ of rank 1 can be reduced to one of the following forms

(i)
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix}$, $b \neq 0$.

The following can be seen easily. In case (i), $(n_1 \oplus n_2)^{-1} \Gamma_{\sigma} = A \oplus m_2$. In case (ii) $(n_1 \oplus n_2)^{-1} \Gamma_{\sigma} = m_1 \oplus A$. In case (iii), we need a little more work. We have $\Gamma_{\sigma} = \{(x_1, x_1 + bx_2, x_2, 0) | (x_1, x_2) \in k_1 \oplus k_1\}$. Consider

$$\overline{A}_1 \oplus \overline{A}_2 \xrightarrow{n_1 \oplus n_2} k_1 \oplus k_2 \oplus k_1 \oplus k_2 \\ \downarrow p_2 & \downarrow p'_2 \\ \overline{A}_2 \xrightarrow{n_1} k_1 \oplus k_2$$

Then $p'_2 \circ (n_1 \oplus n_2) F = p'_2(\Gamma_\sigma) = \{(x_2, 0) | x_2 \in k_1\} = k_1 \oplus \{0\}$. Now L.H.S. $= n_2 \circ p_2(F)$, so $n_2 \circ p_2(F) = k_1 \oplus 0$ i.e. $p_2(F) = m_2$. Let $K = \text{Ker } p_2|F = (\overline{A}_1 \oplus 0) \cap F$. As $(n_1 \oplus n_2)(K) = (n_1 \oplus n_2)(\overline{A} \oplus 0) \cap \Gamma_\sigma = \{(x_1, x_1, 0, 0) | x_1 \in k_1\}$ we have $K = A \oplus 0$. Thus we have an exact sequence $0 \to A \to F \xrightarrow{P_2} \overline{A} \approx m_2 \to 0$. Since $\text{Ext}_A^1(\overline{A}, A) = 0$, this sequence splits giving $F \approx A \oplus \overline{A}$.

This finishes the proof of the proposition.

Proposition 1.9. If F is a semistable (respectively stable) torsionfree sheaf on X, then E is a semistable (respectively stable) generalised parabolic bundle on X. The converse is also true.

Proof. Suppose that F_1 is stable. Let $L \subset E$ be a line subbundle. We want to show that deg $L + \dim (F_1(E) \cap (L_{x_1} \oplus L_{x_2})) < \mu(E) + 1$. Let dim $(F_1(E) \cap (L_{x_1} \oplus L_{x_2})) = a$, a = 0, 1 or 2.

(i) a=0: One has an exact sequence on X

$$0 \rightarrow L_1 \rightarrow \pi_* L \rightarrow (L_{x_1} \oplus L_{x_2}) \rightarrow 0, \quad (L_{x_1} \oplus L_{x_2}) \approx \pi_* L \oplus k(x_0),$$

with $L_1 \subset F$. The stability of F implies that $\deg \cdot L_1 < \mu(F)$ i.e. $\deg L - 1 < \mu(E)$ i.e. $\deg L + a < \mu(E) + 1$.

- (ii) a=1: One has $0 \rightarrow L_1 \rightarrow \pi_* L \rightarrow \pi_* L \otimes k(x_0)/k^a \rightarrow 0$, with $L_1 \subset F$, deg $\cdot L_1 = \deg L$. Hence deg $L_1 < \mu(F)$ implies that deg $\cdot L + a < \mu(E) + 1$.
- (iii) a=2: In this case, $L_1 = \pi_* L$ so that $\deg \cdot L_1 = \deg \cdot L + 1$. The stability of F implies that $\deg \cdot L + 2 < \mu(E) + 1$.

Thus F is stable implies that E is a stable generalised parabolic bundle. The proof in the semistable case is obtained by replacing '<' by ' \leq ' in the above proof.

We now prove the converse. Let L_1 be a torsionfree subsheaf of F of rank 1. One has $\pi^*L_1/\text{torsion} \subset \pi^*F/\text{torsion}$ and (a sheaf inclusion) $\pi^*F/\text{torsion} \to E$. Let L be the line subbundle of E generated by $\pi^*L_1/\text{torsion}$; $a = \dim(F_1(E) \cap (L_{x_1} \oplus L_{x_1}))$. As seen above, if a=0, $L_1=\pi_*(L(-x_1-x_2))$ so that $\deg \cdot L < \mu(E)+1$ implies that $\deg \cdot L_1 < \mu(F)$. If a=1, as seen above, L_1 is locally free and $\deg L_1 = \deg L$. Hence $\deg L + a < \mu(E) + 1$ implies that $\deg L_1 < \mu(F)$. If a=2, $L_1=\pi_*L$, $\deg \cdot L_1=\deg L_1=\deg L+1$ and we again get $\deg L_1 < \mu(F)$. Thus F is stable (semistable) if E is stable (semistable) generalised parabolic bundle.

Remark 1.10. In 1.6, we defined a mapping f from the set S of isomorphism classes of generalised parabolic vector bundles of rank 2 and degree d on \tilde{X} to the set \mathbb{R} of isomorphism classes of torsionfree sheaves of rank 2 and degree d on X. Proposition 1.9 shows that $f(E, F_1(E)) = F$ is semistable (stable) iff $(E, F_1(E))$ is so. Let \tilde{U}^2 , \tilde{U}^1 and \tilde{U}^0 be the subsets of S corresponding to generalised parabolic bundles which satisfy the conditions (1), (2) and (3) respectively in proposition 1.8. Then f maps \tilde{U}^i into U^i , i=0, 1, 2. Here U^i denotes the subset of R consisting of torsionfree sheaves F such that the stalk F_{x_0} of F at x_0 is isomorphic to $i\theta_{x_0} \oplus$ $(2-i)m_0$.

Proposition 1.11. (1) f maps \tilde{U}^2 bijectively onto U^2 , (2) f maps \tilde{U}^0 onto U^0 , (3) f maps \tilde{U}^1 onto U^1 .

Proof. (1) We give the inverse of f on U^2 . Let $F \in U^2$. Define $E = \pi^* F$, $F_1(E) = F \otimes k(x_0) \subset F \otimes \pi_* \theta_{\mathcal{R}} \otimes k(x_0) = \pi_*(E) \otimes k(x_0)$. It is easy to see that $(E, F_1(E))$ is a generalised parabolic bundle which maps to F under f.

(2) Let $F \in U^0$. Then $F = \pi_* E_0$ for a unique vector bundle E_0 on X (proposition 10, p. 174 [S]). The fibre of f over F consists of generalised parabolic bundles of the following type.

- a) $E = E_0(x_2), F_1(E) = E_{x_1}$.
- b) $E = E_0(x_1), F_1(E) = E_{x_1}$.
- c) E given by an extension of the type $0 \rightarrow E_0 \rightarrow E \rightarrow k(x_1) \oplus k(x_2) \rightarrow 0$, $F_1(E) = \text{Ker}(E \otimes \theta_{x_1+x_2} \rightarrow k(x_1) \oplus k(x_2))$.

Now, $\operatorname{Ext}^{1}(k(x_{1})\oplus k(x_{2}), E_{0})\approx (E_{0}\otimes(\Omega^{1})^{-1})\otimes \theta_{x_{1}+x_{2}}\approx (E_{0})_{x_{1}}\oplus (E_{0})_{x_{2}}$ and given $k_{1}\subset (E_{0})_{x_{1}}, k_{2}\subset (E_{0})_{x_{2}}, k_{1}\approx k_{2}\approx k$, there exists a unique extension of the above type with kernel $((E_{0})_{x_{i}}\rightarrow E_{x_{i}})=k_{i}, i=1, 2$. Thus the set of generalised parabolic bundles of type c) is isomorphic to $\mathbf{P}^{1}\times\mathbf{P}^{1}(=\mathbf{P}((E_{0})_{x_{1}})\times\mathbf{P}((E_{0}))_{x_{2}})$.

(3) Before proving that $\varphi | \tilde{U}^1$ is a surjection onto \dot{U}^1 , let us analyse $\varphi | \tilde{U}^1$. In this case, we can write $F_1(E)$ as the graph Γ_{σ} of a homomorphism $\sigma: E_{x_1} \rightarrow E_{x_2}$ of rank one if p_1 is an isomorphism, p_1 being the projection of $F_1(E)$ to E_{x_1} . (The case when p_2 is an isomorphism can be dealt with similarly.) Let $F=f(E, F_1(E))$, $E_0=\pi^*(F)/\text{torsion}$. Then one has exact sequences $0 \rightarrow E_0 \rightarrow E \rightarrow E_x/\text{Image } \sigma \rightarrow 0$ and

$$0 \to F \to \pi_* E \to E_{x_1} \oplus E_{x_2} / \Gamma_{\sigma} \to 0.$$

Hence $(E_0)_{x_1} \xrightarrow{\sim} E_{x_1}$ canonically, let N_1 denote the isomorphic image of kernel σ in $(E_0)_{x_1}$. Since $0 \rightarrow k \rightarrow (E_0)_{x_2} \rightarrow E_{x_2} \rightarrow E_{x_2}$ /Image $\sigma \rightarrow 0$, $(E_0)_{x_2}$ contains a one dimensional N_2 such that $(E_0)_{x_2}/N_2 \approx$ Image σ . Let $\bar{\sigma}$ denote the isomorphism $(E_0)_{x_1}/N_1 \xrightarrow{\sim} (E_0)_{x_2}/N_2$ induced by the composite $(E_0)_{x_1} \xrightarrow{\sim} E_{x_1} \xrightarrow{\sigma}$ Image $\sigma \xrightarrow{\sim} (E_0)_{x_2}/N_2$. F is defined by

$$\Gamma(U, F) = \{s \in \Gamma(\pi^{-1}U, E) | s(x_2) = \sigma s(x_1)\}$$

= $\{s \in \Gamma(\pi^{-1}U, E_0) | s(x_2) \mod N_2 = \bar{\sigma}(s(x_1) \mod N_1)\}.$

Now start with an $F \in U^1$. Define $E_0 = \pi^* F/\text{torsion}$. Since the stalk $F_{x_0} \approx m_0 \oplus \theta_{x_0}$, $(E_0)_{x_i} \approx N_i \oplus \Delta_i$, $N_i \approx m_0 \bar{\theta}_x \otimes k(x_i)$, $\Delta_i \approx \bar{\theta}_{x_0} \otimes k(x_i)$, $i=1, 2, \bar{\theta}_x$ being the normalisation of θ_x . Define the vector bundle E on \tilde{X} by $0 \rightarrow E_0 \rightarrow E \rightarrow k(x_2) \rightarrow 0$ with the condition Ker $((E_0)_{x_1} \rightarrow E_{x_1}) = N_2$, it is easy to see that such E exists. By theorem 17, p. 178 [S], there is a natural bijection between the set of isomorphism classes of torsionfree sheaves F of rank 2, degree d on X with $\mathscr{F}_{x_0} \approx \theta_{x_0} \oplus m_0$ and the set of isomorphism classes of triples $(E_0, \Delta_1, \Delta_2, \bar{\sigma})$, E_0 being a vector bundle of rank 2 on \tilde{X} of degree d-1, Δ_i are one-dimensional subspaces of $(E_0)_{x_1}$, i=1, 2 and $\bar{\sigma}$ is an isomorphism $\Delta_1 \rightarrow \Delta_2$. Since Δ_1, Δ_2 both come from $\theta_{x_0} \subset F_{x_0}$, we have an isomorphism $\bar{\sigma}: \Delta_1 \rightarrow \Delta_2$. Define σ as the composite $E_{x_1} \xrightarrow{\sim} (E_0)_{x_1} \rightarrow \Delta_1 \xrightarrow{\bar{\sigma}} \Delta_2 \rightarrow E_{x_2}$ and $F_1(E) = \Gamma_{\sigma}$. From our analysis of $f|\tilde{U}^1$, it is easy to see that $f(E, F_1(E)) = F$ i.e. f maps \tilde{U}^1 onto U^1 . **Lemma 1.12.** If E is a stable generalised parabolic vector bundle of rank 2, then either E is stable as a vector bundle or E has a unique (maximum) line subbundle L of degree d_1 , where $d_1 = \mu(E)$ if degree of E is even and $d_1 = \mu(E) + \frac{1}{2}$ if degree of E is odd. Moreover one has $F_1(E) \cap (L_{x_1} \oplus L_{x_2})$ is zero.

Proof. Let L be a line subbundle of E and $a = \dim (F_1(E) \cap (L_{x_1} \oplus L_{x_2}))$. If a=1 or 2, stability of E as a generalised parabolic bundle implies that degree $L < \mu(E)$. If a=0, it implies that degree $L < \mu(E)+1$. Hence if E is not a stable vector bundle, there must exist a line subbundle L of degree d_1 such that $\mu(E) \le d_1 < \mu(E)+1$ and a=0. It is easy to see that such a line bundle is unique, even the former condition suffices for uniqueness.

Lemma 1.13. (i) If E is a generalised parabolic bundle (of rank two). Then the following condition (C) is satisfied.

(C) For any line subbundle L of E with

$$\deg L = \begin{cases} \mu(E) - \frac{1}{2} & \text{if } \deg E \text{ is odd} \\ \mu(E) - 1 & \text{if } \deg E \text{ is even} \end{cases}$$

one has a(L) < 2. Here $a(L) = \dim F_1(E) \cap (L_{x_1} \oplus L_{x_2})$.

(ii) If E is a stable vector bundle satisfying condition (C) for $F_1(E) \subset E_{x_1} \oplus E_{x_2}$ then E together with $F_1(E)$ is a stable generalised parabolic vector bundle.

Proof. Proofs are straightforward (using definitions).

Remark 1.14. $(g \ge 2)$. Given a stable vector bundle E of odd degree there exists $F_1(E) = k_1 \oplus k_2$, $k_i \subset E_{x_i}$ such that $a(L) \ne 2$ i.e. $k_1 \oplus k_2 \ne L_{x_1} \oplus L_{x_2}$ for any line subbundle L of degree $= \mu(E) - \frac{1}{2}$. In fact if degree E is odd, rank E = 2, E can have at most 4 line subbundles of degree $\mu(E) - \frac{1}{2}$ (proposition 4.2 [L]). By corollary 4.6 [L], the variety of maximal line subbundles of E has dimension ≤ 1 for any vector bundle E of rank 2.

2. Generalised parabolic line bundles and extension of the determinant map

Definition 2.1. A generalised parabolic line bundle on \tilde{X} is a line bundle L on \tilde{X} together with a one dimensional subspace $F_1(L)$ of $L_{x_1} \oplus L_{x_2}$.

Proposition 2.2. The moduli space P of generalised parabolic line bundles on \tilde{X} of fixed degree d (degree L=d) is a P¹-bundle over the Jacobian $J(\tilde{X})$ of \tilde{X} of line bundles of degree d. The variety P is a desingularisation of the compactified Jacobian J(X) of X.

Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves 195

Proof. Let V be the Poincaré bundle on $J(\tilde{X}) \times \tilde{X}$. Let $\mathscr{F}(V)$ denote the flag variety over $J(\tilde{X}) \times \tilde{X}$ of type determined by the generalised parabolic structure (i.e. $k^2 \supset k \supset 0$) and let P denote its restriction to $J(\tilde{X}) \times \{x_1, x_2\}$. Let $p: P \rightarrow J(\tilde{X})$ be the composite $P \rightarrow J(\tilde{X}) \times (x_1, x_2) \rightarrow J(\tilde{X})$. Clearly $p: P \rightarrow J(\tilde{X})$ is a P¹-bundle over $J(\tilde{X})$, and P is the moduli space of generalised parabolic line bundles of degree d.

Consider the universal bundle $(p \times id)^* V$ on $P \times \tilde{X}$. We have a surjection $(p \times id)^* V \rightarrow (p \times id)^* (V|J(\tilde{X}) \times \{x_1, x_2\})$. Let p_1 be the projection $P \times \tilde{X} \rightarrow P$. On P, there is a surjection $V|J(\tilde{X}) \times \{x_1, x_2\} \rightarrow \theta_p(1) \rightarrow 0$. Since $p_1^* (V|J(\tilde{X}) \times \{x_1, x_2\}) = (p \times id)^* V|J(\tilde{X}) \times \{x_1, x_2\}$, we get a surjection

$$\varphi \colon (\mathrm{id} \times \pi)_* (p \times \mathrm{id})^* V \to (\mathrm{id} \times \pi)_* (p \times \mathrm{id})^* V | P \times x_0 \to p_1^* \theta_P(1) | P \times x_0, p' \colon P \times X \to P.$$

Since $\theta_P(1)$ is free over P, it follows that $K = \text{Kernel } \varphi$ is flat over P. For every $g = (L, F_1(L)) \in P$, we have an exact sequence

(S)
$$0 \to K | g \times X \to \pi_* L \xrightarrow{\varphi_g} (\pi_* L) \otimes k(x_0) / F_1(L) \to 0.$$

Thus K is a family of torsionfree sheaves on X of degree d flat over P, so it gives a morphism h of P to the compactified Jacobian $\overline{J}(X)$ of X. $\overline{J}(X)$ contains J(X), the generalised Jacobian of X as a dense open subset. We shall now show that h is a surjective morphism which is an isomorphism from $h^{-1}(J(X))$ onto J(X) and fibre over each point in $\overline{J}(X) - J(X)$ consists of two points. In the sequence (S), write $L_1 = K | j \times X$. It is easy to see that if $F_1(L) \neq L_{x_1}$ or L_{x_2} , then L_1 is obtained by identifying fibres L_{x_1} and L_{x_2} by an isomorphism σ whose graph is $F_1(L)$ and L_1 is locally free with $\pi^* L_1 = L$. In case $F_1 = L_{x_1}$, $L_1 = \pi_*(L(-x_2))$ and $\pi^* L_1$ /torsion $= L(-x_2)$. If $F_1 = L_{x_2}$, $L_1 = \pi_*(L(-x_1))$, $\pi^* L_1$ /torsion $\approx L(-x_1)$. Thus if L_1 is locally free it comes from a unique generalised parabolic line bundle $(L = \pi^* L_1, F_1(L))$, $F_1(L) = \Gamma_{\sigma}$, $\sigma: (\pi^* L_1)_{x_1} \xrightarrow{\sim} + (\pi^* L_1)_{x_2}$ canonical isomorphism. If L_1 is not locally free, the fibre over L_1 consists of two points viz.

$$((\pi^*L_1/\text{torsion})(x_2) = L, F_1(L) = L_{x_1}), (L = (\pi^*L_1/\text{torsion})(x_1), F_1(L) = L_{x_2}).$$

Thus P is the disjoint union of J(X) and two copies of $\{J(\tilde{X}) \approx \bar{J}(X) - J(X)\}$. This finishes the proof of the proposition.

2.3. Extension of the determinant map to \tilde{U}^1 and U^1 .

Consider a generalised parabolic vector bundles $(E, F_1(E))$ on \tilde{X} . If we fix E, then $F_1(E)$ varies over G(2, 4)=the grassmannian of 2-dimensional subspaces of $E_{x_1} \oplus E_{x_2}$. G(2, 4) is embedded as a quadric in $\mathbf{P}^5 = P(\Lambda^2(E_{x_1} \oplus E_{x_2}))$. Fixing a basis (e_1, e_2) of E_{x_1} and (e_3, e_4) of E_{x_2} , a basis of \mathbf{P}^5 is given by $(e_i \Lambda e_j)_{i < j}$. An element of \mathbf{P}^5 is of the form $\sum_{i < j} P_{ij} e_i \Lambda e_j$, P_{ij} being the Plücker coordinates. Then $G_{2,4} \cap (P_{12} \neq 0, P_{34} \neq 0) \subset G_{2,4}$ is the open subset corresponding to elements $(E, F_1(E))$

Usha Bhosle

in \tilde{U}^2 . $A = G(2, 4) \cap \{(P_{12} \neq 0) \cup (P_{34} \neq 0)\}$ corresponds to elements $(E, F_1(E))$ in $\tilde{U}^0 \cup \tilde{U}^2$. $A^c = (P_{12} = 0 = P_{34}) \cap G(2, 4)$ corresponds to elements $(E, F_1(E))$ in \tilde{U}^0 . The set $(P_{12} \neq 0)$ (respectively $(P_{34} \neq 0)$) can be identified with Hom (E_{x_1}, E_{x_2}) (respectively Hom (E_{x_1}, E_{x_1}) by identifying $\sigma \in \text{Hom}(E_{x_1}, E_{x_2})$ with its graph Γ_{σ} . If $\sigma(e_1) = \alpha e_3 + \gamma e_4$, $\sigma(e_2) = \beta e_3 + \delta e_4$, then Γ_{σ} as an element of \mathbf{P}^5 has coordinates $P_{12} = 1$, $P_{34} = \det \sigma$, $P_{13} = \beta$, $P_{14} = \delta$, $P_{23} = -\alpha$, $P_{24} = -\gamma$ i.e. it is a point with homogeneous coordinates $(1, \det \sigma, \beta, \delta, -\alpha, -\gamma)$ in \mathbf{P}^5 . If σ is an isomorphism, the graph of σ^{-1} is the point $(d^{-1}, 1, \beta d^{-1}, \delta d^{-1}, -\alpha d^{-1}, -\gamma d^{-1})$, $d \equiv \det \sigma$, which is the same point as Γ_{σ} . Thus, for $(E, F_1(E) = \Gamma_{\sigma})$ in $\tilde{U}^1 \cup \tilde{U}^2$ we can define its determinant as the pair (det $E, p(\Gamma_{\sigma})$) where $p: \mathbf{P}^5 \to \mathbf{P}^1$ is defined by the projection $(P_{ij})_{i < j} \to (P_{12}, P_{34})$ in homogeneous coordinates i.e. det (E, Γ_{σ}) is the generalised parabolic line bundle (det $E, \Gamma_{det\sigma}$). Thus we get a map from $\tilde{U}^1 \cup \tilde{U}^2$ onto the variety P of generalised parabolic line bundles.

Now consider the subset of G(2, 4) defined by $(P_{12}(x) \neq 0) \cap (P_{34}(x) \neq 0) \cap (p(x) = \text{fixed})$. Let (x_0, y_0) be the homogeneous coordinates of p(x) for an x in this set. Thus a point in this set looks like $(tx_0, ty_0, *, *, *, *)$ showing that the closure of this set in G(2, 4) is given by (this set) $\cup (G(2, 4) \cap (P_{12}=0=P_{34}))$. The subset $(P_{12}=0=P_{34}) \cap G(2, 4)$ corresponds to elements $(E, F_1(E))$ in \tilde{U}^0 . Notice also that fixing the determinant of $(E, F_1(E))$ is equivalent to fixing the determinant of $F=f(E, F_1(E))$ for $(E, F_1(E))$ in \tilde{U}^2 . We clearly have a commutative diagram

$$\begin{array}{ccc} \tilde{U}^2 & \stackrel{\text{det}}{\longrightarrow} & h^{-1}(J(X)) \\ f & & & \downarrow h \\ U^2 & \stackrel{\text{det}}{\longrightarrow} & J(X). \end{array}$$

We now want to show that the determinant map $\tilde{U}^1 \rightarrow P - h^{-1}(J(X))$ goes down to a map $U^1 \rightarrow \tilde{J}(X) - J(X)$.

If $F \in U^1$, any $(E, F_1(E)) \in \tilde{U}^1$ mapping to F is obtained either from an extension of type

(i)
$$0 \rightarrow \pi^* F/\text{torsion} \rightarrow E \rightarrow k(x_1) \rightarrow 0$$

or of type

(ii)
$$0 \rightarrow \pi^* F/\text{torsion} \rightarrow E \rightarrow k(x_2) \rightarrow 0$$

and one has

(i)'
$$\det(E, F_1(E)) = (L = (\det \pi^* F/torsion)(x_1), F_1(L) = L_{x_2})$$

or

(ii)'
$$\det(E, F_1(E)) = (L = (\det \pi^* F/torsion)(x_2), F_1(L) = L_{x_1}).$$

(See the proof of proposition 1.11(3).) As seen in the proof of proposition 2.2, R.H.S. of both (i)' and (ii)' map into the same point in J(X)-J(X) under h, we define this point as the determinant of F. Thus we have the required commutative diagram

$$\begin{array}{ccc} \widetilde{U}^1 & \stackrel{\text{det}}{\longrightarrow} & P - h^{-1}(J(X)) \\ f & & & \downarrow h \\ U^1 & \stackrel{\text{det}}{\longrightarrow} & \overline{J}(X) - J(X). \end{array}$$

For simplicity, let $(x_1, x_2, x_3, x_4, x_5, x_6)$ denote the homogeneous coordinates in \mathbf{P}^5 , with $x_1 = P_{12}$, $x_2 = P_{34}$ and let G(2, 4) be defined by the quadratic equation $x_1x_2 + x_3x_4 + x_5x_6 = 0$. Fix a point (y_1, y_2) in \mathbf{P}^1 , we normalise y_1, y_2 by $y_1y_2 = -1$. Let $\alpha, \beta, \gamma, \delta, \lambda, t \in k$. Define $C_{1,\lambda}(t) \in \mathbf{P}^5$ by $C_{1,\lambda}(t) = (ty_1, ty_2, \lambda t + \alpha, t + \beta, (\lambda - 1)t + \gamma, -t + \delta)$. Then $C_{1,\lambda}(t) \in G(2, 4)$ iff $\lambda(\beta + \delta) + \alpha - \gamma - \delta = 0$, $\beta \alpha + \gamma \delta = 0$, $C_{1,\lambda}(t) \in G(2, 4) \cap \{(x_1 \neq 0) \cap (x_2 \neq 0)\}$ for $t \in k^*$ and $C_{1,\lambda}(0) \in A^c$. Hence $\{C_{1\lambda}(t)\}_{t \in k^*}$ parametrizes a family of parabolic vector bundles on \tilde{X} with a fixed determinant or equivalently a family of vector bundles on X with a fixed determinant (2.4) and the limit point $C_{1,\lambda}(0) = (0, 0, \alpha, \beta, \gamma, \delta)$ corresponds to an element of \tilde{U}^0 . Define $D_{1,\lambda}(t) =$ $(t, 0, \alpha, \beta, \gamma, \delta), \{D_{1,\lambda}(t)\}_{t \in k^*}$ parametrices a family of elements in \tilde{U}^1 with the same limit and with a fixed determinant. It is easy to see that any point $(0, 0, \alpha, \beta, \gamma, \delta)$ in A^C is of the form $C_{i,\lambda}(0)$ for some i, λ where $C_{2,\lambda}(t) = (ty_1, ty_2, \lambda t + \alpha, t + \beta, t + \gamma, \delta - (\lambda y_t))$, $C_{3,\lambda}(t) = (ty_1, ty_2, \alpha, \beta, t + \gamma, t - \gamma), \quad C_{4,\lambda}(t) = (ty_1, ty_2, t + \alpha, \lambda t + \beta, t + \gamma, \delta - (\lambda - 1)t)$.

A point in U_0 corresponds to a torsionfree sheaf $\pi_* E_0$, E_0 being a stable vector bundle on \tilde{X} . Let E be a bundle ocurring in an extension of the form $0 \rightarrow E_0 \rightarrow E \rightarrow k(x_1) \oplus k(x_2) \rightarrow 0$. Then $(E, F_1(E))$ with $F_1(E) = (0, 0, \alpha, \beta, \gamma, \delta) \in G(2, 4)$ is a point in \tilde{U}^0 lying over the point $[\pi_* E_0]$ in U_0 . Let $L = (\det \cdot E_0)(x_1 + x_2) = \det \cdot E$. Let $p: P \rightarrow \operatorname{Pic} \tilde{X}$ and $h: P \rightarrow \bar{J}$ be as in proposition 2.2. Varying (y_1, y_2) over P^1 in the above discussion, we see that $C_{i,\lambda}$'s parametrise families of bundles on Xwith determinant a fixed line bundle M, where M varies over $h(p^{-1}(L)) \cap \operatorname{Pic} X$. Define $D_{2,\lambda}(t) = (0, t, \alpha, \beta, \gamma, \delta)$. Then $D_{1,\lambda}$ (respectively $D_{2,\lambda}$) parametrices a family of torsionfree sheaves (which are not locally free) on X with a fixed determinant $\pi_*(L(-x_2))$ (respectively $\pi_*(L(-x_1))$) belonging to $h(p^{-1}(L))$. This shows that the fibre over $(\pi_* E_0)$ of the closure (in $U \times \bar{J}$) of the graph of the determinant map (which is a rational morphism) contains $h(p^{-1}(L)) \approx P^1$.

2.4. We now want to "globalise" the construction of 1.6. Let $\mathscr{E} \to T \times \tilde{X}$ be a family of vector bundles on \tilde{X} of rank 2, degree d flat over T. Let $G(\mathscr{E})$ be the Grassmannian bundle over $T \times D$, $D = x_1 + x_2$, such that $G(\mathscr{E})_t \cong G(2, (\mathscr{E}_t)_D)$, the Grassmannian of two dimensional subspaces of $\mathscr{E}|t \times D$. On $G(\mathscr{E})$, we have an exact sequence $0 \to U \to \mathscr{E}|T \times D \to Q \to 0$, Q being the universal quotient bundle. Let $p: G(\mathscr{E}) \to T \times D \to T, p_1: G(\mathscr{E}) \times \tilde{X} \to G(\mathscr{E}), p_1': G(\mathscr{E}) \times X \to G(\mathscr{E})$ be the natural maps. The above sequence gives a surjection $p_1^*(\mathscr{E}|T \times D) \to p_1^*Q$ and hence $(1 \times \pi)_*(p_1^*\mathscr{E}|T \times D) \to t$

Usha Bhosle

 $(1 \times \pi)_* p_1^* Q$. One has $(1 \times \pi)_* p_1^* Q = p_1'^* Q$; also $(1 \times \pi)_* p_1^* \mathscr{E} | T \times D \approx ((1 \times \pi)_* \mathscr{E}) | T \times x_0$. The restriction map $\mathscr{E} \to \mathscr{E} | T \times D$ gives a homomorphism

$$(1 \times \pi)_* (p \times 1)^* \mathscr{E} \to (1 \times \pi)_* (p \times 1)^* (\mathscr{E} | T \times D) = (1 \times \pi)_* p_1^* (\mathscr{E} | T \times D).$$

Composition gives a homomorphism $(1 \times \pi)_* (p \times 1)^* \mathscr{E} \to p_1'^* Q$. Let \mathscr{F} be defined by the exact sequence

(2.5)
$$0 \to \mathscr{F} \to (1 \times \pi)_* (p \times 1)^* \mathscr{E} \to p_1'^* Q \to 0.$$

Since π is a finite morphism and \mathscr{E} is flat over T, it follows that $(1 \times \pi)_* (p \times 1)^* \mathscr{E}$ is flat over $G(\mathscr{E})$. Since Q is locally free over $G(\mathscr{E})$, $p_1'^* Q$ is flat over $G(\mathscr{E})$. It follows that \mathscr{F} is flat over $G(\mathscr{E})$. Thus \mathscr{F} is a flat family of torsionfree sheaves of rank two, degree d on X parametrised $G(\mathscr{E})$. Let $G(\mathscr{E})_{ss}(G(\mathscr{E})_s)$ be the open subset of $G(\mathscr{E})$ corresponding to $g \in G(\mathscr{E})$ such that \mathscr{F}_g is semistable (stable). Then we have a morphism $\varphi: G(\mathscr{E})_{ss} \to U$ mapping $G(\mathscr{E})_s$ to stable points in U.

We have

$$G(\mathscr{E}) \subset \mathbf{P}\big(\Lambda^2(\mathscr{E}|T \times D)\big) = P\big(\Lambda^2(\mathscr{E}|T \times x_1 \oplus \mathscr{E}|T \times x_2)\big) \cdot \Lambda^2(\mathscr{E}|T \times x_1 \oplus \mathscr{E}|T \times x_2)$$

has $\Lambda^2 \mathscr{E}|T \times x_1 \oplus \Lambda^2 \mathscr{E}|T \times x_2$ as a direct summand and hence a projection onto it-Hence we get a rational morphism $G(\mathscr{E}) \to \mathbf{P}(\det \mathscr{E}|T \times x_1 \oplus \det \mathscr{E}|T \times x_2)$, this is nothing but the extended determinant map of (2.3), as det $\mathscr{E}|T \times \tilde{X}$ and $V|J(\tilde{X}) \times \tilde{X}$ are locally isomorphic, V being the universal bundle on $J(\tilde{X}) \times \tilde{X}$.

2.5. In the notations of 2.4, let now T=M, where M is the moduli space of stable vector bundles of rank two and odd degree on X and let \mathscr{E} be the universal bundle on $M \times \tilde{X}$. Let L be a fixed line bundle on X and let M^0 denote the subvariety of M corresponding to bundles E with determinant π^*L . Let $G=G(\mathscr{E})_s=G(\mathscr{E})_{ss}$ (remark 1.4). Let $G_i = \varphi^{-1}(U_i)$, $i=0, 1, 2, G_2^L = \varphi^{-1}(U_2^L)$ (notations 1.1) G_2 is a fibration over M with fibre GL(2) and hence is of dimension 4g-3 and G_2^L is a closed subvariety of G_2 of dim $\cdot 3g-3$. The restriction of φ to G_2 is an isomorphism onto an open dense subset U'_2 of U_2 , mapping G_2^L isomorphically onto U'_2^L contained in U_2^L ; U'_2^L being open and dense in U_2^L . Using 2.3, it follows that the closure of G_2^L in $G=\overline{G_2^L}=\{(E, F_1(E))|E\in M^0, F_1(E)=k_1\oplus k_2, k_i\subset E_{x_i}, (E, F_1(E))$ parabolic stable i.e. E has no line subbundles L' of degree $(\mu(E)-\frac{1}{2})$ such that $L'_{x_1}\oplus L'_{x_2}=k_1\oplus k_2\}$ and $\varphi(\overline{G_2^L})=\{\pi_*(E_0)|E_0$ (stable) bundle given by an extension of the form

$$0 \to E_0 \to E \to E_{x_1} \oplus E_{x_2}/F_1(E) \to 0, \ (E, F_1(E)) \in \overline{G_2}\}$$

Note that det $E_0 = (\pi^* L)(-x_1 - x_2)$. We claim that any stable bundle E_0 can be obtained by an extension of the above form. Now, the extensions of the above form (i.e. $0 \rightarrow E_0 \rightarrow E \rightarrow k(x_1) \oplus k(x_2) \rightarrow 0$) are parametrised by $(E_0 \otimes K_{\overline{x}}^{-1})_{x_1} \oplus (E_0 \otimes K_{\overline{x}}^{-1})_{x_2} \approx$

198

 $(E_0)_{x_1} \oplus (E_0)_{x_2}$ and given $k_i \subset (E_0)_{x_i}$ one dimensional subspaces, there is a (unique) extension such that Ker $((E_0)_{x_i} \rightarrow E_{x_i}) = k_i$, i = 1, 2. Choose k_1, k_2 , such that $k_1 \oplus k_2 \neq L_{x_1} \oplus L_{x_2}$ for any line subbundle L' of E_0 of degree $\mu(E) - \frac{3}{2}$ (remark 1.14). Then E obtained for such a choice is stable and parabolic stable. Thus $\varphi(\overline{G_2}) = \{\pi_* E_0 | E_0 \}$ stable bundle on \tilde{X} with determinant $(\pi^* L)(-x_1 - x_2)$.

2.6. The case $g(\tilde{X})=1$. In this case $M^0=a$ point corresponding to a stable bundle E. Then $(E, F_1(E)), F_1(E)=k_1\oplus k_2$, all give the same bundle E_0 as there is a unique stable vector bundle E_0 of rank 2 and fixed determinant $(\pi^*L)(-x_1-x_2)$ on \tilde{X} . Moreover, $(E, F_1(E))$ with $E=N\oplus(\pi^*L\otimes N^{-1}), F_1(E)=k_1\oplus k_2$, degree $N=\frac{1}{2}$ (degree L+1) also give the same E_0 for the same reason.

Lemma 2.7. Let X be an irreducible complete curve with the only singularity a single node at x_0 . Let R be a discrete valuation ring, $T = \operatorname{spec} R$, T_0 the closed point of T. Let $F \to X \times T$ be a family of torsionfree sheaves on X, flat over T, with the generic member locally free and $F|x_0 \times T_0 \approx a\theta_{x_0} \oplus bm_0$, a > 0, m_0 being the maximum ideal of θ_{x_0} . Assume that $H^0(F)$ generates F. Then one can find an exact sequence $0 \to \theta \to F \to G \to 0$, where G is a family of torsionfree sheaves on X flat over T and G is a torsionfree sheaf.

Proof. Write $F_{(x_0, T_0)} = \theta_{x_0} \oplus M$, M is the direct sum $(a-1)\theta_{x_0} \oplus bm_0$. Since $H^0(F)$ generates $F_{(x_0, T_0)}$, there exists e_1 in $H^0(F)$ such that $e_1(x_0, T_0) = (1, 0), 1 \in \theta_{x_0}$. Define $V = \{s \in H^0(F) | s = \sum c_i e_i, c_1 \neq 0\}$. Then for any s in the open set V, s maps into θ_{x_0} at x_0 . Since $F|(X-x_0) \times T$ is locally free, there exists an open set $W \subset H^0(F)$ such that for s in W, the map $\theta|(X-x) \times T \xrightarrow{s} F|(X-x_0) \times T$ is injective. Then for any s in $V \cap W$, we have an exact sequence

$$(I) 0 \to \theta \to F \to G \to 0.$$

We shall now check that G is torsionfree and is flat over T. Since R is a discrete valuation ring, to check that G is flat over T, it suffices to check that G is flat over T_0 . Tensorising the sequence (I) by θ_{T_0} , we have $0 \rightarrow \text{Tor}_1(G, \theta_{T_0}) \rightarrow \theta_{T_0} \rightarrow F | T_0 \rightarrow G | T_0 \rightarrow 0$. Since, by our construction, $\theta \rightarrow F | T_0$, is an injection, it follows that $\text{Tor}_1(G, \theta_{T_0}) = 0$ i.e. G is flat over T_0 .

Since G is flat over T, it has no T-torsion. So G can have only X-torsion, say G'; so that G/G' is torsionfree. Since G and G/G' are flat over T, it follows that G' if flat over T. This implies that $0 \rightarrow G'|T_0 \rightarrow G|T_0 \rightarrow (G/G')|T_0 \rightarrow 0$ is exact. By our choice of s, G/T_0 is torsionfree, so that $G'|T_0=0$ and hence G'=0. Thus G is torsionfree.

Remark 2.8. If F is of rank two, we can define the determinant of $F|X \times T_0$ as $G|X \times T_0$.

Usha Bhosle

In the general case i.e. rank F=n, $F_{x_0,T_0} \approx (n-1)\theta_{x_0} \oplus m_0$ write $G=G_1$. Applying the above lemma to G_1 , we get a torsionfree quotient G_2 flat over T_0 . Repeating the process, we get a torsionfree rank one sheaf G_{n-1} flat over T. We can define the determinant of $F|X \times T_0$ as $G_{n-1}|X \times T_0$.

3. Generalisations and construction of the moduli space

The generalised parabolic bundles defined before (definitions 1.2, 1.3 and 2.1) are special cases of the more general definition below (3.1). A good generalisation of the concept of a parabolic structure at a point seems to be a parabolic structure on a divisor. On singular curves one seems to get naturally vector bundles E with flags on E|D, D being a Cartier divisor concentrated at the singular point. Definition 1.2 is obtained from 3.1 by taking $D=x_1+x_2$ and weights $(\alpha_1, \alpha_2)=(0, 1)$.

Definition 3.1. Let E be a vector bundle on an irreducible nonsingular curve X over an algebraically closed base field k.

A generalised parabolic structure σ on E over a Cartier divisor D consists of

- (1) a flag \mathscr{F} of vector subspaces of $E|D, \mathscr{F}: F_0 = E|D \supset F_1 \supset F_2 \supset ... \supset F_r = 0$, where $E_{1D} := H^0(E \otimes \mathcal{O}_D)$
- (2) real numbers $\alpha_1, ..., \alpha_r$, $(0 \le \alpha_1 < \alpha_2 < ... < \alpha_r < 1)$ called weights.
- Let $m_i = \dim F_{i-1}/F_i$, i = 1, ..., r. Define

$$wt \cdot E | D = \sum_{i=1}^{r} m_i \alpha_i.$$

If E has generalised parabolic structure over finitely many divisors D_j , we call E with this structure a generalised parabolic vector bundle. Define $wt \cdot E = \sum_j wt \cdot E|D_j$, parabolic degree of E=degree of E+ $wt \cdot E$.

Definition 3.2. Every subbundle K of E gets a natural structure of a generalised parabolic bundle. The induced flag is given by $\mathscr{F}(K) = K|D \supseteq (F_1 \cap K|D) \supseteq ... \supseteq F_r = 0$, if β_j is the weight associated to $F_j \cap K|D$, then $\beta_j := \alpha_j$ where F_j is the smallest subspace in \mathscr{F} containing $F_j \cap K|D$. By a subbundle of a generalised parabolic bundle E we will always mean a subbundle with this induced parabolic structure.

Definition 3.3. A generalised parabolic vector bundle E is semistable (respectively stable) if for every (respectively proper) subbundle K of E, parabolic degree of K/rank of $K \leq (resp. <)$ parabolic degree of E/rank of E.

Definition 3.4. Induced parabolic stucture on a quotient bundle. Let $p: E \rightarrow Q$ be a quotient of E. The parabolic structure on E over D induces one on Q as follows.

Let $\mathscr{F} = \{F_i(E)\}\$ be the flag on E|D with weights $\{\alpha_i(E)\}, i \in I$. Let $\overline{p} = p|D$. Then $\overline{p}(\mathscr{F})$ induces a flag $\widetilde{\mathscr{F}}$ on $Q|D, \widetilde{\mathscr{F}} = \{F_j(Q)\}, j \in J \subseteq I$. The weights $\{\alpha_j(Q)\}\$ for this flag are determined as follows. Given $F_j(Q)$, there exists $F_i(E)$ such that $\overline{p}(F_i(E)) = (F_j(Q))$, take i_0 largest such i and define $\alpha_j(Q) = \alpha_{i_0}(E)$.

Definition 3.5. A generalised parabolic vector bundle E is semistable (respectively stable) if for every nonzero quotient bundle Q of E, parabolic degree of E/rank $E \le$ (respectively <) parabolic degree of Q/rank Q.

Remark. It is easy to see that Definitions 3.3 and 3.5 are equivalent.

Definition 3.6. Let i=1, 2 and let E_i be a generalised parabolic bundle with parabolic structure over D with flag $\{F_j(E_i)\}$ and weights $\{\alpha_j(E_i)\}$. A morphism of generalised parabolic bundles is a homomorphism $f: E_1 \rightarrow E_2$ of vector bundles such that for all $j, f(F_j(E_1)) \subset F_{l+1}(E_2)$ whenever $\alpha_j(E_1) \sim \alpha_l(E_2)$, where f=f|D.

Lemma 3.7. Let E be a semistable (resp. stable) generalised parabolic bundle. If $par \mu(E) = parabolic$ degree of $E/rank E > (resp. \ge)2g - 1$, then $(H^1(E)) = 0$.

Proof. Suppose that $H^1(E) \neq 0$. By Serre' duality, this implies that there exists a nonzero homomorphism $f: E \rightarrow K$, K being the canonical line bundle. Then one has

$$\operatorname{par} \mu(E) \leq \operatorname{par} \mu(K) = 2g - 2 + \omega t K \leq 2g - 1.$$

if E is semistable (resp. < for E stable). Hence if E is semistable (or stable) with par $\mu > (\text{or } \ge)2g-1$ then f=0, i.e. $H^1(E)=0$.

Lemma 3.8. Let $f: E_1 \rightarrow E_2$ be a morphism of semistable generalised parabolic bundles (D fixed) of same rank and same parabolic degree. Then f is of constant rank. Further, if one of E_1 or E_2 is stable, then either $\alpha = 0$ or α is an isomorphism.

Proof. The morphism f factors through a generic isomorphism h as follows.

$$0 \rightarrow K_1 \rightarrow E_1 \rightarrow I_1 \rightarrow 0$$

$$\downarrow f \qquad \downarrow k$$

$$0 + I_2 + E_2 + K_2 + 0.$$

Let $\mu = \operatorname{par} \mu(E_1) = \operatorname{par} \mu(E_2)$. By semistability of E_1 , E_2 one has $\mu = \operatorname{par} \mu(E_1) \leq \operatorname{par} \mu(I_1)$, $\operatorname{par} \mu(K_2) \leq \mu$. Since *h* is a generic isomorphism $\operatorname{deg} \cdot I_1 \leq \operatorname{deg} K_2$, also wt $I_1 \leq \operatorname{wt} K_2$, hence $\operatorname{par} \mu(K_2)$. Thus $\mu \leq \operatorname{par} \mu(I_1) \leq \operatorname{par} \mu(I_2) \leq \mu$, i.e. $\operatorname{par} \mu(I_1) = \operatorname{par} \mu(K_2) = \mu$. Thus parabolic degrees of I_1 and K_2 are same, it follows that degree $I_1 = \operatorname{degree} K_2$, wt $I_1 = \operatorname{wt} K_2$ and so *h* is an isomorphism i.e. *f* is of constant rank. The last assertions of the lemma are now clear.

Corollary 3.9. If E is a stable generalised parabolic vector bundle, then any morphism of E into itself is a scalar.

Proof. Lemma 3.8 shows that any nonzero morphism f of E into itself is an isomorphism. Let $x \in X$ and c be an eigenvalue of f_x . Then the morphism f-cId is not an isomorphism and hence must be zero.

Proposition 3.10. The category S of all semistable generalised parabolic bundles E on X with parabolic structure on a divisor D and with fixed par $\mu = \mu_0$ is an abelian category. The simple objects in this category are the stable generalised parabolic bundles. By Jordan—Hölder theorem, for $E \in S$, there exists a filtration in S

$$E = E_n \supset E_{n-1} \supset \ldots \supset E_0 = 0$$

such that E_i/E_{i-1} is a stable generalised parabolic bundle with $par \mu = \mu_0$ for all *i* and $gr E = \bigoplus_i E_i/E_{i-1}$ is unique upto isomorphism.

Proof. This follows from 3.8 and 3.9.

Definition 3.11. We define E_1 , E_2 in S to be equivalent if $\operatorname{gr} E_1 \approx \operatorname{gr} E_2$.

Theorem 1. Let X be an irreducible nonsingular projective curve over an algebraically closed field. Then there exists a course moduli space M for equivalence classes of semistable generalised parabolic bundles E of rank k on X with fixed degree and parabolic structure given by deg D=2, weights $(\alpha_1, \alpha_2) \equiv (0, \alpha)$ and $\mathscr{F}: F_0(E) =$ $E|_D \supset F_1(E) \supset 0$. The space M is a normal projective variety. If rank and degree of E are coprime, α is close to 1 and dim $F_1(E) = k$ then M is nonsingular. One has dim $M = k^2(g-1) + 1 + \dim F$, F being flag variety of type \mathscr{F} .

The proof of this theorem is on similar lines as that of the main theorem in [V]. The construction uses geometric invariant theory, the choice of weights and degree of D corresponds to the choice of a polarisation. This choice is a bit tricky. A choice similar to the one in [SM] [V] fails for degree D>1, so we have to look for a new candidate. This was the main difficulty in the construction below. Note that unlike in [SM], [V] we do not assume here that parabolic degree of E=0.

Let S denote the set of all semistable generalised parabolic bundles E of the type specified in the statement of the theorem. Let b denote the fixed parabolic degree of $E \in S$, without loss of generality, may assume $b \le k$. Then S is bounded, there exists m_0 such that for $m \ge m_0$, one has $H^1(E(m))=0$ and the canonical map $H^0(E(m)) \rightarrow H^0(E(m)/D)$ is a surjection. By arguments similar to those on p. 226, [SM] we can choose an integer $m \gg g$, g = genus of X, such that $H^1(F(m))=0$ and $H^0(F(m)) \rightarrow H^0(F(m) \otimes \mathcal{O}_D)$ is surjective for $F \in S$ or $F \subset E$, E in S and parabolic degree of $F > (b - (g + 2\alpha)k)$. Let P be the Hilbert polynomial of E in S and let $n = \dim \cdot H^0(E(m))$. Denote by Q the Quot scheme i.e. the Hilbert scheme of co-

herent sheaves on X which are quotients of \mathcal{O}_X^n and have Hilbert polynomial P. Let U denote the universal family on $Q \times X$ and R denote the subscheme $\{q \in Q | H^1(U_q) = 0, H^0(U_q) \approx \mathcal{O}_X^n, U_q \text{ is locally free and generically generated by global sections}\}$. R is a nonsingular variety and contains the subset determined by E(m), $E \in S$ by our choice of m. Let $V = (p_1)_*(U | R \times D)$, $p_1 \colon R \times D \to R$. Let G(V) be the flag bundle over R of the type determined by the parabolic structure and let \tilde{R} be the total space of G(V). It is easy to see that \tilde{R} has the local universal property for generalised parabolic bundles. Let the subsets of \tilde{R} corresponding to semistable (respectively stable) generalised parabolic bundles be denoted by $\tilde{R}^{SS}(\tilde{R}^S)$. The group SL(n) acts on R, \tilde{R}^{SS} and \tilde{R}^S via its action on \mathcal{O}_X^n . We want to give an affine injective SL(n)-equivariant morphism from \tilde{R} to a projective variety Y with SL(n)-action such that the geometric invariant theoretic quotient Y/SL(n) is known to exist.

For a while, let us forget about the parabolic structure. Following Gieseker, we define a 'good pair' (F, φ) to be a flat family $F \to T \times X$ of vector bundles on X such that F_t is generated by its global sections at the generic point of $t \times X$ and $\varphi: \mathcal{O}_X^n \to p_*(F)$ is an isomorphism. Let $c = \text{degree } E(m), E \in S, A = \text{Pic}^c(X),$ $g: X \times A \to A$ projection and M the Poincare' bundle on $X \times A$. Let Z = $P(\text{Hom } (\Lambda^k \mathcal{O}_A^n, g_*M)^*)$. Given a good pair (F, φ) one gets a morphism $T(F, \varphi): T \to Z$. For $t \in T, T(F, \varphi)(t)$ is the composite $\Lambda^k K^n \to \Lambda^k H^0(F_t) \stackrel{\Psi}{\longrightarrow} H^0(\Lambda^k F_t)$, where the first map is $\Lambda^k \varphi$ and the second map ψ is the natural map $\psi(s_1 \Lambda \dots \Lambda s_k) = s$, where $s(x) = s_1(x) \Lambda \dots \Lambda s_k(x)$. SL(n) acts on Z preserving the fibres over A.

If, in addition, F is a family of generalised parabolic vector bundles the flag on $F_t|D$ induces, via φ , a flag on $K^n = H^0(F_t)$

$$K^{n} = F_{0}(H^{0}(F_{t})) \supset F_{1}(H^{0}(F_{t})) \supset F_{2}(H^{0}(F_{t})),$$

 $F_2(H^0(F_i)) = \text{kernel of } e: H^0(F_i) \to F_i|D \text{ and } F_1(H^0(F_i)) = e^{-1}(F_1(F_i)).$ Hence we have a morphism f from T into the flag variety G of flags in K^n . Thus the good pair (F, φ) determines a morphism $\tilde{T}(f, \varphi): T \to Z \times G$, $\tilde{T}(F, \varphi) = T(f, \varphi) \times f$. Let $T: \tilde{R} \to Z \times G$ be the induced morphism. T maps \tilde{R}^{SS} into $Gr = \prod G_{n,f_i}$ where $G_{n,i}$ denotes the Grassmannian of f_i -dimensional subspaces of K^n , $f_i = \dim F_i(H^0(E))$, i=0, 1, 2. On $Z \times Gr$ we take the polarisation $L^{\otimes \alpha k} \otimes \mathcal{O}_Z(k(m+1-2\alpha-g)+b))$, where L is the generator of Pic $(G_{n,1}), b = \text{parabolic degree of } E$ in S. For this polarisation, a point $(\tau, (F_i))$ in $Z \times Gr$ is semistable (or stable) if and only if for any subspace $W \subset V, K^n = V$, one has

$$\sigma_{W} = [k(m-1-g)+b](d\dim V - k\dim W)$$

+ ka [dim W dim F₁(V) - dim V dim (W \cap F_1(V))] \ge 0 (or > 0)

where d is the maximum of the cordinalities of τ -independent subsets of W. Let $(Z \times G_r)^{SS}$ (or $(Z \times G_r)^S$) denote the set of semistable (or stable) points in $Z \times Gr$.

Proposition 3.12.

(a) $q \in \tilde{R}^{ss} \Rightarrow T(q) \in (Z \times Gr)^{ss}$ (b) $q \in \tilde{R}^s \Rightarrow T(q) \in (Z \times Gr)^s$ (c) $q \in \tilde{R}, T(q) \in Z \times Gr, q \notin \tilde{R}^{ss} \Rightarrow T(q) \notin (Z \times Gr)^{ss}$ (d) $q \in \tilde{R}^{ss} - \tilde{R}^s \Rightarrow T(q) \notin (Z \times Gr)^s$

Proof. For $F \subset E$, define

$$\chi_F = [k(m+1-g)+b] [rk F \cdot h^0(E(m)) - rk E \cdot h^0(F(m))]$$
$$+ k [h^0(F(m)) \cdot wt E - h^0(E(m)) wt F].$$

We first make a few observations.

(1) For E with $h^{1}(E)=0$,

$$\chi_F = n (db - k \text{ parabolic degree } F) - nkh^1 (F(m))$$

where $d = \operatorname{rank} F$, $n = h^0(E(m))$.

Proof. Rearranging the terms one has

$$\chi_F = h^0(E(m)) [(k(m+1-g)+b)d - k wt F]$$

$$kh^0(F(m)) (wt E - k(m+1-g) - b)$$

$$= h^0(E(m)) [k(m+1-g)d + bd - k wt F - kh^0(F(m))].$$

since wt $E-k(m+1-g)-b=h^0(E(m))$ by Riemann-Roch theorem. Similarly $h^0(F(m))-h^1(F(m))=$ parabolic degree F- wt F+d(m+1-g), hence one gets

$$\chi_F = n \left[bd - k \text{ parabolic } \deg \cdot F - kh^1 F((m)) \right].$$
(2) If $h^1(E(m)) = 0 = h^1(F)(m)$, par $\mu = \frac{\text{parabolic degice}}{\text{rank}}$, then
$$\chi_F = n \, dk \left(\text{par } \mu(E) - \text{par } \mu(F) \right).$$

Proof. Obvious.

(3) If $W = H^0(F(m))$, $V = H^0(E(m))$, $H^0(F(m)) \rightarrow F(m) \otimes \mathcal{O}_D$, $H^0(E(m)) \rightarrow E(m) \otimes \mathcal{O}_D$ are surjections and $h^1(F(m)) = 0 = h^1(E(m))$, then

$$\sigma_W = \chi_F.$$

This follows by straightforward computation. We now come to the proof of the proposition. Assertions (c) and (d) follow exactly as in the proofs of proposition 2(c), (d) in [V] using (2) and (3) above.

204

Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves 205

Proof of (a) and (b). Let E be a generalised parabolic semistable (or stable) bundle $(E \in S)$. Let W be a subspace of V and let F(m) be the subbundle of E(m) generically generated by W.

Case (i). If W satisfies the conditions of (3) above, we have $\sigma_W = \chi_F \ge 0(>0)$ if E is semistable (stable) as a generalised parabolic bundle.

Case (ii). Parabolic degree $F > b - (g + 2\alpha)k$. By our choice of m, $H^1(F(m)) = 0$ and $H^0(F(m)) \rightarrow F(m) \otimes \mathcal{O}_D$ is surjective. Let $W' = H^0(F(m))$. If W' = W, we are through by case (i); so may assume $W' \equiv W$. By (2) above, $\chi_F \ge 0(>0)$ if E is semistable (stable) as a generalised parabolic bundle. Therefore, it suffices to show that $\sigma_W - \chi_F \ge 0$. It is easy to see that

$$\frac{1}{k}(\sigma_W - \chi_F) = k (\dim W' - \dim W) [(k(m+1-g-2\alpha)+b) - \alpha \dim F_1(V)] + \alpha \dim V (\dim W' \cap F_1(V) - \dim W \cap F_1(V)) \ge 0$$

as, by Riemann-Roch theorem, the term in the square bracket is $(1-\alpha) \dim V$ while the terms in round brackets are nonnegative.

Case (iii). Parabolic degree $F \leq b - (g + 2\alpha)k$. Let $W' = H^0(F(m))$, then $W' \supseteq W$. Regrouping terms and after simplifications one gets $\sigma_W - \chi_F \geq -2\alpha nkd$ as follows.

$$\sigma_{W} - \chi_{F} = k \dim V \left(-2d\alpha + wt F - \alpha \dim F_{1}(V) \cap W \right)$$

+ k (dim W' - dim W) (k(m + 1 - 2\alpha - g) + b - \alpha F_{1}(V))
+ k dim W' (2k\alpha - wt E + \alpha dim F_{1}(V)).

Using the fact that $2k\alpha - \operatorname{wt} E + \alpha \dim F_1(V) = \alpha \dim V$, we have

$$\sigma_W - \chi_F = k \dim V (-2d\alpha + wt F + \alpha \dim W' - \alpha \dim F_1(V) \cap W) \ge -2k\alpha \, dn,$$

since $wt F \ge 0$ and $\dim W' - \dim F_1(V) \cap W \ge 0.$

Now, since F(m) is generically generated by sections, one has $h^0(F(m)) \leq \deg F(m) + d$ or equivalently, $-h^1(F(m)) \geq -gd$. By (1) above

 $\chi_F = nbd - nk h^1(F(m)) - nk \text{ par deg}(F) \ge n \, db - ng \, dk - nk \text{ par deg}(F).$

If par deg $(F) \leq b - (g+2\alpha)k$, we have

$$\sigma_{W} = (\sigma_{W} - \chi_{F}) + \chi_{F} \ge n \left[\left((g + 2\alpha)k - b \right) (k - d) \right] \ge 0.$$

Thus the proof of the proposition is completed.

Proposition 3.13. The morphism $T: \tilde{R}^{ss} \rightarrow (Z \times Gr)^{ss}$ is proper and injective.

Proof. The properness of T can be proved exactly as in proposition 3 [V]. The injectivity of T follows from the fact that \tilde{R} is a bundle over R with fibre flag variety corresponding to the parabolic structure and the morphism $T: \tilde{R}^{ss} \rightarrow Z$ is injective (lemma 4.3 [G 2]).

We are now in a position to complete the proof of the theorem. Since a proper injective morphism is affine, T is an affine morphism. Since the existence of a good quotient of $(Z \times Gr)^{ss}$ modulo SL(n) is well-known, the existence of a good quotient M of \tilde{R}^{ss} modulo SL(n) follows as T is an affine morphism. Since \tilde{R} is a nonsingular projective variety of dimension $k^2(g-1)+1+n^2-1+\dim F$, M is a normal projective variety of dimension $k^2(g-1)+1+\dim F$.

If rank E and degree of E are coprime and $F_1(E)$ has dimension equal to rank of E, then E is parabolic semistable if and only if E is parabolic stable i.e. $\tilde{R}^{ss} = \tilde{R}^s$. Also, by corollary 3.19 if E is stable then the only automorphisms (keeping the generalised parabolic structure invariant) of the generalised parabolic bundle Eare scalars. Hence it follows that in this case there exists a nonsingular geometric quotient M of $\tilde{R}^{ss} = \tilde{R}^s$.

Lemma 3.14. Let C be a nonsingular curve, $\mathcal{E} \to C \times X$ a flat family of generalised parabolic vector bundles in S. Let P be a point in C and $\mathcal{E}_q \approx E = \text{gr } E$ for all $q \neq P$ in C. Then $\mathcal{E}_P \cong E$.

Proof. This follows as in lemma 4.7 [G 2] using lemma 3.8.

Proposition 3.15. Let h be the canonical morphism from \tilde{R}^{ss} onto M. Let \mathscr{E} denote the pull back to \tilde{R}^{ss} of the universal family U on $R \times X$. Then for p, q in \tilde{R}^{ss} , h(p)=h(q) if and only if $\operatorname{gr} \mathscr{E}_p=\operatorname{gr} \mathscr{E}_q$.

Proof. By construction h(p)=h(q) if and only if closures of SL(n)-orbits of p and q intersect. Lemma 3.14 implies that SL(n)-orbit of $E=\operatorname{gr} E$ is closed. If $E\cong\operatorname{gr} E$, then $\operatorname{gr} E$ is in the closure of the orbit of E. Since E is a successive extension of stable generalised parabolic bundles (proposition 3.10) there exists a family $\{\mathscr{E}_t\}$ with $\mathscr{E}_t \approx E$ for $t \neq 0$, $t \in \mathbf{A}^1$ and $\mathscr{E}_0 \approx \operatorname{gr} E$. Thus, if [E] denotes a point in \widetilde{R}^{ss} corresponding to a generalised parabolic bundle E, then $h([E])=h([\operatorname{gr} E])$. If $p, q \in \widetilde{R}^{ss}$ are such that $\operatorname{gr} \mathscr{E}_p \approx \operatorname{gr} \mathscr{E}_q$, then $h(p) \equiv h([\mathscr{E}_p]) = h(\operatorname{gr} (\mathscr{E}_q)) = h([\operatorname{gr} (\mathscr{E}_q]) = h([\operatorname{gr} (\mathscr{E}_q])) = h([\operatorname{gr} (\mathscr{E}_q])) = h([\operatorname{gr} \mathscr{E}_q])$. Since SL(n)-orbit of any $\operatorname{gr} E$ is closed, this implies that $\operatorname{gr} \mathscr{E}_p \approx \operatorname{gr} \mathscr{E}_q$.

Proposition 3.16. If rank and degree are coprime, dim $F_1(E)$ =rank E (degree D=2, and weights are $(0, \alpha)$) then the moduli space M of stable generalised parabolic bundles (theorem 1) is a fine moduli space.

Proof. The proof is exactly as in § 5, Chapter 5 of [N], so we only indicate the necessary modifications. In lemma 5.10 [N], Hom (E_1, E_2) has to be replaced by Mor (E_1, E_2) Mor denoting homomorphisms of parabolic bundles, and one

Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves 207

uses lemma 3.8 and corollary 3.9 to prove that if E_1 , E_2 are two families of stable generalised parabolic bundles as above, with $(E_1)_s \cong (E_2)_s \forall s \in S$ then there exists a line bundle L on S such that $E_2 \cong E_1 \otimes p_s^* L$, in fact one takes $L = (p_s)_*$ Mor (E_1, E_2) . It remains to prove the existence of a universal family on $M \times X$. The universal family $\mathscr{E} \to \tilde{R}^{ss} \times X$ has a GL(n) action, but no PGL(n)-action as the matrix λ Id acts on it by scalar λ . As in lemma 5.11 [N], if rank and degree are coprime, one can find a line bundle L on \tilde{R}^{ss} such that λ Id acts on it by scalar λ^{-1} . Then PGL(n)action on \tilde{R}^{ss} lifts to $\mathscr{E} \otimes L$ and the quotient gives required universal bundle on $M \times X$. We need lemma 3.7 here to construct L. This completes the sketch of the proof of the proposition.

3.17. Henceforth we restrict ourselves to semistable generalised parabolic bundles E of rank 2, degree d, with parabolic structure over $D = x_1 + x_2$ given by $E|D \supset F_1(E) \supset 0$, dim $\cdot F_1(E) = 2$, and weights $(\alpha_1, \alpha_2) = (0, \alpha)$ α near 1. The moduli space M of equivalence classes (definition 3.11) of such bundles is a normal projective variety which is nonsingular if d is odd. Let p_1 and p_2 denote the projections from $F_1(E)$ to E_{x_1} and E_{x_2} respectively. Let M_2 be the open subset of M corresponding to generalised parabolic bundles such that p_1 and p_2 are both isomorphisms. Let M_1 be the subset of M defined by the condition that only one of p_1 and p_2 is an isomorphism and the other is of rank one. Let M_0 be the subset of M defined by the condition that one or $p_1=0$ or $p_2=0$. Clearly, M is the disjoint union of M_a , a=0, 1, 2. We can now sum up the main results of sections 1 and 2 (particularly 1.11, 2.3, 2.4) as follows.

Theorem 2. Let X be an irreducible projective curve defined over an algebraically closed field with only one node x_0 as a singularity. Let $\pi: \tilde{X} \to X$ be its normalisation. Let M be the moduli space of bundles on \tilde{X} as in theorem 1 with $D = \pi^{-1}(x_0)$. Let U be the moduli space of semistable torsionfree sheaves of rank 2, degree d on X, $U = \bigcup_{a=0}^{2} U_a$ where $U_a = \{F | F_{x_0} \approx a \mathcal{O}_{x_0} \oplus (2-a)m_{x_0}\}$. Then one has the following.

- (I) There exists a surjective morphism $f: M \rightarrow U$ such that $f^{-1}(U_a) = M_a$, a = 0, 1, 2and the restriction of f gives an isomorphism of M_2 onto U_2 .
- (II) Let J be the compactified Jacobian of X and let P be its desingularisation (proposition 2.2). Then there exist morphisms φ, ψ extending the determinant morphisms such that the diagram

$$\begin{array}{ccc} M_1 \cup M_2 \stackrel{\varphi}{\longrightarrow} P \\ \downarrow & \downarrow \\ U_1 \cup U_2 \stackrel{\psi}{\longrightarrow} \overline{J} \end{array}$$

commutes.

Remark 3.18. (a) For α near 1, stability for weights $(0, 1) \Rightarrow$ stability for weights $(0, \alpha) \Rightarrow$ semistability for $(0, \alpha) \Rightarrow$ semistability for $(0, \alpha)$.

Usha Bhosle

(b) In general, when X has more than one node, say y_i , i=1, ..., m. M in the above theorem will be replaced by the moduli space M of equivalence classes of semistable generalised parabolic bundles of rank 2, degree d with parabolic structure over $D_i = \pi^{-1}(y_i) = x_{i,1} + x_{i,2}$ given by $E|D_i = E_{x_i,1} \oplus E_{x_i,2} \supset F_1^i(E) \supset 0$, where dim $F_1^i(E) = 2$ and weights $(\alpha_{i,1}, \alpha_{i,2}) = (0, \alpha)$. One still has semistable =stable in this case if d is odd. M is the disjoint union of $M_{i,a}$, i=1, ..., m; a=0, 1, 2. M_{ia} is defined by the conditions on p_1 , p_2 at D_i as in 3.17. One also has $U = \bigcup_{i,a} U_{ia}$ where $U_{i,a} = \{F|F_{y_i} \approx a \emptyset_{y_i} \oplus (2-a)m_{y_i}\}$, $f^{-1}(U_{ia}) = M_{ia}$ and $f: \bigcup_i M_{i2} \to \bigcup_i U_{i2}$ is an isomorphism.

Remark 3.19. If d is odd, then M (in 3.17) is a desingularisation of U.

Remark 3.20. Let U_2^L be the subset of U_2 corresponding to vector bundles on X with fixed determinant L and $\overline{U_2^L}$ its closure in U. Let $M_2^L = f^{-1}(U_2^L)$. Clearly, $f(\overline{M_2^L}) \subset (f(M_2^L))^-$. Now, $f(M_2^L) \subset f(\overline{M_2^L})$ and f being proper $f(\overline{M_2^L})$ is closed, it follows that $(f(M_2^L))^- \subset f(\overline{M_2^L})$. Thus $f(\overline{M_2^L}) = (f(M_2^L))^- = \overline{U_2^L}$. Hence to find $\overline{U_2^L}$, suffices to determine the closure of its isomorphic copy in M. The considerations in 2.3 and Part (II) of theorem 2 show that $\overline{M_2^L} \cap M_1 = \phi$ i.e. $\overline{U_2^L} \cap U_1 = \phi$ and $\overline{U_2^L}$ contains all points corresponding to torsionfree sheaves of the form $\pi_*(E_0)$, where E_0 is a stable rank two vector bundle on \tilde{X} with det $E_0 \approx (\pi^* L)(-x_1 - x_2)$. $\overline{U_2^L} - U_2^L$ consists of only such sheaves, and in general when X has many nodes, $\overline{U_2^L} - U_2^L$ consists of points corresponding to direct images on X of stable vector bundles with suitable determinants on partial normalisations of X.

4. Generalisation to rank n

4.1. It is possible to generalise our results to rank *n* sheaves. We consider generalised parabolic vector bundles (E, σ) on \tilde{X} , *E* of rank *n*, degree *d* and σ is given by $D=x_1+x_2, \mathscr{F}: F_0=E|D\supset F_1(E)\supset 0$, dim $F_1(E)=n, (\alpha_1, \alpha_2)=(0, \alpha) \alpha \leq 1$. (Definition 3.1.) To (E, σ) , we associate a torsionfree sheaf *F* of rank *n* and degree *d* on *X* defined by

$$0 \to F \to \pi_* E \to \pi_*(E) \otimes k(x_0)/F_1(E) \to 0.$$

Proposition 4.2. (a) If F is a stable torsionfree sheaf then (E, σ) is a stable generalised parabolic bundle (with cots (0, 1)).

(b) Converse of (a) holds.

(c) Statements (a) and (b) are true for 'stable' replaced by 'semistable'.

Proof. (a) Let K be a subbundle of E of rank r. Let $F_1(K) = F_1(E) \cap (K_{x_1} \oplus K_{x_1})$ have dimension s. Define K_1 on X by $0 \to K_1 \to \pi_* K \to (\pi_* K) \otimes k(x_0)/F_1(K) \to 0$, K_1 is a subsheaf of F. One has $\deg K_1 = \deg K + r - (2r - s) = \deg K + s - r$. Stability of F implies that $(\deg K_1)/r < (\deg F)/n$. This last condition holds if and only if $(\deg K + s - r)/r < (\deg F)/n$ i.e. $(\deg K + s)/r < (\deg E + n)/n$ i.e. (E, σ) is a stable parabolic bundle (definition 3.3). (b) and (c) follow similarly noting that K is the subbundle of E generated by the image of $\pi^* K_1$ /torsion in E.

Proposition 4.3. Let p_1 and p_2 be the canonical projections from $F_1(E)$ to E_{x_1} and E_{x_*} respectively.

- (1) If p_1 and p_2 are both isomorphisms, then $F_{x_0} \approx nO_{x_0}$ i.e. F is locally free.
- (2) If only p_1 or p_2 is an isomorphism and the other is of rank r, then

$$F_{\mathbf{x}_0}\approx r\mathcal{O}_{\mathbf{x}_0}\oplus (n-r)\,m_0.$$

(3) If
$$F_1(E) = M_1 \oplus M_2$$
, $M_i \subset k(x_i)^n$, then $F_{x_0} \approx nm_0$.

Proof. In cases (1) and (2), at least one of p_1 or p_2 is an isomorphism. Suppose that p_1 is an isomorphism. Then $F_1(E)$ is the graph Γ_{σ} of the homomorphism $\sigma = p_2 \circ p_1^{-1}$ from E_{x_1} to E_{x_2} . In case (1), σ is an isomorphism while in case (2), σ is of rank r. For simplicity of notations, let $(\mathcal{C}_{x_0}, m_0) = (A, m)$. Let \overline{A} denote the normalisation, it is a semilocal ring with two maximum ideals m_1 and m_2 . A is a Gorenstein local ring of dimension one with $m^* \approx \overline{A}, m_1 \approx m_2 \approx m$, also $m \approx \overline{A}$ (p. 164, [S]). We have a nonzero k-linear map $\sigma : k_1^n \to k_2^n$ where $k_i = \overline{A}/m_i$, i = 1, 2. Let $g: \overline{A} \to \overline{A} \otimes_A k = k_1 \oplus k_2$ be the natural map. F is defined by the exact sequence

$$0 \to F \to \tilde{A}^n \xrightarrow{p} (k_1 \oplus k_2)^n / \Gamma_{\sigma} \to 0,$$

where p is the composite of ng with the natural map $(k_1 \oplus k_2)^n \rightarrow (k_1 \oplus k_2)^n / \Gamma_{\sigma}$ i.e. $F = (ng)^{-1}\Gamma_{\sigma}$, $ng = g \oplus ... \oplus g$ n-times. We want to show that $F \approx A^r \oplus \overline{A}^{n-r}$, r = rank of σ .

Proof of (1). Suppose first that σ is an isomorphism. Let $\{x_i\}, \{y_i\}$ denote the coordinates in k_1^n and k_2^n respectively. Let (B_{ij}) be the matrix of σ and let (B_{ij}^{-1}) be the inverse matrix. Define $\psi: (k_1 \oplus k_2)^n \to (k_1 \oplus k_2)^n$ by $\psi(x_1, y_1, x_2, y_2, ...) =$ $(x_1, \sum B_{1j}^{-1} y_j, x_2, \sum B_{2j}^{-1} y_j, ...)$. Then one has $\Gamma_{\sigma} = (x_1, \sum B_{1i} x_i, x_2, \sum B_{2i} x_i, ...)$ and $\psi(\Gamma_{\sigma}) = (x_1, x_1, x_2, x_2, ...) =$ graph Γ_{Id} of the identity automorphism of k^n . Choose $C_{ij} \in \overline{A}$ such that $g(C_{ij}) = (\delta_j^i, B_{ij}^{-1})$. Then $(C_{ij}) \in GL(\overline{A})$ as $g(\det(C_{ij})) =$ $(1, \det \cdot B_{ij}^{-1})$ is a unit. The automorphism φ of \overline{A}^n defined by (C_{ij}) lifts ψ i.e. $\psi \circ ng =$ $ng \circ \varphi$. It follows that $p^{-1}(\Gamma_{Id}) \approx p^{-1}(\Gamma_{\sigma}) = F$. Since g^{-1} (diagonal in $k_1 \oplus k_2) = A$, it follows that $F \approx A^n$.

Proof of (2). The above proof shows that given any $f \in GL(k^n)$ (replacing σ^{-1} by f in the above proof), one can define a homomorphism $\psi: (k_1 \oplus k_2)^n \to (k_1 \oplus k_2)^n$ which lifts to an automorphism φ of \overline{A}^n . Since ψ maps Γ_{σ} onto $\Gamma_{f \circ \sigma}$, we can replace

 Γ_{σ} by $\Gamma_{f\circ\sigma}$. Now, changing σ to $f\circ\sigma$ is equivalent to changing the matrix of σ by row transformations. We now need the following lemma.

Lemma 4.4. Let B be a nonzero $n \times n$ matrix of rank r. Then by row transformations B can be transformed to a matrix of the form

$$\begin{pmatrix} I_{r_1} & * & 0 & * & 0 & \dots \\ & 0 & 0 & 0 & 0 & \dots \\ & I_{r_2} & * & 0 & \dots \\ 0 & & 0 & 0 & \dots \\ - & - & - & - & - \end{pmatrix}$$

where I_i denotes the identity matrix of rank $t, 0 \le r_i \le \sum r_i = r$.

Proof. We shall prove the result by induction on *n*. We write $B \sim C$ if C can be obtained from B by row transformations.

Case (i). Suppose that the first column of A is not identically zero. By row transformations we may assume that $B_{11}=1$, $B_{j1}=0 \quad \forall j>1$, i.e. $B \sim \begin{pmatrix} 1 & * \\ 0 & C \end{pmatrix}$. If M is an $s \times s$ submatrix of C, then B has an $(s+1) \times (s+1)$ submatrix of the form $N = \begin{pmatrix} 1 & * \\ 0 & M \end{pmatrix}$ and det $M = \det N$. So if all the minors of B of size (s+1) vanish, then all the minors of C of size s also vanish. Hence rank $C \leq \operatorname{rank} B - 1 = r - 1$. Also, by above, no $r \times r$ submatrix of B is contained in C. Hence any $r \times r$ submatrix of B is of the form N. It follows that C has a nonzero minor of size r-1 and rank C = r-1. By induction, the result is true for C. Thus

$$B \sim \begin{pmatrix} 1 & * & & \\ & I_{s_1} & * & 0 & * \\ 0 & & 0 & 0 & 0 \\ & & & I_{s_2} & * \\ 0 & & \ddots \end{pmatrix}$$

 $0 \leq s_i \leq r-1, \sum s_i = r-1$. Then

$$B \rightarrow \begin{pmatrix} 1 & 0 & * & 0 & * & \dots \\ I_{s_1} & * & 0 & * & \dots \\ & 0 & 0 & 0 & \dots \\ & 0 & I_{s_2} & * & \dots \\ & & & & \dots \end{pmatrix}$$

Letting $s_1 + 1 = r_1$ and $s_i = r_i$ for i > 1 we get the result.

Case (ii). Suppose that the first column of A is identically zero. By switching rows if necessary we have $B \sim \begin{pmatrix} 0 & * \\ 0 & C \end{pmatrix}$, rank C = r.

Applying induction to C, we get

$$B \sim \begin{pmatrix} 0 & 0 & b_1 & 0 & b_2 & \dots \\ I_{r_1} & * & 0 & * & \dots \\ 0 & 0 & 0 & 0 & \dots \\ & I_{r_2} & * & \dots \\ 0 & & & \dots \end{pmatrix}, \quad \sum r_i = r, \quad 0 \leq r_i \leq r.$$

Consider the minor

$$\det \begin{pmatrix} 0 & b_1 & 0 & 0 & - & - \\ I_{r_1} & * & 0 & 0 & - & - \\ & & I_{r_2} & 0 & & 0 \\ & & & I_{r_3} & & \\ 0 & & & \ddots & \\ & & 0 & & I_{r_m} \end{pmatrix} = \pm b_1$$

of size r+1. Since A has rank r, it follows that $b_1=0$. Similarly, $b_i=0$ for all *i*. Thus we have

$$B \sim \begin{pmatrix} 0 & 0 & 0 & 0 & - & - \\ I_{r_1} * & 0 * & - & - \\ 0 & 0 & 0 & - & - \\ I_{r_2} * & - & - \\ 0 & & - & - \end{pmatrix}, \quad \sum r_i = r, \quad 0 \leq r_i \leq r.$$

Proof of 4.3 (2) (continued). In view of lemma 4.4 we may assume that the matrix B of σ is of the form given by lemma 4.4. Then there exist coordinates $\{u_i\}$, $\{w_j\}$ of k^n (i=1, ..., r; j=1, ..., n-r) such that $\sigma u_i = u_i + \sum b_{ij} w_j$, $\sigma(w_j) = 0$ so $\Gamma_{\sigma} = (x_1, y_1, x_2, y_2, ...)$ where if $x_i = u_i$, $y_i = u_i + \sum b_{ij} w_j$, if $x_i = w_i$, $y_i = 0$. Let pr be the projection $(k_1 \oplus k_2)^n \to (k_1 \oplus k_2)^{n-r}$ corresponding to $x_i = w_i$ coordinates. Then $pr(\Gamma_{\sigma}) = (k_1 \oplus 0)^{n-r}$, Ker $pr \cap \Gamma_{\sigma} = \{(x_i, y_i)_i\}$ if $x_i = w_i$, then $x_i = 0 = y_i$, if $x_i = u_i$, $y_i = u_i\} = \Delta^r$, where Δ denotes the diagonal of $k_1 \oplus k_2$, Δ^r is embedded in $(k_1 \oplus k_2)^r$ corresponding to $\{u_i\}$ coordinates. Let \overline{p} denote the projection $\overline{A}^n \to \overline{A}^{n-r}$ lifting pr; one has $pr \circ ng = (n-r)g \circ \overline{p}$. Now, $(n-r)g \cdot \overline{p}(F) = pr \circ ng(F) = pr(\Gamma_{\sigma}) = (k_1 \oplus 0)^{n-r}$, so that $\overline{p}(F) = m_2^{n-r}$. If K is the kernel of the restriction of \overline{p} to F, K=Ker $\overline{p} \cap F = (\overline{A}^r \oplus 0) \cap F = (\overline{A}^r \oplus 0) \cap (ng)^{-1}\Gamma_{\sigma}$. Hence $(ng)K = \Delta^r$ or $K \approx A^r$. Thus we have an exact sequence $0 \to A^r \to F \to m_2^{n-r} \to 0$. Since $\operatorname{Ext}^1_A(m_2, A) \approx \operatorname{Ext}^1_A(\overline{A}, A) = 0$ this sequence splits giving the required result.

Proof of (3). In the above notations, in this case, we have an exact sequence

$$0 \to F \to \overline{A}^n \xrightarrow{p} (k_1 \oplus k_2)^n / M_1 \oplus M_2 \to 0$$

and we want to determine F up to isomorphism. Let dim $M_1 = r$. Let $h_1 \in \operatorname{Aut} k_i^n$, i=1, 2 be such that $h_1(M_1) = (k_1 \oplus 0)^r \oplus 0$, $h_2(M_2) = 0 \oplus (0 \oplus k_2)^{n-r}$, $h_1(M_1)$ (resp. $h_2(M_2)$) mapping in the first r factors (resp. last n-r factors) in $(k_1 \oplus k_2)^n$. Let (a_{ij}) and (b_{ij}) be the matrices of h_1 and h_2 (with respect to the canonical basis). Let $a_{ij} \in \overline{A}$ be such that $g(c_{ij}) = (a_{ij}, b_{ij})$. Then $g(\det(c_{ij})) = (\det(a_{ij}), \det(b_{ij}))$ and hence $(c_{ij}) \in GL(\overline{A}^n)$. Thus $h = h_1 \oplus h_2$ lifts to an automorphism of \overline{A}^n . Hence one can replace $M_1 \oplus M_2$ by $h(M_1 \oplus M_2)$ i.e. $F \approx (ng)^{-1}(h(M_1 \oplus M_2)) = m_1^{n-r} \oplus m_2^r$.

4.5. Let M be the moduli space of semistable generalised parabolic bundles on \tilde{X} of type described in 4.1. For r=1, ..., n let $M_r \subset M$ be the subset of Mcorresponding to (E, σ) such that at least one of p_1, p_2 is an isomorphism and the other is of rank r. Let M_0 be the subset of M corresponding to (E, σ) such that none of p_1, p_2 is an isomorphism or $p_1=0$ or $p_2=0$. Clearly $M=\bigcup_{r=0}^n M_r$. As in 2.4, one can obviously globalise the construction in 4.1 to get a morphism $f: M \to U$, U being the moduli space of semistable torsionfree sheaves of rank n, degree don X. One has $U=\bigcup_{r=0}^n U_r$, where U_r corresponds to torsionfree sheaves F such that $F_{x_0} \approx r \mathcal{O}_{x_0} \oplus (n-r) m_0$. In particular, U_n is the open subset of U corresponding to locally free sheaves. Proposition 4.3 shows that $f(M_r) \subset U_r$ for r=1, ..., n. In fact one has the following theorem.

Theorem 3. Let X be an irreducible projective curve defined over an algebraically closed field, with only one node x_0 as a singularity. Let $\pi: \tilde{X} \to X$ be the normalisation. Let M be the moduli space of semistable generalised parabolic bundles E of rank n, degree d and parabolic structure given by $D = \pi^{-1}(x_0)$, $E|_D \supset F_1(E) \supset 0$, dim $F_1(E) = n$, $(\alpha_1, \alpha_2) = (0, \alpha) \alpha$ near 1. Let U be the moduli space of semistable torsionfree sheaves of rank n, degree d on X, $U = \bigcup_{r=0}^{n} U_r$, where $U_r = \{F|F_{x_0} \approx r \mathcal{O}_{x_0} \oplus (n-r)m_0\}$. Then there exists a surjective morphism $f: M \to U$ such that $f(M_r) \subseteq U_r$ for all r=1, ..., n and the restriction of f gives an isomorphism of M_n onto U_n . In particular, if n and d are coprime, then M is a desingularization of U.

Proof. We have only to check that (i) $f|M_r$ is a surjection for all r and (ii) $f|M_n$ is an isomorphism onto U_n . This can be done on similar lines as in proposition 1.11, so we only sketch the proof with necessary modifications. For (ii), the inverse f^{-1} is given as follows. For $F \in U_n$ (i.e. corresponding to an element of U_n) define $E = \pi^* F$, $F_1(E) = F \otimes k(x_0) \subset F \otimes \pi_* \mathcal{O}_{\overline{X}} \otimes k(x_0) = \pi_* E \otimes k(x_0)$. Since the above inclusion is essentially given by the inclusion $\mathcal{O}_{x_0} \subset \overline{\mathcal{O}}_{x_0}$ and \mathcal{O}_{x_0} maps onto the diagonal in $k^2 = \overline{\mathcal{O}}_{x_0} \otimes k(x_0)$, it follows that p_1 and p_2 are isomorphisms. Define $f^{-1}(F) =$

 $(E, F_1(E))$. (i) If $F \in U_0$, $F = \pi_*(E_0)$ for a unique vector bundle E_0 on \tilde{X} . Take any E given by an extension of the form

$$0 \to E_0 \to E \xrightarrow{h} k(x_1)^r \oplus k(x_2)^{n-r} \to 0, \quad 0 \le r \le n$$

and $F_1(E) = \text{kernel}$ of $h|x_1+x_2$. Then $f(E, F_1(E)) = F$. If $F \in U_r$, 0 < r < n, the result can be proved as in proposition 1.11(3). In this case, $E_0 = \pi^* F/\text{torsion}$, E is given by

$$0 \rightarrow E_0 \rightarrow E \rightarrow k(x_2)^{n-r} \rightarrow 0$$

or

$$0 \rightarrow E_0 \rightarrow E \rightarrow k(x_1)^{n-r} \rightarrow 0.$$

4.6. The determinant map.

Let (E, σ) be as in 4.1. We shall generalise the results of 2.3 to define the "determinant" of (E, σ) when at least one of p_1 or p_2 (see 4.3) is an isomorphism. The space $F_1(E)$ is an element of the Grassmanian of *n* dimensional subspaces of $E_{x_1} \oplus E_{x_2}$. By Plücker embedding, *G* is embedded in $P(\Lambda^n(E_{x_1} \oplus E_{x_2}))$. Now, $\Lambda^n(E_{x_1} \oplus E_{x_2})$ contains $\Lambda^n E_{x_1} \oplus \Lambda^n E_{x_2}$ as a direct summand, let *d* be the projection $P(\Lambda^n(E_{x_1} \oplus E_{x_2})) \rightarrow P(\Lambda^n E_{x_1} \oplus \Lambda^n E_{x_2}) = P^1$. Let (e_1, \ldots, e_n) and (f_1, \ldots, f_n) be the bases of E_{x_1} and E_{x_2} . Then a basis of $F_1(E)$ is of the form $(u_i = \sum a_{ij}e_j + \sum b_{ij}f_j)_{i=1,\ldots,n}$. The point *P* in *G* corresponding to $F_1(E)$ is given by $u_1 \Lambda \ldots \Lambda u_n = \det(a_{ij})e_1 \Lambda \ldots \Lambda e_n + \det(b_{ij})f_1 \Lambda \ldots \Lambda f_n + other mixed terms. Hence <math>d(P) = (\det(a_{ij}), \det(b_{ij})) = (\det p_1, \det p_2)$. We define $\det(E, \sigma) = (\det E; (\det p_1, \det p_2)), p_1$ and p_2 being the projections from $F_1(E)$ to E_{x_1} and E_{x_2} respectively. Note that $(\det p_1, \det p_2)$ defines a one dimensional subspace of $(\det E)_{n_1} \oplus (\det E)_{x_2}$, so $\det(E, \sigma)$ is a generalised parabolic line bundle.

It is easy to see that (see 2.4) this construction gives a morphism det: $\bigcup_{i=1}^{n} M_i \rightarrow P$, P being the moduli space of generalised parabolic line bundles (2.1, 2.2). We shall show that det goes down to a morphism det: $U_n \cup U_{n-1} \rightarrow \overline{J}(X)$. Let $F \in U_n$, $f(E, F_1) = F$. Then $F_1(E)$ is the graph of a morphism say $g: E_{x_1} \rightarrow E_{x_2}$ and F is obtained by identifying E_{x_1} with E_{x_2} via g. Hence det F is obtained by identifying det E_{x_1} with det $g = p_2 \circ p_1^{-1}$ so det g is the point (1, det $g) \sim$ (det p_1 , det p_2) in P¹. Thus det $|M_n|$ is the same as the determinant morphism $U_n \rightarrow J(X)$ under the identification by $f|M_n$. By the proof of theorem 3, $F \in U_r$, and element $(E, F_1(E))$ in M_r on the fibre of f over F is obtained from an extension of the type

(a)
$$0 \to E_0 \to E \to k(x_1)^{n-r} \to 0$$
 or

(b)
$$0 \rightarrow E_0 \rightarrow E \rightarrow k(x_2)^{n-r} \rightarrow 0.$$

Let $L = \det E_0 = \det (\pi^* F / \text{torsion})$. Then one has either

(c) det
$$(E, F_1(E)) = (L((n-r)x_1), F_1(L) = L_{x_2})$$
 or

(d) $\det(E, F_1(E)) = (L((n-r)x_2), F_1(L) = Lx_1).$

If n-r=1 i.e. $F \in U_{n-1}$, then (c) and (d) map into the same element of $\overline{J}(X) - J(X)$ under the normalisation morphism $P \rightarrow \overline{J}(X)$. Thus det induces a morphism det: $U_{n-1}\overline{J}(X) - J(X)$. Note that det does not induce a morphism on U_r , $r \le n-1$ as (c) and (d) give different elements in $\overline{J}(X) - J(X)$. Thus we have proved the following.

Proposition 4.7. (1) The morphism det: $U_n \rightarrow J(X)$ lifts to a morphism $M_n \rightarrow P$. The latter extends to a morphism $d: \bigcup_{r>0} M_r \rightarrow P$.

(2) The morphism d descends to a morphism det: $U_n \cup U_{n-1} \rightarrow \overline{J}(X)$. But d does not induce a morphism on $\bigcup_{r \le n-1} U_r$ extending det.

Examples 4.8. Consider the rank two torsionfree sheaf $\emptyset \oplus \mathcal{M}$. We claim that $\Lambda^2(\emptyset \oplus \mathcal{M})/\text{torsion} \approx \mathcal{M}$. Since both \emptyset and \mathcal{M} are trivial outside x_0 , the problem is local at x_0 . Let $(\emptyset_{x_0}, m_0) = (A, m)$. One has the inclusion $i: A \oplus m \rightarrow A \oplus A$. Let (e_1, e_2) be the canonical basis of $A \oplus A$ and let x, y be the generators of m, $i(e_1) = e_1$, $i(x) = xe_2$, $i(y) = ye_2$. Then $\Lambda^2 i: \Lambda^2(A \oplus m) \rightarrow A$ maps the torsion to zero and $\Lambda^2(A \oplus m)/\text{torsion} \approx I = \text{Image of } \Lambda^2 i$. The three generators $e_1 \Lambda x$, $e_1 \Lambda y$, $x \Lambda y$ of $\Lambda^2(A \oplus m)$ map respectively to $xe_1 \Lambda e_2$, $ye_1 \Lambda e_2$ and 0. Thus I = m and hence $\Lambda^2(\emptyset \oplus \mathcal{M})/\text{torsion} \approx \mathcal{M}$. Similarly, $\Lambda^n(\emptyset^{n-1} \oplus \mathcal{M})/\text{tor} \approx \mathcal{M}$. Notice that degree $(\emptyset^{n-1} \oplus \mathcal{M}) = \text{degree } \mathcal{M} = -1$.

(2) Consider now the rank two torsionfree sheaf $\mathcal{M} \oplus \mathcal{M}$. As above, we need only to compute $\Lambda^2(m \oplus m)/\text{torsion}$. Writing $m \oplus m = m_1 \oplus m_2$, let (x_j, y_j) be the generators of m_j , $j=1, 2, i: m_1 \oplus m_2 \to A \oplus A$ the inclusion, $i(x_j) = x_j e_j$, $i(y_j) = y_j e_j$, (e_1, e_2) being the canonical basis of $A \oplus A$. One sees that Ker $(\Lambda^2 i)$ is generated by $x_1 \Lambda y_1, x_2 \Lambda y_2$ while $I = \text{Im} (\Lambda^2 i)$ is generated by $x^2 e_1 \Lambda e_2, xy e_1 \Lambda e_2, y^2 e_1 \Lambda e_2$ i.e. $I = m^2$. Thus $\Lambda^2(\mathcal{M} \oplus \mathcal{M})/\text{torsion} \approx m^2$. Note that degree $(\Lambda^2(\mathcal{M} \oplus \mathcal{M}))/\text{torsion} =$ -3 while degree $(\mathcal{M} \oplus \mathcal{M}) = -2$. Similarly, $\Lambda^{r+s}(\mathcal{O}^r \oplus \mathcal{M}^{\oplus s})/\text{torsion} \approx \mathcal{M}^s$ and degree $(\mathcal{O}^r \oplus \mathcal{M}^{\oplus s}) = -s$ while degree $\mathcal{M}^s \neq -s$ if s > 1. This also explains why the determinant morphism does not extend to $U_r, r < n - 1$.

Remark 4.9. Let U_L be the subset of U_n corresponding to vector bundles on X with a fixed determinant L and let \overline{U}_L be its closure in U. Let M_L be the isomorphic image of U_L under $(f|U_n)^{-1}$. Since f is proper and $f|U_n$ is an isomorphism, as in remark 3.20, we see that $f(\overline{M}_L) = \overline{U}_L$. From proposition 4.7(1) it follows that $\overline{M}_L \cap (\bigcup_{r>0} M_r) = \phi$ i.e. $\overline{M}_L \subset M_L \cup M_0$ and hence $\overline{U}_L \subset U_L \cup U_0$.

Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves 215

References

- G. GIESEKER, D.: A degeneration of the moduli space of stable bundles, J. Differential Geom. 19 (1984), 173-206.
- G 2. GIESEKER, D.: On the moduli of vector bundles on algebraic surfaces, Ann. Math., 106 (1977), 45-60.
- L. LANGE, H., NARASIMHAN, M. S.: Maximal subbundles of rank two vector bundles on curves. Math. Ann. 266 (1983), 55-72.
- N. NEWSTEAD, P. E.: Introduction to moduli problems and orbit spaces. Tata Institute, Bombay, Springer-Verlag (1978).
- S. SESHADRI, C. S.: Fibres vectoriels sur les courbes algébriques, Astérisque 96 (1982).
- SM. MEHTA, V. B. and SESHADRI, C. S.: Moduli of vector bundles on curves with parabolic structures. Math. Ann. 248 (1980), 205-239.
- SN. SUNDARAM, N.: Special divisors and vector bundles, Tohoku Math. Journ. 39 (1987), 175-213.
- V. BHOSLE, U. N.: Parabolic vector bundles on curves, Arkiv för Matematik vol. 27 (1989) No. 1, 15-22.

Received May 11, 1990 in revised form August 10, 1990 U. Bhosle School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400 005 INDIA