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Abstract. In this paper it is shown that Toeplitz operators on Bergman space form a dense 
subset of the space of all bounded linear operators, in the strong operator topology, and that their 
norm closure contains all compact operators. Further, the C*-algebra generated by them does not 
contain all bounded operators, since all Toeplitz operators belong to the essential commutant of 
certain shift. The result holds in Bergman spaces A~(t2) for a wide class of plane domains 12cC,  
and in Fock spaces A2(C2V), N ~  1. 

1. Introduction 

Let g2 be a domain in C" equipped with the Lebesgue measure d2(z), or I2=C N 
with the Gaussian measure dp(z)=e-TZ:/2(2rO-Nd2(z). We shall be concerned with 
operators on the subspace AS(~2) of  LS(f2, d)0 consisting of  functions analytic 
on ~2, and on the subspace A2(C N) of  LS(C N, dp) consisting of  entire functions 
on C N. The former is usually referred to as Bergman space, while the latter is known 
as the Segal--Bargmann space, or as the Fock space. For 12 ~ C  N, we shall as- 
sume throughout this paper that g2 has finite Lebesgue measure (otherwise the 
space AS(f2) becomes too small - -  it won't  even contain nonzero constant func- 
tions). 

For ~b an essentially bounded function on f2, we may define the multiplication 
operator 

M#: f - -  r 

acting from AS(g2) into L2(f2, d;t) or LS(C N, dp). If  P+ stands for the orthogonal 
projection o f L  s onto the corresponding A s, the Toeplitz operator T§ and the Hankel 
operator H# with symbol q~ are defined by 

T,~f= P+M~,f and H,~f= (I-P+)M~,f. 
They are bounded linear operators from AS(f2) into AS(f2) and LS@AS(I2), respec- 
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tively. These operators have been studied by numerous authors, e.g. by Axler, Con- 
way and McDonald [2], McDonald and Sundberg [19] and Axler [1]. More recently, 
they became of interest due to their connection with pseudodifferential operators 
and with quantum mechanics, cf. Guillemin [16], Berezin [4], [5], [6], Berger and 
Coburn [7], [8], Coburn [11], Berger, Coburn and Zhu [9]. The problem of com- 
pactness of Toeplitz and Hankel operators has been solved by Stroethoff and Zheng 
[20], [22], [21]. 

In this paper, we shall be concerned with the question of "how many" oper- 
ators on A2(•) are Toeplitz. The classical Toeplitz operators on the Hardy space 
H ~ on the unit circle T are characterized by an intertwining relation (cf. [17], prob- 
lem 194) 

S* TS = T, 

S being the unilateral shift operator on H 2. It follows that Toeplitz operators on 
H 2 form a rather small w*-closed subset of ~ ( H  2) of infinite codimension. It can be 
shown that no such characterization (i.e. of the form "T is T o e p l i t z ~ , A T B = T "  
for some operators A, B) is possible on A2(D) [13] and that Toeplitz operators on 
AS(D) are in fact dense in the space of all bounded linear operators in the strong 
operator topology [14]. For A2(CN), similar observation was made by Berger and 
Coburn [8], who also proved that the norm closure contains all compact linear 
operators, but not all bounded ones. 

In this article, we first show that the above results remain valid for arbitrary 
f2____CN: the SOT closure of the set {T~: ~b~L~(f2)} contains all bounded linear 
operators, and its norm closure contains all compact ones (Section 2). An important 
ingredient in the proof is a simple interpolation property of Toeplitz operators 
(Theorem 2). The remaining sections deal with algebras generated by Toeplitz oper- 
ators. It is shown that even the C*-algebra generated by the set {T#: qSEL=(I2)} 
does not contain all bounded linear operators. The reason is that Toeplitz operators 
essentially commute with an operator unitarily equivalent to a unilateral (f2 .cC) 
or bilateral (O= C N, N>= 1) shift. This result gives a negative answer to a conjecture 
of Berger and Coburn in [8]. The proof is first presented for s the unit disc 
(Section3), then for f2~C (Section4), and finally for f2=C N (Section 5); the 
case 12~C N, N > I ,  remains open. 

In view of these results, it would be useful to know something more about 
the essential commutant of the unilateral and of the bilateral shift. Some work in 
this direction has been done by Barria and Halmos [3] and closely related topics 
appear also in Davidson [12] and Johnson and Parrot [18]. Otherwise, very little 
seems to be known; for instance, it is not even clear whether these two essential 
commutants are not in fact isomorphic as C*-algebras. 

As mentioned above, the results of sections 3--5 do not cover the case s ~ C  N, 
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N > I .  The difference from the case N =  1 is best illustrated by the behaviour of  
Hankel operators: if N = I ,  H s is compact for arbitrary fEC(O);  for N = 2  and 
f J = D •  (the bidisc in CZ), even the operators H2, and H~, are not compact (see 
[11], p. 101). 

The author would like to thank C. A. Berger and L. A. Coburn for sending 
interesting preprints. 

2. Density of Toeplitz operators 

We begin with a simple interpolation property for Toeplitz operators. For  
f J=D,  this property was established in [14]. Denote by ~(O)  the Schwarz space 
of  all compactly supported infinitely differentiable functions on f2. 

Proposition 1. Let f2 be a domain in C N and F(x, y) an analytic function on 
f2• ~ such that 

F(x, ~) = 0 VxEO. 

Then F vanishes identically on f2 • ~. 

Proof. For 12=C N, a proof may be found in [15] (Proposition 1.69); the idea, 
however, works for other domains as well. Without loss of generality, we may assume 
that O contains the origin. Put 

G(u, v) = F(u+iv ,  u - i v )  

whenever u, vE C N are such that u + ire ~, u -  irE ~. Then G is an analytic func- 
tion on a domain ~ in C 2N containing the origin, and the condition F(x, ~)=0 
implies that G(u, v)=0 whenever (u, v)E~ and u, vER N. Expanding G into the 
Taylor series at the origin and looking at the coefficients, we find that this is only 
possible when G = 0  identically. [] 

Theorem2. Let T be a bounded operator on A2(O) and Fl, GiEA~(I'2) 
( i = l ,  2 . . . .  , k). Then there exists tkE~(t2) such that 

(T#Fi, G,) = (TF~, G,), i = 1, 2 . . . .  , k. 

Proof. We shall prove the theorem for the case f2#CN; the proof for the 
Fock space is perfectly similar. Let f~, f~, ..., fn, resp. gx, gz, ..., gm be a basis 
of  the subspace of A2(12) spanned by F~, ..., Fk, resp. GI . . . .  , Gk. Clearly it's 
sufficient to find ~E~(O)  such that 

( T §  for all i =  1 . . . . .  n and j =  1 . . . . .  m. 



230 Miroslav Engli3 

Consider the operator R: ~(12)-~C "X', defined by the formula 

(Rdp),j = f ,~C(z) f , ( z )gAz  ) d2(z) = (T, f , ,  g~). 

Suppose some u~C "x" is orthogonal to the range of  R, i.e. 

?1 nl ~ = x  Zj=x(Rq~)~j~ij = 0 for all ~b~(f2). 

This means that 

L ?l ?tl - q ~ ( z ) ~ i = ~ j = l u ~ f ( z ) g j ( z ) d 2 ( z ) = O  for all r  

which implies 

Z i = I  m - " Z l = ~ u , j f ~ ( z ) g j ( z )  = 0 

d2-almost everywhere in 12; since the left-hand side is obviously continuously on f2, 
this equality holds, in fact, on the whole of O. Thus, the function 

n m 
F(X, y) = Z i = I  Z j = I  HiJf i(x) gJ(Y), 

which is analytic on I2• equals zero whenever x = y .  By Proposition 1, this 
implies that F is identically zero on 12• D. Because the functions f~, i =  1, 2, ..., n, 
are linearly independent, we have 

nl ~=~u~ jg j (y )  = 0 for all y~f2, i = 1,2 . . . . .  n; 

but gs, J =  1, 2 . . . .  , m, are also linearly independent, and so u u = 0  for all i, j ,  i.e. 
u=0.  This means that the range of R is all of  C "xm, which immediately yields the 
desired conclusion. [] 

Corollary 3. The set ,q-={T~: ~bE~(12)} is dense in ~(A2(f2)) in S O T  (the 
strong operator topology). 

Proof. In view of  the preceding theorem, it is certainly dense in WOT (the 
weak operator topology); and because oj- is a subspace, i.e. a convex set, its WOT- 
and SOT-closures coincide. [] 

A natural question arises at this point - -  namely, whether the Toeplitz opera- 
tors are not actually norm-dense in &(A2(I2)). We shall see later that this is not 
the case - -  even the C*-algebra generated by them is smaller than ~(A2(~)). It 
is true, however, that the norm closure of  the Toeplitz operators contains all compact 
operators. The following two lemmas will be needed in the proof. 

l_emma 4. A2(f2) is a reproducing kernel space, i.e. for each xE I2 there exists 
g~EA2(I2) such that 

(f ,  gx) = f ( x )  VfEA2(~2). 
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The family {g~: xEf2} spans A2(~2), and supx~K ]lg,`ll< +o~ for every compact 
subset K of 12. 

Proof The proof is standard but short, so it is given here for complete- 
Z ~ z 1 2  ~ e I x I z14 ness. For f2=C N, we have g~( ) =  and Ilg,`l l-  (see [7]). For [2~C N 

and xEI2, denote R the largest radius for which the polydisc B(x, R)= 
{zECN:  IXk--Zkl<-R, k = l ,  2, ..., N} lies entirely in f2. Let Z be the characteristic 
function of this polydisc. Owing to the mean value property of analytic functions, 

IB(x, R)I .f(x) = f,,z(z)f(z)d.C.(z) = ( f ,  z)L,~.) = (f,  P+ z)a,~m VfEA2(I2), 

1 
and so g x -  P+Z will do. Further, I]P+xII~_ItXI[=IB(x, R)Ix/2=r~:~R N. 

IB(x, R)I 
Consequently, 

1 
sup IIg~ll < 
z ~ r  - -  nm2"dist(K, CN\I2) N < + ~  

for every compact subset K of ~2. 
Finally, if I2~C N and f i g , ,  VxEf2, then f(x)=(f,g~)=O on I2, i.e. f=O. 

It follows that the linear span of the functions g~, xEt2, is dense in A~(f2). [] 

Denote by Lc(t2 ) the subspace of L**(f2) consisting of functions supported 
on compact subsets of [2, and let V(I2) he the closure of L~(f2) in L**(f2). Thus, 
loosely speaking, V([2) consists of bounded functions on f2 which vanish on the 
boundary 0t2 and - -  if I2 is unbounded - -  at infinity. 

Lemma 5. For dpE V(I2), T, is a compact operator. 

Proof It suffices to prove the assertion for ~bEL~*(f2). So suppose that ~b 
vanishes on f2\K,  where Kc f2  is compact, and let {f,}cA2(f2) be a sequence 
converging weakly to zero. Such a sequence must be bounded - -  say, IILll ~-c  Vn. 
Owing to Lemma 4, 

I f . ( z ) l  ~_ IIf.ll" [Ig, ll ~- c sup IIg=ll --- C < + ~ V z E K ,  
z~K 

i.e. the family of functions {f,} is uniformly bounded on K. On the other hand, 
f , - - ~  0 implies f , (z)=(f , ,  gz)~O VzEI2, and we may apply the Lebesgue dom- 
inated convergence theorem to conclude that 

IIT§ ~ ~_ [l~f.II ~ = f ,, I ~ ( z ) f . ( z ) 1 2 d A ( z )  -~ 0 

as n ~ ~. It follows that T~ maps weakly convergent sequences into norm convergent 
ones, and so must be compact. [] 
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Theorem 6. The closure of the set 
topology coincides with Comp (A2(D)), 
on Ae(f2). 

z'~={T~: q~E~(f2)} in the operator norm 
the space of all compact linear operators 

Proof According to the last lemma, we have clos~.~. ~"cComp;  it remains to 
prove the reverse inclusion. 

Recall that the dual of  Comp (H), where H is a separable Hilbert space, may 
be identified with Trace (H), the space of  all trace class operators on H equipped 
with the trace norm 11 " I l T r ;  the pairing is given by (K, T),-~Tr (KT )=T r  (TK), Tr 
being the trace. 

Suppose that f2 =c C N and that clos~. ~j oj- is a proper subset of  Comp (A2(f2)). 
By the Hahn--Banach theorem, there exists TETrace(A2(f2)), T~0, such that 

Tr(TT~) = 0 'q~bE~(~2). 

Let A,B be two Hilbert--Schmidt operators such that T=AB*, {e.}~= o an 
orthonormal basis for A2(s f .=Ae.,  g.=Be.. Then Tr(TT~)=Tr(B*T#A)= 
.~=o  (B*T, Ae., e,,), and so the last condition may be rewritten as 

ZT=o(Tr = 0 Vq~E~((2), 
or  

= 0 V0C (O) 

(if 12=C u, replace d2 by d/0. Because ~b has compact support, z~ Ilf.II *< +~o 
and z~l[g.l[2<+oo, we may interchange the integration and summation signs, 
which yields 

f,~4~(z)V(z, ~)d).(z) (or d/t(z)) = 0 Vq~E~(f2), 

where 

F(x, y) = ~ = 0  f .(z)  g.(y) = Tr (TGx, y), 

Gx,, = ( ' ,  gx)g~. 

It follows that F(z, ~) = 0 for almost all zE 12; in other words, the function F(x, y), 
analytic on s215 O, vanishes when x = j  ~. Appealing to Proposition 1, we conclude 
that F = 0  everywhere on s215 5,  i.e. Tr (TGx, y) = 0  Vx, yE 12. In view of Lemma 4, 
Tr ( T K ) = 0  for all rank one operators K; by linearity and continuity, Tr ( T K ) = 0  
for all compact K, whence T = 0  - -  a contradiction. The proof  is complete. [] 

Remark. For f2=D, a different proof  may be found in [14]. For f2=C ~', 
Theorem 6 was proved independently by Berger and Coburn ([8], Theorem 9). Their 
proof  makes use of  a sophisticated machinery developed by Berezin, but  very likely 
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could be reduced to the one given above. On page 38 of  [8], Berger and Coburn 
consider the set of  all Toeplitz operators with bounded symbols 

(1) {T,: r 

and prove that it is not dense in ~(A*(C'V)) in the norm topology. They conjectured, 
however, that "the C*-algebra generated by the set (l) ... could contain all bounded 
operators". The subsequent sections show that this conjecture is not true. 

3. Toeplitz a l g e b r a  o n  D 

Let us start with A2(D), where the proof  is most transparent. Modifying the 
definition a little, we replace the Lebesgue measure d). (z) on D by its multiple 

1 
dv (z) = -~ d2 (z) 

chosen so that D has measure 1. If  f = 2 ~ = o f ,  z" is a function analytic on D, its 
norm in L2(D, dr) is easily seen to be given by 

tiflt 2 = Z~'=o If"lz 
1 7 + 1  ' 

and so fEA2(D) iff this quantity is finite. For f ,  gEA2(D), we have 

n +  1 " 

Thus, the set 

(2) e.(z) = I / - ~  lz ~, nEN, 

constitutes an orthonormal basis for A~(D). 
Define 

M(T,) := {T~g (A'(D)): T -  ~* TT~ EComp}. 

There is an alternative definition of  M(T,): 

Proposition 7. d (T~) = {T~ g~ (A 2 (D)): [T, T~] ~ Comp}. 

Proof. The operators 

diag (1 n + l  ] = 1 n 
" = ~, - n--n--~-, and I-T_.T_.* d i a g ( - n - - - ~ - )  I - T * T .  
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are compact (diagonality is understood with respect to the basis (2)). Consequently, 

T-- T* TT~EComp ~ Tz(T-- T* TT~) = (T, T -  TTz) + (1 -  T~ T*) TT~EComp 

=* T~T- TT~EComp. 
Similarly, 

T~T--TT~EComp =~ T~*(T~T--TT~) = (T-TT~*T~)--(I-T~*Tz)TEComp 

=~ T -  T~* TT~EComp, 

and the assertion follows. [] 

Theorem 8. (i) ~ (T~) is a C*-algebra. 
(ii) V~bEL*O(D): T,E~C(T~). 

Proof. (i) It's clear that ~r is a linear and selfadjoint set, which is moreover 
closed in the norm topology; so the only thing that remains to be checked is that it 
is closed under multiplication. But 

[AB, T~] = A(BT~--~B)+(AT~-T~A)B = A[B, T~]+[A, T~]B, 

which is compact if [A, T,] and [B, T~] are. 
(ii) If SEL~(D), then 

T,-T*T§ = T§ = T,_~,~ = T(x-I,I,),(,). 

But (1--IzI2)$(z)EV(D) and so the last operator is compact by Lemma 5. [] 

Corollary 9. The C*-algebra generated by {T,: ~bEL**(D)} is strictly smaller 
than ~(A~(D)). 

Proof. In view of  the preceding theorem, it suffices to find an operator not in 
d(T~); one of  them is 

J = diag ( -  l)", 
since 

J -  T~*/T~ = diag ( ( -  1)" n + l  ) - n+------T ( -  I) "+~ 

certainly is not compact. [] 

Theorem 8 carries over trivially to the classical Hardy space H ~. Indeed, when 
T is a Toeplitz operator on H z, then (see [17]) 

T =  S* TS, 

where S is the usual (forward) shift operator on H 2. Thus, if we define 

�9 ~ ( S )  := {TE~(H2): T - S *  TSEComp (H~)}, 

then the following assertions are immediate. 
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Proposition 10. (i) d ( S ) :  {TE~(H2): IT, S]EComp (H2)}. 
(ii) ~r is a C*-subalgebra of &(H2). 

(iii) T~E~r for every Toeplitz operator T~ on H 2. 
(iv) The C*-algebra generated by the ToepHtz operators in &(H ~) is strictly 

smaller than d$ ( H 2). 

The proofs are similar to those for Proposition 7--Corollary 9, and actually a 
lot simpler. In the Corollary, the same operator J works (this time, of course, diag- 
onality is understood with respect to the standard orthonormal basis {z~}n~0 of 
H2). The algebras ~r and ~ ( S )  are, in fact, isomorphic; moreover, the iso- 
morphism ~r162 may be chosen to be spatial, i.e. of the form 

T~-~ W*TW,, 

where W is a fixed unitary operator from H ~ onto AS(D). To see this, let W be the 
operator mapping the standard basis {z"},eN of H 2 onto the basis { nl/-~'l Z~},eN 
of A2(D), 

w: 2"[~oA:  -" Y . L o A 1 / . + l : .  

TEd(T~) ~:~ [T, T~]EComp ~:~ W* TT~ IV-W*T~ TWEComp 

Then 

(3) 

(W* TW)(W* T~ W) - (W* T~ W)(W* TW)EComp 

r (W* TW) S -  S(W* TW)EComp ~ W* TWEM(S); 

here T~ is the Toeplitz operator on AS(D), not on H ~, and the last-but-one equiv- 
alence is due to the fact that 

.. (~lh+l } 
W * T ~ W - S :  S'alag( v~+- -~- I  

is a compact operator (diagonality is understood with respect to the standard basis 
of H~). 

In general, we may define 

(M) := {TE~(H): [M, T]EComp (H)} 

for arbitrary operator M on a Hilbert space H. The following theorem generalizes 
the considerations of the previous paragraph. 

Theorem 11. (i) ~ ( M ) = ~  (M + K) for arbitrary compact operator K. 
(ii) Suppose that M is essentially normal, ae(M)=T, the unit circle, and 

ind M-- - -  1. Then there exists a unitary operator W: H2~H such that 
the transformation 

T~--,- W* TW 
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is a C*-algebra isommThism of d ( M )  onto ~ ( S ) .  In particular, ~r & 
a proper C*-subalgebra of  ~(H).  

Proof (i) is immediate (actually, it has already been used in the end of the 
last-but-one paragraph). 

(ii) According to the Brown--Douglas--Fillmore theory [10], an operator M 
satisfying these conditions is unitarily equivalent to S modulo the compacts, i.e. 
there exists a unitary operator W: HZ+H and a compact operator K6Comp (H) 
such that 

WSW* = M+ K. 

Owing to part (i), ~ r  and repeating the argumentation from (3) 
- -  with M + K  in place of T, - -  leads to the desired conclusion. [] 

4. Toeplitz algebras on I2 ~ C 

Now we are in a position to prove the analogue of Theorem 8 for a general 
domain f2~C. In case f2 is simply connected, a short proof may be given using 
the Riemann mapping theorem. We present it first and then, in case f2 is bounded 
(but not necessarily simply connected), we exhibit another proof based on the results 
of Axler, Conway and McDonald [2]. So suppose f2.cC is simply connected and 
let 4 : f 2  +D be the Riemann mapping function. 

Lemma 12. ae(T~)=T and ind 7 ~ = -  1. 

Proof For arbitrary xED, the operator T,-x is injective and its range clearly 
consists exactly of functions vanishing at r (since r  loosely speaking, 
behaves like z-q~- t (x)  in a sufficiently small neighbourhood of #-l(x)).  Hence, 
i n d T , _ x = - I  for x6D. On the other hand, IIT~lt=<ll~,tl~=l and so indT,_~=0 
if [xl>l.  Since 

x ~-~ ind T~_.~ 

is a continuous function on C\a , (T , ) ,  necessarily ae(T~)=T. [] 

Lemma 13. Assume T is a Fredholm operator and I -T*TCComp.  Then also 
I--TT*6Comp and T is essentially normal. 

Proof (Cf. [10], proof of Theorem 3.1.) By assumption, 1 -  T* TEComp, and 
on multiplying by the inverse of I+(T* T) l+'z, we find that I - ( T *  T)l/~'EComp. If 
T=W(T* T) t/~ is the polar decomposition, it follows that T is a compact perturba- 
tion of the partial isometry W. Now I - W W *  is the projection onto (Ran W)•  
(Ran T) • which is a subspace of finite dimension (since T is Fredholm); hence, 
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I - W W *  is a finite rank operator. Because T is a compact perturbation of W, 
I - T T *  must be a compact operator. [] 

Theorem 14. Assume f2cC is a simply connected domain (of finite Lebesgue 
measure) and let ~: f2--,D be the Riemann mapping function. Then TIEd(T,)  
VfEL~(f2) and there exists a unitary operator W: H2oA2(f2) such that the trans- 

formation T~.-W* TW establishes a C*-isomorphism of ~(T~) onto sO(S). In par- 
ticular, the C*-algebra generated by the Toeplitz operators T I, fE  L ~ (f2), is a proper 
subalgebra of  ~(A2(O)). 

Proof. Let fEL~(I2). We have 

rs-rgrsr  = rs_ s  = 

For arbitrary 6 >0,  the set 

{)'El2: [~(Y)I <---- 1--6} 

is a compact subset of f2. Consequently, (1 - [4~lZ)fE V(f2), and Lemma 5 implies that 

(4) TI-TgTITcECom p VfE L= (I2). 

Taking f =  1, we see that I - T g  T| must be compact, and an application of  Lemma 12 
and Lemma 13 shows that I - T ~ T g  is compact as well. Multiplying (4) by T, from 
the left yields (el. the proof  of Proposition 7) 

T, Tj. - Ts T~E Comp, 

i.e. TIEs4(T~, ). It remains only to make use of Lemma 12, Lemma 13 and Theo- 
rem 11. [] 

Now assume that f2 ~ C  is bounded, but not necessarily simply connected. Let 
us recall briefly the pertinent results of  [2]. A point xE 0f2 is called removable if there 
exists a neighbourhood V of x such that every function fE  A2(O) can be analytically 
continued to V. (For instance, every isolated point of  OO is removable, by a variant 
of  Riemann's removable singularity theorem.) The collection of  all removable bound- 
ary points is called 0, f2, the removable boundary of f2; 0~ ~2 := 012\0,12 is the essential 
boundary. 

The following assertions are proved in [2]. 
(A) ([2], Proposition 3) Oe~2~OO, the boundary of  the closure of  f2. 
(B) ([2], Proposition 8) I f  UEC(~), then HsECom p (A2(f2)). 
(C) ([2], Corollary 10) I f  fEC(~) ,  then ae(Ts)=f(Oef2 ). 
Now we are ready to prove the main theorem of this section. 
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Theorem 15. Axsume that t2 is a bounded domain in C. Then there exists a 
unitary operator W: H2-*A~(t2) such that the transformation 

T~,. W*TW, ~(A~(a))  ~ ~(H~),  

sends every Toeplitz operator TI, fEL**(f2), on A~(12) to an element of ~ ( S ) .  In 
particular, the C*-algebra generated by the Toeplitz operators on A2([2) is a proper 
subalgebra of  ~(A~(f2)). 

Proof. Without loss of  generality we may assume D c I Z  Let ~EL**(f2) be 
the function z/Izl adjusted in a small neighbourhood of  0 so as to be continuous 
on ~;  for instance, take 

Then ~oEL~" (t2), 
01, O~E (0, 1), 

/e  it if  r => 1, 
~(re~')=|re~t if r 1. 

Because ~EC(~) ,  the Hankel operators H ,  and H~ are compact in view of (B), 
and, consequently, so is the operator 

iT,, r . ]  = H , -  H;  t t .  

for arbitrary fEL~176 Thus, TIE.~/(T~). In particular, T~E.d(T~), i.e. T~ is 
essentially normal. In view of  (A) and (C), ae(T~)=~(Oet2)=~(O~)=T. If  we 
prove that ind T, = - 1, we can apply Theorem 11 and the desired conclusions will 
follow. 

For 0---0_~1, define 
r ~ u for r _ ~ l ,  

~o(re ~,) = 
re It for r _~ I. 

and so the operators T~po are defined. Moreover, for arbitrary 

IlTme,--T%ll ~ ]l~o,--~o,l[- = sup [ r ~ 1 7 6  ~ c.  I01-Od,  
l ~_ r~d iam~ 

where diam ~ is the diameter of  Q and 

c -- sup Ir ~ r l 
l~e~_diam fl 

0~_0~1 

is independent of  r and 0. This shows that the mapping O~-~T~o is continuous. 
Besides, tre(T~)=~0(0et2)~0 , i.e. all T~o are Fredholm operators and so their 
index is defined. Since "ind" is a continuous integer-valued function, it must be 
constant along the path O~-~T~oo, whence ind T~0.=ind T~0 ,, or 

ind T, = ind T~. 

But ker T~={0}, while Ran T~ consists of  all functions from A2(t2) that vanish 
at 0. Consequently, ind T, = - 1, and the proof is complete. [] 
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5. Toeplitz algebra on C N 

We have seen that for 12 ~ C ,  all Toeplitz operators belong to the essential 
commutator of certain unilateral shift. This turns out to hold for g2=C as well, 
but not for f2 = C n, N >  1. 

Let us first consider f2=C. Recall that the Fock space A~(C) has an ortho- 
normal basis {e.}~'= 0, 

(5) e.(z) := (n! 2")-1/~z ~. 

Denote Z the forward shift operator with respect to this basis, and let 

Z ~ e i a r g z  
�9 (z) = Iz-S 

Theorem 16. (i) The operator T,~ is a compact perturbation of  Z. Consequently, 
~ ( T , )  = ~/(Z) .  

(ii) TI~ ~ (T,), i.e. Tf T , -  T| T ~  Comp, for every f ~ L ' ( C ) .  
(iii) There exists a unitary operator W: H~-~A~(C) such that the transforma- 

tion T ~ W * T W  is a C*-isomorphism of  ~g(Z) onto M(S).  

In particular, the C*-algebra generated by all Ty, f~  L :  (C), is a proper subset of  

Proof. (i) A direct computation reveals that 

0 m ;~ n +  1, 
(T~z",z") = 2.+(3/2)Ffn+ S~ m = n + l ,  

where F is Euler's gamma-function. Thus T.e.=c.e.+~, where 

r(n+§ 
c. - F(n + 1) 1/s �9 F(n + 2) 1/s " 

It follows that 
Z - T o  = Z . d i a g ( 1 - c . )  

(diagonality is understood with respect to the basis (5)). An application of  Stirling's 
formula shows that e .~  1, and so Z - T ,  is a compact operator. 

(ii) Recall the formulas 

(6) r l r , - T . T I  = 

which hold for arbitrary f ,  g6L' (C) .  Owing to the second one, 
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will be compact for arbitrary fEL= (C )  if H~, H~EComp. The latter is equivalent 
to H~H~, H~H~EComp,  respectively, and the first formula in (6) shows that 
this in turn is equivalent to 

I - T g T ,  and I--T~TgEComp, 

respectively. Owing to part (i), the last two operators are compact perturbations 
of  I - Z * Z = O  and I - Z Z * =  (., Co)Co, respectively, and the result follows. 

(iii) Define W: HZ~A"(C) by mapping the standard basis of  H e onto the 
basis {e.},~ N of  A2(C), 

2 n 

W: z"EH ~" ~-7-~7~ EA2(C). 
t'n!2" 

This operator is unitary and the transformation T~--~W* T W  maps Z to S; hence, 
as before, it induces a C*-isomorphism of ~r (Z) = ~r (T~) onto ~r (S). The proof  is 
complete. [] 

A variant of  this result may also be obtained for A2(CN), N->2; however, 
things come off a little differently this time - -  the corresponding C*-algebra is 
no longer spatially isomorphic to ~/(S).  All the same, it is still a proper subset of  
~(A2(C~)). 

We shall need some results of  Berger and Coburn [TJ. Define 

ESV:= {q~EL~(CN): lira ess-sup Tq~(z)--~(w)] = 0} 

and 

Here, as usual, 
BCESV:= {~EESV: �9 is continuous on CN}. 

N Ix[ = ( Z . = I  Ix.l~) 1/2 for x = (xx, x~ . . . . .  xN)EC N. 

Further, let 5a:={xECN: Ix[ = 1} be the unit sphere in C N. 

Proposition 17. Let G: 5~ be a continuous function on 5~. Define 

~6(x) i f  r~- l, 
(7) ~(rx)=~lrG(x) i f  r<= l, xE ~ O<=r < +co. 

Then 
(i) q~EBCESV, and 

(ii) the Hankel operators H , ,  It~ are compact. 
Assume further that 

(8) G ( ~ )  = T. 
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Then also 
(iii) cr~(To)=T and 
(iv) ind T , = 0  i f  N~_2, and ind To is minus the winding number of the func- 

tion G: T ~ T  (with respect to the origin) when N= 1. 

Proof. (i) �9 is continuous and bounded since G is, and ~EESV in view of  [7], 
Theorem 3 (i). 

(ii) Theorem 11 of [7] says that Ho and H~ are compact for arbitrary ~EESV. 
(iii) & (iv) Immediate consequences of  [7], Theorem 19. [] 

Remark. It is possible to prove part (iv) in another way, using the idea from 
the end of  the proof  of  Theorem 15. Suppose that O~-~Go, OE(O, 1}, GoEC(Se~T), 
is a homotopy between G o and GI; construct functions r according to (7) and 
consider the Toeplitz operators Too. It can be shown that Too are Fredholm oper- 
ators VOE(0, 1}, and, consequently, indTo0=indTo.  If N=>2, 6" is simply 
connected, and so the homotopy group 7t(S/', T)=zqN_I(T ) is trivial; hence, there 
is a homotopy connecting Go=G to G I = I .  It follows that 

indT o = i n d T 1  = i n d I = 0 .  

If  N = I ,  zr(T,T)=n~(T) is isomorphic to Z; an isomorphism is given by 
G ~-~wind G. It follows that there is a homotopy connecting Go = G to G~, G~ (e at) = e kit, 
k = w i n d  G, and 

ind T o = ind To~ = - k. 

Thus the occurrence of  two cases - -  N = I  versus N ~ 2  - -  in the part (iv) is of 
topological nature, being related to (non)vanishing of  the homotopy groups ztn(T ). 

Theorem 18. Assume that the functions G: 5a~C and q0: CN-~C satisfy the 
conditions (7), (8), and that either N=>2 or N= 1 and wind G=0.  Then 

(a) T:E~(To) for all fEL~(C~r 
(b) There exists a unitary operator W: L2(T)~A"(C 'v) such that the trans- 

formation T~-+W* TW is a C*-isomorphism of sg(To) onto ~r where 
U is the bilateral (forward) shift operator (multiplication by z) on the 
Lebesgue space L 2 (T). In particular, ~t (To) is a C*-algebra. 

(c) The operator J: L2(T)~L2(T), J f ( z ) :=f ( - z ) ,  does not belong to ~r 
Consequently, ~,r (To) is a proper C*-subalgebra of &(A~(CN)). 

Proof. (a) For arbitrary / 'EL ~ (CN), 

T / T o - T o T  f = H~ H f - H} Ho, 

and the operators Ho, H~ are compact by Proposition 17, (ii). 
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(b) Taking f =  ff in part  (a) shows that T, is essentially normal. According 
to Proposition 17, (iii) and (iv), a e ( T ~ ) = T = a e ( U )  and ind T ~ = 0 = i n d  U. Hence, 
by the Brown--Douglas - -F i l lmore  theory [10], there exists a unitary operator 
W: L*(T)~A2(C N) such that 

W * T ~ W =  U + K, 

where K~Comp.  The result follows in the same way as in the p roof  of  Theorem 11, 
with S replaced by U. 

(c) With respect to the standard or thonormal  basis {e,},~ z, e , ( z ) = z " ,  z q T ,  

of  L2(T), the operators J and U are given by 

Ue.  = en+l, J e  n = ( - 1 ) " e .  (nCZ). 

I t  follows that U J - - J U = 2 U J ;  but the operator  UJ is unitary, and so certainly not 
compact.  [] 

To  be precise, we ought to check that  there exist functions G and r satisfying 
the conditions (7) and (8). As an example, take G ( z ) = e  4~Re'1. 

The argument above also applies in the case N =  1, wind G # 0 ;  one has only 
to replace L2(T) by H 2 and U by S k or S *(-k) when k = - i n d  T~=wind G. In 

particular, i f  G: T-~T is the identity, we get another p roof  of  Theorem 16. 
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