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Abstract. We consider singular integral operators of the form (a) ZIL-1Z~, (b) ZxZzL -t ,  
and (c) L-1ZtZs, where Zx and Z~ are nonzero right-invadant vector fields, and L is the L2-closure 
of a canonical Laplacian. The operators (a) are shown to be bounded on L p for all p E(1, ~) and 
of weak type (1, 1), whereas all of the operators in (b) and (c) are not of weak type (p,p) for any 
p~[1, -0). 

O. Introduction 

The affine group of  the line is the set {(b, a): aER +, bER} with group product 
(b, a). (d, c)=(b+ad,  ac). By taking the logarithm of  the second coordinate, one 
can identify this group with G={(s ,  t):  s, tER}, with group product (u, v). (s, t ) =  

(u+se ~ v+t) .  There is a natural left-invariant Riemannian metric on G. This is 
obtained by transferring the hyperbolic metric f rom the upper  half-plane to G. 
We call this transferred metric the "hyperbolic metric" on G. I f  we set 

z = c o s h t + ~ s ~ e  -t, 

then arccosh z is the distance f rom (0, 0) to the point (s, t) with respect to the 
hyperbolic metric. 

The left-invariant and the right-invariant Haar  measures dm and dn on G are 
given by 

din(s, t) = e-t  ds dt, and dn(s, t) = ds dt, 

respectively. The modular  function is A (s, t )=e  -t. 
The group G has (up to unitary equivalence) just two infinite-dimensional 

irreducible unitary representations a + and a - ,  defined as follows (cf. [H 1]): Both 
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(I) 

and 

(2) 

For fE C 7 (R), 

are realised on LO-(R) and, for f in L2(R), 

[~• (s, t) f ] (x )  = exp (• ise~) f ( x  + t). 

Let X, Y be the basis for the Lie algebra of G defined by 

exp s X  = (s, 0), exp tY = (0, t). 

Still using X and Y to denote the right-invariant differential operators induced by 
X and Y, respectively, we have 

X f ( s ,  t) = Osf(s, t), 

Yf (s ,  t) = sOsf(s , t )+ O,f(s, t). 

the derived representations are 

d 
[d~ + (X) f ]  (x) = ~ -  exp (• isU) f(x)Is = o = • ie"f(x),  

a + t)],-o a [da + ( Y ) f ] ( x )  = ---~-f(x = _ - ~ - ~ f ( x ) .  

We shall consider the following right-invariant operator on C7 (G), 

L0 = - X 2 -  y2, 

which is positive, formally self-adjoint, and has a closure L on L2(G, din). Let Z 1 
and Z~ be any two nonzero vectors in the span of X and Y. We shall study the fol- 
lowing operators: 

Z t L - 1 Z 2 ,  Z1Z2L -a, L - 1 Z 1 Z 2  �9 

They act on functions carried by G. The precise meaning of these operators will 
be given later. It is not hard to show that the Riesz transforms ZxL -1/2 and L-a/2Z2 
are bounded on L~(G, din) - -  see Lemma 4. Consequently, the operator Z I L - 1 Z ~  
is also bounded on L~(G, din). This simple argument does not apply to the other 
operators. Indeed, they are unbounded on every L p space, 1 ~ p <  co. 

Our main results are the following. 

Theorem 1. The operator Z1L-1Z2 is bounded from L~(G, din) to LP(G, din), 
l < p <  0% and bounded from LI(G, abn) to weak La(G, din). 

Theorem 2. The operators ZaZ~L -1 and L- IZ~Z~ are not o f  weak type (p ,p)  
for any p~[1, oo). 

The procedure we use to prove Theorem 1 and Theorem 2 is to split the kernels 
into their local parts and their parts at infinity. We prove that the local parts of 
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the kernels in all cases give rise to bounded operators on LP(G, din), l < p <  ~, 
and from LI(G, dm) to weak LI(G, dm). To study the parts of the kernels at 
infinity, we further split each of them into two pieces that correspond to t>0  and 
t<0. In the following, C denotes a positive, finite constant which may vary from 
line to line, and may depend on parameters according to the context. 

Results similar to some of ours, but for solvable groups of polynomial growth, 
have been obtained by G. Alexopoulos [A]. Positive results about the bounded- 
ness of Riesz transforms on groups of polynomial growth have been obtained by 
L. Saloff-Coste [S-C]. Boundedness of the Riesz transforms on unimodular, non- 
amenable groups has been proved by Lohou6 [L 1]. We point out that the local 
behaviour of the kernels treated in this paper could also be handled by using the 
results or methods of [B], IF--S], [L 2] and [L 3]. The results of Fefferman and 
Sfinchez-Calle imply local boundedness of second-order derivatives of the funda- 
mental solution of subelliptic operators on manifolds, and therefore apply to our case. 

The authors would like to thank R. Burns and M. Cowling for helpful 
conversations on this topic. Special thanks are due to G. Mauceri and Chun Li 
for the impetus they gave to our study of singular integrals on the affine group. 

1. Preliminaries on operator theory 

In this section we shall work on L ~ = L2(G, din). By L0 we denote the right- 
invariant differential operator - X O - - Y  2 with domain C~*(G), which is dense 
in L z. By the general theory of Laplacian operators on Lie groups (see, for example, 
[H 2]), L0 has a self-adjoint closure, denoted by L. We write the spectral resolu- 
tion of L as 

q-oo 

L =  f_ooZdEz, 
where Ex is a projection-valued measure. The domain of L is 

D(L) = { f :  f ).~d(Eaf, f)<oo}. 
For the relevant spectral theory, see for instance JR--S]. 

Lemma 1. The operator L is positive and one-to-one. 

Proof. Since L0 is positive, the closure L is also positive. To see that L is one- 
to-one, we study the derived representation of L0: 

d 
Ao = da• (L) = - ~ + e ~, 
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where A0 is a Sturm--Liouville operator in L~(R) with dense domain C~*(R). 
Then A0 has a closure, denoted by A, which is one-to-one, since 

(Aof, f )  = \dx~/ df" d'xdf> + (e( ~ f ' e(.) f )  => ile(.)fll~. 

By the Plancherel theorem for the affine group ([Kh], Theorem 2), L itself is therefore 
one-to-one. [] 

It follows from Lemma 1 that Ea is carried by the open half-line (0, + o~). For 
any real ~, we can thus define the power L ~ as a self-adjoint operator by the formula 

U' = f 2" dEx. 
0 

The domain 

D(L')= {f: f ,t~d(Eaf, f ) <  ~} 
is dense. The range R(L ~) is seen to equal D(L-~); in particular, it is also dense. 
One has 

(3) D(U') c= D(L #) 
for ~<fl<0 and for 0<t<c~. For any ct, tiER, there is an inclusion 

(4) U,L # c= U,+#, 

in the sense that L~L # coincides with L ~+# on {fED(L#): L#fED(LD}, which is a 
dense subspace of D (L~+P). In particular, L -~ is the inverse of  L ~. 

We now recall the following results of  Hulanicki [H 1]. The spectrum of  L is 
contained in [0, + ~o), and, for any 2r + oo), 

(5) ( 2 -  L) -1 = kz*,  

where k z ,  denotes the left-convolution operator with kernel kz: 

kz*f(x) = f ka(y)f(y-lx) dm(y) = f ka(xy)f(y -~) din(y), 
and 

Here v=I/-~, with Re (v)<0, and ~ is the Legendre function of the second 
kind with the parameter p = 0. 

It was proved in [H 1] that 
kzEL 1, 2~[R, 

When 2 = 0  and v is taken to be 0, the expression ko makes sense; it is not in L x, 
however. 

We shall need a certain number of  results concerning the functions ~ , ,  par- 
ticularly their asymptotics. First, the formula in [MOS], p. 196: 

a log(-~z--~J+O(Iz-1 D. as z - - - l + O ,  (6) ~,(z)  = - y - ~ b ( ~ +  1)--s  
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where 7 is Euler's constant, and d/(x)=F'(x)/F(x). We also have the asymptotic 
formulas, as z \ l ,  that can be obtained from [MOS], pp. 174, 196: 

(7) ~_ '~(z)  = ( -1 )  m ( m - I ) !  (z_l )_m+O((z_l )_ , ,+l) ,  m =  1,2, 

and the asymptotic formula at oo that can be obtained from [MOS], pp. 174, 153: 

~_~)/~(z) = ~,~z - IJ~- -  + O(z-~J'- '~) ,  (8) 

where 

(9) 3 
70=2Cx,  7 x = - C z ,  and 7 2 = u  

We shall also need the formula, valid for Re ( z ) > -  1, 

(10) a , ( z )  = 2 - , - i f _  1 (z-u)-,-l(l-u,),du, 

which can be obtained from the fourth formula on p. 186 of [MOS] by making the 
change of variable u = - cos t. 

Lenuna 2. Thekernel k o is locallyintegrable; L(C*~(G)) is dense; and, for any 
q~6C~'(G), we have ko*(-L)cp=~p. 

Proof. The function 

ko(s, t) : e"~s (cosh t + } s~e -') 

has singularities at (0, 0) and co. The singularity at (0, 0) is integrable by (6). 
The density of L(C*j(G)) follows from Lemma I. To prove the equality in 

the lemma, taking a test function ~p and using (5), we have 

k o * ( - L )  cp- q~ = ( k o . ( - L ) q ~ - k o . ( 2 -  L) ~o) + ( k o . ( 2 -  L)q~ -k~, *O.--L)cp) 

= -2ko .q~+(ko-k; t ) . (2 -L)q~ .  
Hence, 

[(ko* ( -  L) r - r ~_ limsoU p (lal Iko* ~ol + I(ko- k~) * r 

= limasup I(ko- ka)* ~kal 

where ~a=(;t--L)cp are uniformly bounded in C~*(G) for 2 small. From the 
formula (10), one can see that k0 and ka are uniformly controlled by a locally in- 
tegrable function as 2 ~ 0 - .  Now we can use the Lebesgue dominated convergence 
theorem and conclude that the last expression is zero a.e. The lemma has now been 
proved. [] 
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By considering the operator X to be distribution-valued, we define the operator 
XL -1/2 to have domain 

D ( X L  -1/2) = {fED(L-l:"-): XL-':"fEL2}. 

Lemma 3. The domain o f  XL -a/~ is dense in L'~(G. din). 

Proof By the general properties of  fractional powers, C~ (G) ~ D (L) ~ D (L a:'); 
so it suffices to show that LIlZ(CT(G)) is dense in L2(G, din). 

The subspace L~/'2(D(L)) is dense, since it contains all functions which can be 
written f = f ~ d E ~ f  for ~>0, R <  ~. Thus we need show only that Lx/2(C~(G)) 
is dense in L1/2(D(L)). 

To this end, we let fED(L)c= D(L1/Z). Since L is the closure of  L0, we can 
find a sequence {fj} in CT(G ) such that f j - * f  and L f j ~ L f  This implies that 
L1/~ fj-~L1/2 f ,  since 

[ILa/'(fs.-f)[[~ = ( L ( f i - f ) , f j - f )  <- HL(fj-f) l l . , l l f j -f l [ . , - -  [] 

The same argument and conclusion are valid for the operator YL -a/~. 
The following lemma is the main result about L"-(G, dm)-boundedness. Cf. also 

[B--R] and [Str], Corollary 2.6. 

Lemma 4. The operators XL -~/', YL -1/~, L-~:2X, and L-~:ZY have bounded 
extensions on L2(G, din). 

Proof In fact, for ~P~Cc(G), 

<x o, x o) + <Y,p, rq,) = <,- x, o, q,) + <- 

= (L1,'2q~, LX/2~p). 

Now lake g~L~/~(CT(G)) and let ~o=L-~:g in the above inequality. We get 

[]XL-X/2g[[ 2 + ][Yt-'/2gl[ 2 = [Igl[ 2. 

Since L1/~(C~(G)) is dense, as shown in the proof  of  Lemma 3, we therefore de- 
duce the desired boundedness of  XL -x/2 and YL -~/~'. Since L -a/z is self-adjoint 
and X and Y are skew-adjoint, we conclude the desired boundedness of L-a/"X and 
L-a/2y. [] 

Corollary 1. The operators XL-1X ,  YL -~ Y, XL -~ Y and Y L - 1 X  ate bounded 
on L~(G, dm). 

Proof This is because XL-aX=XL-a;2L-~"ZX, etc. 
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2. Kernel expressions and local behaviour of the kernels 

We call an opera tor  an essentially principal operator if, by subtracting a con- 
stant  multiple o f  the Dirac  opera tor  at  the origin, it becomes a principal value left- 
convolut ion operator .  (In comput ing a "principal  value" we integrate over the com- 
plement  o f  the Euclidean ball {(s, t):  I(s, t ) [<e}  o f  radius e about  (0, 0) and then 
let e ~ 0 . )  If  A is an essentially principal operator ,  we denote  the associated con- 
volut ion kernel by Ker  (A). 

Lemma 5. All o f  the operators o f  the type ZxL-1Z2 ,  Z t Z 2 L  -1, and L-xZ1Z2 
are essentially principal operators. Furthermore, we have 

Ker  ( X L - 1 X )  = d O~ ko(s, t) = dl2 ~'_ al2(Z) + s2 e--t/2 ~L1/2(Z) 

Ker  (y  L - 1 y )  = (sO, Ot-  sO~ + O~ - O,) ko(s, t) 

1 = d/2 [ - u  ~-1 /2  (z) + (cash t - s2e -') ~'.. 1/3 (z) 

+ (sinh2 t - ~- s '  e-2,) ~,-1/2 (z)] 

Ker  (XL-~Y)  = (0~0, - ~)  ko(s, t) 

3 . . - , / 2~ ,  r " ' s e - ' / '  (sinh t - ~ s ' e - ' )  ~"v2( z )  

Ker  (YL-a X)  = e t (sO~ + ~ Ot + 0~) ko(s, t) 

' 2 , . +seZ/2(sinh +~s2e- , )D'51, , (z )  = y s d /  ~-a/z(~) t 1 

Ker  (X2L -1) = O~ko(s, t) 

= e - t  Ker  ( X L - 1 X )  

Ker  ( X Y L  -~) = (sO~ + O~ O, + 0,) ko(s, t) 

= e - t  Ker  ( y L - 1 X )  

Ker  (YXL  -1) = (sO~ + 0,0,) ko(s, t) 

= ~ se-'/2~'..l,2(z)+ se- ' /2(s inht  + ~  s ' e - ' )~"x /2(z )  

Ker  ( L-X X 2) = en O~ko(s, t) 

= d Ker  ( X L - 1 X )  

Ker  (L-x  X Y )  = e' O~Otko(s, t) 

$ --1 tp s e ) ~ _ v ~ ( z )  = - ~ sd/2 ~'-- 11, (z) + se t/' ( sinh t - u 

Ker  ( L - 1 Y X )  = d(O, Os-- O,)ko(s, t) 

= e t Ker  ( X L - t Y ) .  
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The formulas for L -1 Y~ and Y~L -1 can be obtained from the corresponding formulas 
involving X ~. 

Proof. Let $6C~(G). In the computations that follow, we write x=(u, v), 
y=(s,  t). The formula (7) shows that Xk o and Yk o are locally integrable. It fol- 
lows that 

(11) XL-1 ~, (x) = "~-h =o f k0 (exp (hX) xy) 0 (Y- 1) dm (y) 

f Xko(xy)~(y-1)dm(y) = Xko*O(x). 
Similarly, 

(12) YL -1 r = Yk0. ~. 

Consider now the formula for XL-1X. If  cp6C~(G), we have from (11) that 

x L - l  x~o(.) = Xko.  x~o(x) = f Xko(xy) X~o(y-1)dm(y). 
If y=(s,  t), then 

d l  0 
-~l,=0 ~p (exp (hX)e -1) : - d  ~ (~p ( - e -  s, t)). 

Hence 

0 t (13) XL-~Xq~(x) = - l i m f  Xko(xy)-~-(~o(-e- s , - t ) ) d s d t  
t - o  J lx~[:,-~ 

+ lim f'_Xko(~CF~-t ~, , ){~o(e-'(u- ~ #), v - t )  

-~p (e- '(u + 1/t2-t~), v -  t)} dt, 

by integration by parts. Now from the asymptotic formula (7), we see that 

s e - t l Z  
Xko(s,t)  = s~+t ~ +0(1)  

as I(s, t)l ~0.  So the last limit in (13) is equal to 

--lim f '  ~ e -'/z {q~ {e-' ( u -  r  tz), v - t) - ~p (e-t(u + t in ' -#) ,  v - t ) }  dt 

=-limf~ 1 } /1-a"  e-'~'l* {~o (e -"*(u-e  t /1 -a ' ) ,  v--a~) 

- ~  ( ~ - " ( .  + ~ r -a*), ~ -  o~)} d~, 



Singular integrals associated to the Laplacian on the affine group a x +  b 267 

which is C~p (x), where C is a constant. Thus we have 

0 3 
(XL-1X)q)(x)  = l i m f  d [-~.~ kol (y)cp(y- lx)dm(y)+Cq)(x) .  

This establishes the first formula for XL-xX.  The second follows from the expres- 
sion for k0. 

Consider next the kernel of XL -x Y. Keeping (2) in mind, wc see that 

0 X L  -1 Y~p (x) = - / Xko (s, t) -~- {q) ( ( -  e-ts, - t) (u, v))} e-t  ds dt 

=-limf,.o lo, ol>,e-'Xk~ t)..ffi .0 {q ) ( ( - e - ' s , - t ) ( u ,  v))}dsdt. 

A calculation using integration by parts now shows that 

(14) 

X L - ' Y q ~ ( x ) = l i m f  [ -Xko(s , t )+~-- - i -Xko(s , t ) ]q) ( ( -e - ' s , - t ) (u ,v ) )e - tdsd t  

+ lira f'_. as [e: ~ Xko (,, r  ~ ((- e- 0:~-,' s , -  r  s')(u, v)) 

- e*')clr~-~Xko (s, - 1 / ~ - s  ~) q) ( ( -  e~')'Tr:-~-~s, ) / ~ - ~ ) ( u ,  v))]. 

Since the terms q) ( ( -e+ ~r-~~-" s, + 8*l/'~Z~-s~)(u, v)) tend uniformly to q)(x) as 8-~0, 
it remains to consider 

l i~  f ~. ds [ e - C T ~  Xko(s, 1 / ~ -  s~) -e  ~r Xko (s, - ~*)/~Z-~- s2)] 

= li~ft_x eda[e -'xc-f~-~*Xko(ea,81/1 a2 ) -e  *xci:'~-*~ X k o ( t a , - e  1/T-~'~)]. 

From (7), we see that 

Xk0(~a, ~r  = - ~ + O 0 )  
and 

xk0(~a,- ~ r  = - ~ + o (1). 

Hence 

tim f x l e da [ e - * ri-~- ~* X k o ( ea, , l/1---~-~ ) - e t xc'f ~- ** X k o ( ea, - ,  } /T-~) ]  =0.  
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From (14), we have 

XL-XYq~(x) = p.v. O-~t ~s') ko (y) go (y- 1 x) dm (y). 

This establishes the formula for Ker (XL -~ Y). 
The other formulas are proved using similar calculations. In treating cases 

such as L - I X y  and L-1X " one needs to note that, if ~bEC~*(G), then 

L --1 X~] : (d Xko) * ~k 
and 

[ ~ko 
: [ ]  

We say that the local part of the kernel K gives rise to a bounded operator 
from LV(G, dm) to LV(G, dm) (Ll(G, dm) toweak Ll(G, dm)), i f fo rany  ~bEC*~(G) 
that is 1 on a neighbourhood of e, the operator 

rp ~ p.v. f (~K)(y) go(y-ix) dm(y) 

is bounded from LP(G, dm) to LV(G, dm) (LI(G, din) to weak Ll(G, dm)), where 
the operator norm depends also on the "cut-off' ' function ~. 

Lemma 6. The local parts of all of the kernels given in Lemma 5 give rise to 
bounded operators from L2(G, dm) to LZ(G, dm). 

Proof. Our plan is as follows. Notice that the kernel expressions given in 
Lemma 5 are all linear combinations of terms of  the form s"e+ntO~OTko(s, t), 
where m=0 ,  1, n,p, q=0,  1, 2, re+q<=2, O<p+q~_2; so it is enough to show that 

(i) O~ko, O, ko, sO~ ko, and sO~O, ko are locally integrable; 
(ii) the local parts of the kernels 2 O, ko, Otko and OsOtko generate bounded 

operators on L2(G, dm). 
Here we have ignored the factors e+-% since e• with this 

latter factor the terms in (ii) become integrable. By using the asymptotic formulas 
(6) and (7), a simple calculation gives assertion (i). We now establish 0i). 

Ignoring the factor d, the local behaviour of  O~k0 is the same as the local be- 
haviour of  Ker(XL-1X). Let r be a cut-off function: ~b~CT(G), with ~O-_>0, 
~O(x)= 1 on a neighbourhood of e. If  we show that (~b- 1) Ker (XL-aX) is in- 
tegrable, then by Corollary 1 we can conclude that ~ Ker(XL-1X) gives an 
L2(G, dm)-bounded operator and so does ff0~ k0. In fact, when z is large, formula 
(8) gives 

IO~ko(s, t)[ ~ C(e-'/'z -3/2 + s2e-~/~z-512). 
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Since 
2e t for Isl ~= e t, t > 0 

z - ~ [  2el.~s 2 - otherwise, 

we have 
[e -2' for Ist ~- e', t > 0 

IO~ko(s, t)l ~- C / e' 
! 

1 + [sl 3 otherwise. 

It is easy to verify, by using the  estimate above, that Ker(XL-1X)  is integrable 
at oo 

Now we prove that the local part of OtOsk o determines a bounded operator 
on L2(G, din). As 0~k0 is locally integrable, we can compare the local part of  tgt0,k 0 
with the local part of Ker(XL-1Y);  using Corollary 1 along with an argument 
like the above reduces the problem to showing that the latter kernel is integrable 
at oo. In fact, 

- - t  3 tt 3 �9 Ker(XL-XY) = - s e  / [z~_,/2(z)+~ ~_l/z(z)] + se'/3~L,/2(Z). 

By formula (8), the first term of the above sum behaves like se-tl2z-V3 and the 
second term behaves like sen2z -nt3. Both are integrable at oo. 

Similarly, we can show that the local part of  Ker (YL -1 Y) generates a bounded 
operator on L2(G, dm), and this simultaneously gives the same property for the 
kernel 3~k o. In fact, 

1 
Ker (YL -1 y)  = e,/2 [(z 2 _ 1) ~"_ 1/2 (z) + z~'_ 1/3 (z) - T ~ _  1/z (z)] 

3 t _ +  _1/3 

By using formula (8), we see that the leading terms in the above two parts cancel, 
leaving the terms et/2z -s/3 and s2e-tl2z "712, both of which are integrable at oo. [] 

Definition. Let A be an operator of the form A f = p . v . K . f ,  defined on Cr 
where X is either R" or G. We say that A is locally bounded from LP(X) to LP(X)if, 
for each compact set Sc=X, A is bounded from C~,s={f~C*~: suppfC=S} into 
LP(X) with respect to the LP-norm, with a bound that possibly depends on S. We 
define in a similar way what is meant by saying that A is locally bounded from LI(X) 
to weak U (X). 

Lemma 7. Let A be an operator of the form Af=p.v.  K ,  f that is locally bounded 
from L2(G, din) to L3(G, dm), and whose kernel K has compact support. Let L' be 
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the kernel on R2• ~ such that L(x ,y)=K(xy-O6C** for x # y .  I f  L (x , y )  sat- 
isfies the standard Calderdn--Zygmund estimate: 

( C - Z )  IL (x , y ) l+ lx -y l ( IV :L (x , y ) l+ lVyL(x , y ) l )  ~-- C I x - y I - L  

for all x # y ,  then A is bounded from LI(G, din) to weak LX(G, din). 

In proving Lemma 7, we shall need the following result. 

I.emma 8. Denote by H o, Q>0, the hyperbolic ball of  radius 0 centred at e. 
Given ~, 6>0,  there exist a sequence tl, h ,  ... of  points of  G and positive integers 
n and s such that 

(i) G = Ui H, h. 
(ii) Each point y6 G belongs to at most n of  the sets H, ti. 

(iii) Each y6G belongs to at most s of  the sets H,+~t~. 

Remarks on Lemma 8. This result, with conditions (i) and (ii) only stated 
explicitly, can be found in [P], p. 66. Condition (iii) is actually a consequence of 
(ii). If a point g lies in k of  the sets {H,+dj}, we may as well suppose these are 
H,+6tl . . . . .  H,+6tk. Then hEH,+~g, and so H, hC=H2,+~g, i=1 . . . . .  k. It fol- 
lows from (ii) that the sets H,h (i= 1 . . . . .  k) overlap at most n times at any point. 
Let m, denote right Haar measure. Then 

~i~=i Xn.,, ~- nx~..+,g 
and so 

km,(H,) ~_ nm,(H2,+6). 

The number k is therefore bounded above. (This argument can be found in [B--R].) 

Proof o f  Lemma 7. Observe that 

Af(x)  = f g(xy-'),t (y-1) f ( y )  am(y)  

= fRL(x,y)f(y)dy. 

Since A is locally bounded from L~(G, din) to L2(G, din), and its kernel has com- 
pact support, A is also locally bounded from L~0R 2) to L2(R~). Choose ~>0 large 
enough so that 

(15) supp K.H~ _c H,.  

The local boundedness of the operator A implies that 

(16) UAfHL,tR,) ~_ C Ilflh.,tn,) 

for all fEL2(R 2) such that suppf=CH,. 
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Now choose hEC*~(G) 
H,. Let 

(17) 

so that h = l  on //1, 0~_h_~l, and h=0  outside 

A~f(x) = p.v. fa, L(x, y)h(y)f(y)dy. 

Clearly, 

(18) Ahf= Af  if s u p p f ~  HR. 

It follows from (16) that 
IIA~flIL,(~,) --~ C Ilfl lL,(~,) 

and so A h is a bounded operator from L~(R ~) to LS(RZ). Its kernel L(x,y)h(y) 
satisfies the standard Calder6n--Zygmund estimates on R e by (CwZ). It follows 
that A h is of weak type (1, 1) (cf. [S], pp. 30--34, for instance). Since the kernel of 
A h has compact support, and Lebesgue measure and Haar measure are locally 
equivalent, it follows from 08) that 

C (19) m({x: IAf (x) l  > 2}) ~_ ~-Ilfl lL~(~,~=, 

for all fELl(G, din) such that suppfC__H 1. 
To complete the proof of Lemma 7, take e= 1 in Lemma 8. Choose a se- 

quence {~} of measurable functions such that (a) ffi>0 on Hlh; (b) ~,/=0 off 
Hxh; (c) z~i ~bi(x)=l everywhere. For instance, take ~t to be Xn, t,/z~i Zu, t~. Let 
lr~,fdenote the right translate o f f  by amount x: x~f(y)=f(yx). Then xx_,A~x=A 
for all x. Notice that for any tpE C~* (G), supp zt, (r c__//1, and supp (A~t, (~kitp)) __c 
H, from (15). Using Lemma 8, (18), and (19), we have that, for all 2>0, 

m({yEG: IA~P(Y)I > 2}) = m({yEG: [A (Z, ~ki) tp(y)[ > 2}) 

<- m({yEe: z~, Ia(ff, tP)(y)l > 2}) 

~_ ~im({yEG: IA(~,~o)(y)I > a/s}) 

= ~---~,m({yEG: I~ , , -~A~, , (~ , r  > AIs}) 
= Z ,  zl(t~)m({yEG: 1,4~,,(r > a/s}) 

.s 
~_ C T Z ,  d (t3 II~,,(~J ~o)IIL,(~,=) 

$ 

C $ 

This completes the proof of Lemma 7. D 
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Lemma 9. The local parts of  alt the kernels given in Lemma 5 give rise to bounded 
operators from LP(G, dm) to LP(G, dm), l < p < ~ ,  and from Ll(G, dm) to weak 
L 1 (G, dm). 

Proof. By K we denote any one of the mentioned kernels, and let L(x,y)= 
K(xy-a). Once we have proved that L(x,y) satisfies the standard Calder6n-- 
Zygmund estimate, we can invoke Lemma 7. Actually we need to deal only with 
the terms indicated in (ii) in the proof of  kemma 6. Noticing that, for x close to y, 

~1 (s2+t2), for z close to 1, and using formulas (6) Ixy-~l~lx-yl, and z - l ~ -  
and (7), it is easy to check the required estimates for these terms. We omit the 
details. [] 

Corollary 2.- The local parts of  the kernels of  Z1L-x Z2, Z1Z2L -x and L-1ZI Z2 
generate bounded operators from LP(G, dm) to LP(G, dm), l < p < o o ,  and from 
Ll(G, dm) to weak L~(G, dm). 

Lemma 10. The kernels of the operators Za L-x Z2 are all integrable at infinity. 

Proof. It clearly suffices to consider the cases where Z 1 and Z2 are either of 
the basis elements X and Y. The integrability of  the kernels XL-xX, YL- IY ,  and 
XL -1 Y was established in the course of proving Lemma 6. To see that the kernel 
of  YL-aX is integrable, observe that 

t /2  ( g ~ t" P tt - - t / 2  tt Ker (YL-1X) = s e  ~, ]I~e-'t2tz)-}-z~-l/2tzJ'-se ~_l/~(z). 

By formulas (8) and (9), the first term in the last expression is O(set/2z-7/2), and 
the second term is O(se-'/2z-5/2). Both terms are integrable at ~ and so therefore 
is Ker (YL-1X). [] 

Theorem 1 is now immediate from Corollary 2 and Lemma 10. 

3. Global behaviour of the kernels 

We have just shown that the kernels of  the operators ZxL-1Z~. are all in- 
tegrable at infinity. In this section, we deal with the unboundedness from LF(G, dm) 
to weak LP(G, dm) of the parts at infinity of the kernels of  Z1Z2L -1 and L-xZ1Z2. 
Note that, by Corollary 2, this will establish Theorem 2. 

We begin with some basic formulas, and information about the asymptotic 
behaviour of  the kernels. In the first lemma, the notation ra, (a>0)  is used for the 
standard a-dilate of the function r on ( -  ~,  ~): ro(u)=a-Xr(u/a). 
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I.emma 11. Let W(s ,  t )=r(s)e 'z t_=,ol( t) ,  where r is an arbitrary integrable 
function. I f  f is an integrable function on G, supported in the region t>O, then 

W . f  (s, t) = re-,*R~h(se - ')  

for  t<O, where h ( u ) = f = . . f ( - e - V u , - v ) d v  and h ( u ) = h ( - u ) .  

Proof  We have, for t<O, 

W.f(s, t)= f~.~f,+,<oe'+"r(s+e'u)f(-e-"u,-v)e-~ 

= f~.e'r(s+e'u)duf~..~_f(-e-~'u,-v)dv 

= fL re-,(se-'+u) 

= re- ,*h(se- ' ) .  

Lemma 12. The kernel o f  the operator Z1Z2L -1 is integrable at infinity in the 
region t>0 .  In the neighbourhood of  infinity in the region t<0 ,  the kernel is the 
sum of  an integrable function and a function of  the form W(s ,  t) =r(s)e'z~_=,o](t), 
where 

2s ~ -  1 s s 
r(s) = .4(1 + s2)5/~ ~- B ~ + s~)5/2 ~-C(1 + s2)3/~, 

A, B and C are constants, and r~O. 

Proof  Let Z~=aiX+biY,  where a~, b~C,  and la~l+lb~]~0, i=1 ,2 .  Since 
(X~+Y2)L-X= L the identity, we reduce the question to the consideration of  the 
operator ( a X ~ + b X Y + c Y X ) L  -1, where a=axa~-blb2,  b=axb2, c=azbl ,  and a, 
b, and c are not all zero. It follows from Lemma 5 that 

Ker ( Y X L -  x) = Ker ( X Y L -  1) _ se-t/2 ~ -  x/~ (z) 

and, by using (8) and (9), that 

Ker ( X Y L  -1) = ~ se -'/2 ~&'__ 1/2 (z) + se-';'~ (z - e- ' )  ~&"-1/2 (z) 

: s e - ' % }  

= - se -~/z ~&"--1/2(z) + integrable term. 

So we may assume that, at infinity, the kernel is the sum of an integrable term and 
a term of the form 

(20) a (e-'l~ ~'.. 1/2 (z) + s2e- at/2 ~,,_ 1/3 (z)) - (b + c) (se- at/2 ~ ,  1/~(z)) - cse-'/2 S~'._ 1/~ (z). 

Since every term in the last expression is integrable in the region t~0 ,  the first 
part of the lemma is proved. 
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Consider the region t<O. Setting aside terms that are integrable as 
we see that (20) is a constant multiple of  

where 

t ~ - -  o% 

(arl(s) -- 3 (b + c) rg(s) + cra(s)) e t, 

2s ~ -  1 s s 
r~ = ( l  +sg)  5/2' r~ = (1 +s~ )  s/a' r,  -- ( l  + s 2 )  3/2" 

Notice that, from the assumptions on ai and b~, 

(21) r = arx-3(b+c)rz+cra ~ O. 

It is clear that this last function is of  the required form. D 

The following lemma implies the remaining part of Theorem 2. 

Lemma 13. The operators L-1Z1Zz and Z 1 Z z L  - 1  a re  not bounded from 
LP(G, din) to weak LZ(G, dm) for any p6[1, oo). 

Proof. We deal first with L-xZ1Z2 and p=l .  It suffices to show that the part 
of  the kernel at infinity is not in weak LI(G, dm). As in the proof of  Lemma 12, 
we reduce the problem to considering the operator L-a(aX2+bXY+cYX),  where 
a, b and c are complex numbers and are not all zero. Using Lemma 5, (8), and (9), 
and setting aside terms that are integrable at .o, we have that Ker (L-tZ~Z~)(s, t) 
behaves like 

a(-e~/ ' z -a / '+r162 -8/' 

+ §  (b + c)set/Z(et- z)z -5/~ = m(s,  t). 

then in the region t>O and Isl<e~e t, where tx is positive and small, I f  a # 0 ,  
we have 

[M(s, t)l -~ C, 
and, for any given small ,t, 

m({(s ,  t): IM(s, t)l > 2}) _~ c f f ,>o, l , l . : , , ee- 'dsdt  = oo. 

1 8 If  a=O and -s then in the region t>0 ,  e2d<[st<e t, where e 2 is close 
to 1, we have 

IM(s, t)[ _-> C 

for all sufficiently large t, say t>=to . So, 

m({(s, t): IM(s, t)] > 2}) _~ cfOff*'~'lsl~'~o e-tdsdt  =oo. 

l 8 If  a=O and -s then b+c cannot be zero. Otherwise a, b and c would 
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all be 0. In this case we consider the region: t > 0  and -~ elet<lsl<eae t, 
positive and small. We then have 

with e~ 

IM(s, t)[ >= C b+c)81 u  �9 
So, 

off, 1 e- tdsdt  = co. m({(s,  t): IM(s, t)l > A}) => >0,-~, ,<fst<~e, 

Now we conclude that Ker (L-1Z1Z2) is not in weak LI(G, dm), and so L-1ZIZ~ 
is not bounded from LI(G, dm) to weak LI(G, din). 

The case p > l  is established by noting that the argument just given holds 
without change for the function L-~ZIZ~Xv in place of  Ker (L-1Z1Zz), if U is a 
sufficiently small neighbourhood of  the identity. 

We now deal with the operator Z1Z2L -~, starting with the case p > l .  We 
may assume that the kernel is a function W of the form given in Lemma 12. Fix a 
nonzero function h6C,(R). For T>0 ,  let ~IT=T--1Z[_T,O] and f r ( U , V ) =  
h(-e-~u)$r( - -v) .  Then, 

f-A((u, v ) - l ) d v  = h(//) 

for all T. So by Lemma 11, W*fT is independent of  T in the region where t<0 .  
Since HfrHLpCO, dm)-~0 as T-~o ,  this completes the proof  of  the case p > l .  

The proof  of  the case p =  1 reduces to showing that there is no constant C 
such that 

C 
(22) m({(s, t): IW*f(s, t)] > 2}) ~_ -]-[[fI[Lt(G, dm) 

for all 2 > 0 ,  and all f~C*7(G), where W and r are as in Lemma 12. 
Note that if f_~0 is supported in the set {(s, t): t>0}, then the corresponding 

function h in Lemma 11 satisfies 

IlhllL,(aj = IlfllLt(a, am)" 

On the other hand, if h_->0, h~LI(R), is given, we can find a corresponding f :  take 
the function f r  above with T= 1, for instance. It is therefore enough to disprove 
the inequality 

C 
(23) m({(s, t): t < 0, [re-,*[~(se-')l > 2}) ~_ -2-[[hilt'I'm" 

Let /z  be the measure in the upper half-plane given by dp=dxdy/y. Making 
the change of  variables x=e- ts ,  y=e  -t, one finds that (23) is equivalent to the 
inequality 

C 
(24) p({(x, y): y > 1, Ir,*h(x)l > 2}) <_- "2-Ilhlhmm. 
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But (24) is self-improving, in the sense that, if  it were true, it would also hold with- 
out the condition y > 1 in the left-hand side. To see this, apply (24) with h replaced 
by its dilate h b and 2 by 2/b, for some b >0.  Observe that 

ry * h b : (rr/b * h)b, 

so that the inequality [ry.hb(x)l >2/b is equivalent to Ir~./b.h(x/b)[ >2. This gives 

dy b (25) ~({(x,y):  y > 1, Irr.hb(x)l > 2/b}) = f S  f dx 
y J{x:lry/b*h(x)[>'l} 

= bla({(x, y): y > b -1, I, 'r .h(x)l > ,t}). 

The inequality (24) now implies that the last expression in (25) is dominated by 
C(b/).) [Ihlh. This means that if (24) holds, it also holds with the condition y > l  
replaced by the condition y > b  -x with the same constant C. Then one simply lets 
b-~ oo to get the self-improving property. 

It therefore suffices to prove the following lemma in order to complete the 
proof  of  Lemma 13. 

Lemma 14. There is no constant C such that 

C 
(26) l,({(x, y): y > 0, Irr*h(x)[ > 2}) _~ T IIhIILI(R, 

for all h~LI(R1). 

Proof The function r is in C = and satisfies: 

r(s) = O(Is[-2), r'(s) = O(Isl-3), fr(s)ds = O. 
Take a function q~EC ~ with the same properties as r and such that 

f r(s)e(-s)ds O. 
One can e.g. take ~o=r. Fix large natural numbers q and p. For  a large natural 
number N, we shall consider 

'~ 3 "2~''/p + ~0 (2 q"x -pk ) .  (27) hN (x) = ~ . . . .  o ~-~k=l 

For  convenience, we let p be a power of 2, and let no be the smallest value of  n for 
which 2qn~p. The signs in (27) will be chosen later. 

Claim 1. One can choose q, p and 2 > 0  so that for ali sign choices and all large N, 

p({(x ,y) :  y > 0, Irr.hN(x)l > 2}) => CN, 

with C > 0  independent of  the signs and of  N. 

Claim 2. The signs 5= in (27) can be chosen so that IIhNIIL,~n)=O(f-'N), as 
N--.~ co, 
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These would clearly disprove (26). 

Proof of Claim 1. Since r .q~(0)#0,  there exists a 6 > 0  such that 

Ir.*~0(x)l > 6, 

for (x, u) in a neighbourhood U of (0, 1) in R~_. We can take U ~  [ -  1, 1] • [~, 2]. 
Write 

q).k(X) = q~(2q"x--pk), 
so that 

Then 

(28) 

Thus [r~*q).k(X)[ >6 
for some set 

tp.k (X) = 2- q" ~02 - ,- (X -- pk2q"). 

ry .  ~o.k (x) = r2,- y * q~ (2 q" x -pk).  

if (2q"x-pk, 2q"y)~ U, which is equivalent to (x, y)E U.~ 

U.k C= [(pk-- 1)2-% (pk+ 1)2-~"1• [2 - " - 1 ,  2-~"+x] �9 

The interval [(pk-1)2 -q", (pk+ 1)2 -q"] appearing here should be considered as the 
essential part of the support of q~.k. Clearly p(U.k)=2-~"p(U). Now take N>no 
and let (x,y)~U,,. for some integers v, ~ with no~_v<=N and l<=~_2v~/p. In 
the sum 

(29) N y2,'~lp nt_ry .q~nk(X)  -= rr.hu(x)" Z ~ I = H  0 ~ k = l  

the term with n = v ,  k = x  is greater than 6 in absolute value. We shall see that the 
other terms are much smaller, and start by deriving an inequality for r~.~o, 7>0.  
Note that 

(30) ,', �9 ~ (z) = f , ' ,  (s) (~ (z - s) - ~ (z)) as, 

since f r(s)ds=O. 
Assume first that ~<_-2. Applying the Mean Value Theorem to the part of  the 

integral over the region [sl<(1 + Izl)/2, we get 

(31) 

i,i>~iz]-l)/z 

_<- c(1 + Izt)-~r fl~l<~x+!~i>/~ Ir(s)l Isl ds 

"t l o g { l +  l+ , z l  ) 
<- C 1 + Izf - - - - - ~  7 

~_ C ~l~  
1 + Izl 2 
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The remaining part of the integral in (30) is at most 

(32) f .E Ir~ (s)l Iq' ( z -  s)l as +fl , i - (~+ 1,1)/8 Ir, (s)l ds Iq' (z)l 

=<fl(P(OId~ sup Ir~(s)l-~ C fl  t~l>(x+lz])/~- " 1 + Izl - - - - - - r  sl>(x+lzl)/~y Ir(s)l ,is 

=<C + . 

We conclude from (31) and (32) that, if ?=<2, then 

C?' 
(33) Irr*cP(z)l ~ 1 + Izl ~ 

for any fixed e< 1. 
> l  Next if ? =  3, we write ry.q~=(r.~p,/y),. Since ~p and r satisfy the same con- 

1 ditions, we can apply (33) with r and q~ interchanged, and replace ? by 3-" 
This gives 

(34) Ir~*q~(z)l -~ r,+izl--------~ for all ? > 7 "  

In the double sum in (29), consider first the terms with n = v, k ~ ~. Since •  2q'y=< 2, 2 ~ 

(28) and (34) yield 

C 
~ ' k ~  Iry*q3~(x)l =< ~ ' k ~  1 +12q~x--pkl 2" 

Since (x, y)~ U.., we have 12~Vx-pxl < 1, so that 

I 
Z k ~  Ir,* q'vk(x)l =< C Zk~.  p, Ik - xl = 

(5 
-,:: Up- 2 -c: 

if p is large enough. Take now those terms in (29) with n<v. Then 2q"y=< 
2~"2-~v+]=<2, and we can apply (33) to get 

~v -1  ~,,~":v C(2~"Y) ' 
.=.o~k=~ Iry*~o.k(x)l -~ Z . < ~ Z ~  1 +12~"x-pkl ~ 

1 
<= C Z.<,(2r Zj ] +psj" 

(5 
~_ C ~'.<~ 2 ~(~-~) ~- "6'  
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if q is large enough. In the remaining case n>v,  we apply (34) since 
The result is 

C(2q"y) 1-" 

s dt 
< C Z .  ,v (2q"Y) x - '  / 
- d (2q"y) 2 + t = 

<=CZ.> , (2 , "y ) t - ' (2q"y )  - t  

279 

2q'y > ~ .  

(35) 

Claim 1 follows with 2 = &/2. 

Proof of  Claim 2. On the set of  all sign choices in (27), consider the probability 
measure which makes the signs into independent Bernoulli variables. Denote by E 
the corresponding expectation. Then 

EIhNI = E ]Z,,.~,--I- q&.a,(x)[ 

C(Z..~ I ~ ( x ) l ' )  v= 

= c(2L, zE " " 

because of  Khinchin's inequality. Now qKu)=O(lul -~) as lul-~ + ~. So 

(36) ko(2~*x- pk)l ~ ~_ 

for all n~_N, k~_2~*/p. 

(37) 

for all N. 

C 
1 + 12q"x-Pkl 4 

From (35) and (36), it follows that 

f ,  xt., E IhN(x)l dx ~ Cl/~ 

for large q. Altogether, this means that if (x, y)E Uv,, the sum of the terms in (29) 
with (n, k)~(v ,  ~) is no larger than 5/2 for largep, q. It follows that [ry*hN(x)l> 
t~/2 in each Uv,. Since 

~'=~ t~(Uw) ~ N, Zv -,=.N J- 'J ~ = I  
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If Ixl>2,  then 12q"x-pkl>-2~nlxl/2, and so, by (35) and (36) again, 

N su-  ( ~-,2q-/p 1 )x/~ (38) flxl>~ElhN(x)ldx<=Cfl.~l>21/-~ f N [ ~ = x  l+[2g.x_pkl Q dx 

,- n~_N 1,24~"X 4) dx 

f dx - -  - ~ . ~  . 
Ixl>2 

Taking (37) and (38) into account, we see that 

E f lh~(x)l dx = C r 

for all N. Thus there exists, for each N, a choice of  signs for which 

f lh~,l dx ~ C t' N. 

This proves Claim 2. 
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