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1. Introduction 

In this paper we continue the study of properties of  the operator of  best ap- 
proximation by analytic functions, which plays an important role in many ques- 
tions arising in Hankel and Toeplitz operators [I], [2], [20], interpolation problems 
[1], [2], [14], prediction theory [20], electrical engineering and control theory [11], 
[8], [71, [41. 

This operator can be defined as follows. If r is a bounded function on the unit 
circle T, then the distance distL~ff)(q~, H ~) is attained, i.e. there exists a func- 
tion in f in H "~ such that 

II~--fI[L'~T) = distz-or)(~P, H=) .  

Such a function f (which is not unique in general) is called a best approximation of 
tp by analytic functions. 

It turns out that it is natural to consider the notion of  best approximation for 
functions ~0 not necessarily bounded on T. Namely, let r (the space BMO 
of functions of  bounded mean oscillation can be defined in several ways, for example 

BMO --- {q~ = ~k~ + ~z: ~kx, ~k~ ~ L ~ (T)}, 

where ~ is the harmonic conjugate of  ~k, see [9]). Then it is well known that there 
exists a function f analytic in the unit disc D such that q~-fEL~(T)  (in the last 
inclusion f is identified with its boundary values on T). Among such functions f 
there exists a function fo that minimizes the norm II~0--folIL-CT), Such a function 
f0 (not unique in general) is called a best approximation of  r by analytic functions 
in the sup-norm. 



332 Vladimir V. PeUer 

If  tp belongs to the space VMO of functions of vanishing mean oscillation 

(VMO = {rp = ~Ox + ~2 : qtl, ~O2EC(T)}) 

then the best approximation is unique (see [1], [20]). The operator ~ of best ap- 
proximation by analytic functions is defined on the class VMO by 

~r =f0, 

where f0 is the best approximation of ff by analytic functions. The operator ~r is non- 
linear but it is homogeneous, i.e. 

~r = 2~ f ,  2EC. 

Note that in the study of the best approximation operator ~r an important 
role is played by the so-called Hankel operators. Given a function tp on T of  class 
BMO, the Hankel operator H~ is defined on the Hardy class H z by 

I - I ~ . f  = P_ tpf, f ~ H  2, 

where P_ is the orthogonal projection from L 2 onto H a- d---~f L26) H 2. It is well known 
(Nehari's theorem, see [14], [20]) that for tpEVMO 

I1~11 = II~p - ~ r  

the right-hand side being equivalent to liP-tPllaMo- 
Besides the operator .~r we shall also consider the operators .~r of best ap- 

proximation by meromorphic functions of degree at most m which can be defined 

in the following way. Let ~m be the set of functions ~, in BMO such that P_ ~b is a 
rational function of  degree at most m. Given tpEVMO, the best approximation of 
~p by meromorphic functions of degree at most m is, by definition, a function d m t P ~ m  
such that 

Ji tp - ~r ~o l[ c'(r) = i nf  {lltp - ~ IIL'(T)" ~J ~ ~m}" 

It follows from a theorem of Adamyan, Arov, and Krein [3] that such a best ap- 
proximation exists and is unique. Clearly, ~r162 A deep result of  Adamyan, 
Arov, and Krein claims that 

Ilep--~r = sm(H~), 

where {s,~(H,)},n~_o is the sequence of singular values of  H r. 
In [20] a systematic study of  hereditary properties of the operator zr was under- 

taken. Namely, the problem considered there was to find for which spaces X of func- 
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tions on T it is true that 

(1) ~EX =~ ~r 

Earlier in [23] and [5] the above implication was proved for some function spaces, 
in particular, in [5] (1) was proved for the Hdlder classes, see [20] for detailed ref- 
erences. With the help of techniques of Hankel operators three big classes of Banach 
spaces were found in [20] for which the implication (1) holds, see w 2 for more detail. 
Note that after [20] there appeared two more papers [24], [25], dedicated to the 
hereditary problems for the best approximation operator ~r in which other classes 
of functions spaces satisfying (1) were found. 

The continuity problem for the operator d posed in [12] is very important in 
applications. This problem was solved in [18] for the second class of spaces de- 
scribed in [20] (see w 2 for more detail). Namely, it was proved in [18] that given 
a function space X from the second class described in [20], a function q~ is a con- 
tinuity point for ~r if and only if the singular value so(H~,) of the Hankel operator 
H ,  has multiplicity one. 

In [10] the continuity problem for the operators ~r was considered in the 
norm of the space of functions ~-/1 with absolutely convergent Fourier series. It 
was proved there that ~r is continuous at q~ in the norm of ~11 if and only if the 
singular value Sm(H~,) of the Hankel operator H ,  has multiplicity one. In [19] the 
same problem was considered for the second class of spaces described in [20] (see w 2). 

It was also shown in [18], [19] that if we consider the continuity problem in 
the L~-norm, the situation is quite different, namely a function q~ can be a dis- 
continuity point for ~r even if the singular value So (H e) has multiplicity one. It was 
conjectured there that any function tp in C(T) is a discontinuity point for ~r in the 
L ' -norm unless ~pEH'. This conjecture has been proved recently by Merino [13] 
and Papadimitrakis [15] by quite different methods. Note that the method of Merino 
allows one to prove the same result for the operators ~r mEZ+. Namely for any 
~pEC(T)\~,, the operator ~r is discontinuous at q~. 

For the first class of spaces X considered in [20] (this class contains VMO 
and the Besov spaces R 1/p 0<p<oo,  see w 2 for more detail) it was shown that ,~r w p  , 

has a property even stronger than (1), namely in this case 0 is a continuity point 
for zr in the norm of X, or in other words A is bounded on X, i.e. 

(2) II~r ~_ const, ll~pllx, r 

Note that the boundedness property of ,~r is also important in applications. 
However for other spaces X satisfying (1) (e.g. for the second and the third 

class of spaces considered in [20]) it was unclear whether (2) holds. In [18], [19] 
a problem was posed which spaces X with property (1) satisfy (2). In particular 
it was asked there whether (2) is true for the Hdlder--Zygmund classes A~ or for 
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the Besov classes B~, 0 < p <  co, s>l/p. The main result of  this paper claims that 
the answer is negative. The proof will be given in w 3. The construction is close in 
spirit to that of [13]. The same result is valid for the operators d~ .  

In w 2 we give needed information on properties of the best approximation 
operator ~r and the Besov classes. 

In w 4 we formulate open questions. 

2. Preliminaries 

1. Best approximation operators. As mentioned in the introduction in [20] three 
big classes of functions X were found which are invariant under the best approxima- 
tion operator ~r The first class contains the so-called ~-spaces, i.e. the function 
spaces which can be described in terms of best rational approximation in BMO 
(see [20] for detail). The spaces VMO and the Besov spaces B~ Iv are examples of 
~-spaces. This follows from the compactness criterion for the Hankel operators 
(H~ is compact if and only if P_ tp~VMO (Hartman's theorem, see [14])) and 
from the description of the Hankel operators of Schatten--von Neumann class 
~p (H~ belongs to ~p if and only if P_q~CB ~/p (see [16] for p ~ l  and [17], [22] 
for 0 < p <  1)). 

The second class of functions considered in [20] can be described as function 
spaces X satisfying the following properties: 

(As) I f  f E X  then rEX and P_fEX," 
(A~) X is a Banach algebra with respect to the pointwise multiplication; 
(A3) The set of trigonometric polynomials is dense in X," 
(A4) Each multiplicative linear functional on X coincides with point evaluation at 

some point ( in T: f~--~f(~). 

This class of spaces contains the Besov spaces B~, l~_p< 0% s>l/p,  B~ (see 
the definition below), the space .~l I of functions with absolutely convergent Fourier 
series, the separable Hrlder--Zygmund classes 2~, and many others (see [20]). 

The third class of spaces contains some non-separable spaces (in particular, 
the Hrlder--Zygmund classes A~) and some non-normed spaces (such as Carleman 
classes). 

Let ~ be a function in VMO such that P_tp~a0, then the function tp-.~r 
has constant modulus with negative winding number with respect to 0 (as shown in 
[20], ~p-d~o belongs to Q c d e f L ~ V M O ,  and it is easy to extend the notion of 
winding number for such functions). Conversely if g is a function in VMO analytic 
in the unit disc such that k0-gl  =const a.e. and the winding number wind ( tp-g)  
is negative, then ~r =g  (for continuous g this is Poreda's theorem [21]). 
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There is a similar fact for the operators ~r mCZ+. Let o ~ V M O \ ~ m  such 
that the singular value s~(H~) has multiplicity # and 

&(H~,) = sk+l(H~,) . . . . .  Sk+~_~(H,), k <= m ~_ k + t i -  1. 

then ~p- dmO has constant modulus and winding number - (2k+it). Conversely, 
i f g  is a function in ~,~ such that o - g  has constant modulus and - w i n d  ( q - g ) >  
2m, then Mm~p=g (see [3], [10]). 

It  was proved in [19] that if X is a function space satisfying (A1)--(A4) and 
the multiplicity It of  the singular value sm (H,) is equal to one, then 40 is a continuity 
point for ~r is the norm of  X. If  It is greater than one and m # k  + ( i t - 1 ) / 2 ,  then 
~r is discontinuous at O (see [19]). In the case It > 1 and m = k + ( I t -  1)/2 the situa- 
tion is less clear. In [10] it is proved that O is a discontinuity point for X = ~ I  ~ and 
in [19] the same is proved for X = A ~ ,  e>0 ,  eeZ.  The same is also true for the 
Besov space BI (the last fact was not mentioned in [19] but the methods of [19] 
aIso work for Bll). 

2. Besovclasses. The Besov class B;,  0 < p < ~ ,  s>0 ,  s > l / p - 1 ,  can be 
defined by 

itll+,, IdOl dt < ~  , 

An=A A n-J'  There are many where n is an integer, n > s ,  ( A t f ) ( O = f ( e " O - f ( O ,  ~,  _ , _ ,  . 
other equivalent definitions of Besov classes. We shall need the following one. 
L e t f b e  a function on T analytic in D (i.e. P _ f = 0 ) .  Then fEB~ if and only if 

ffo(1 - lzl) r If(")(z)l" dx  dy < ~ ,  

where n >s.  
The Besov class B~ is simply the H61der--Zygmund class A~ which can be 

defined by 
A, = {f: I(A~f)(OI ~- const. Itl'}, n > s. 

A function f analytic in D belongs to A, if and only if 

If(")(0l =< const. (1 - Iz t )  " - " ,  , ,  > s .  

3. Boundedness properties in Besov norms 

In this section we shall prove that the best approximation operator M is un- 
bounded on the H61der classes A~, s>0 ,  and Besov classes/~p, 0 < p <  <~, s > l / p .  
Recall that the operator z~r is bounded on B~/p (see [20]). The same is true for the 
operators zr Note that for s <  l ip  the Besov class/Pp is not contained in BMO. 
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Theorem I. Let X=A, ,  s > 0 ,  or X=Bp, 0 < p < o %  s>I/p. 
a sequence of  functions {cp,} such that 

IlcP,llx -~ const 
but 

lim II~cp, llx =~o. 

Then there exists 

The construction given below is close in spirit to (but is different from) that 
in [13]. 

Consider the conformal mapping co,, 
the disc {~: ] l - ~ l < l }  defined by 

Define the functions 0, and q, on T by 

0 < c t < l ,  from the unit disc D onto 

Z - - ~ t  

I - - ~ t g  " 

o,(z) = (co,(z)- ~') (Io~,(z)- ~ '1-1);  
Ico,(z)- ~'1 

~ , ( z )  = ~ '  + Q, (z ) .  

Note that for ~ close to one co , (z) -~  ~ is separated away from 0 since w=(z) 
is close to 0 when z lies outside a small neighbourhood o f  1. 

Lemma 1. For ~ close to 1 the following equality holds: 

Proof. Let us show that 7 , - w ,  has constant modulus and negative winding 
number, which will imply the desired conclusion (see w 2). We have 

, , ( z ) -  co,(z) : ~, ~ (co,(z)- ~,) (Ico,(z)- ~'1 - 1 ) -  (o,(z) 
Ico,(z)- ~I 

(~, (z) - ~') 
ico,(z)_~21 �9 

So q , - co ,  is unimodular. Let us show that its winding number is equal to - 1 .  
Clearly, 

wind (q, - co,) = wind (co,(z) - ~-") - wind (~ffz~co,(z) - l)) 

-- - 2 + wind (z~co,(z) - 1) = - 2 + wind~ (z2co~(z)), 

where wind~ means the winding number with respect to 1. 
Let us now show that wind~ (z2co~(z))--1. Suppose that ~ is close to one. 

Let 3 be a positive number such that cos 3--~t and ~--e ~. Then it is easy to check 
that co~(z)= 1 - ~ .  So when ( is moving along T from 1 to z, to,( o is moving along 
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the circle {e: J l - e l = l }  from 2 to l - F ,  while ~ lies in a small neighbourhood 
of  1. Therefore ~co~(e) is moving along a curve close to the arc [2, 1 - ~  of  the 
circle {~: [ 1 - e l = l } .  Next, when ~ is moving on T from T to ~, c%( 0 is moving 
within a small neighbourhood of  0 from 1 -  ~ to 1 -  z while ~ has modulus 1. 
Therefore ~2~o~(~) is moving within a small neighbourhood of  0. Finally, when 

e is moving along T from ~ to 1, co~(0 is moving along the circle {~: I1--~1=1} 
from 1 - z  to 2 while e 2 lies in a small neighbourhood of 1. Therefore ~co~(O is 
moving along a curve close to the arc [1 -~ ,  2] of  the circle {~: I1-~1=1}. 

The above reasoning shows that wind 1 (z~co~(z))= t. [] 

Now to prove Theorem 1, it is sufficient "9 show that 

lim )lco, llx oo 
�9 -1 floJx 

Lemma 2. Let  X=B~,  0 < p  -< o% s>l /p .  Then 

llo~,II x ~ (I - ~)l/p-~. 

Recall that B~ means the H61der--Zygmund class A~ 

Proof. To prove the result we shall use the following norm for functions in B] 
analytic in D. 

(3) t l f l ln~ -= IlfH~-+[ffv (1 - i z l )  ~'-,)p-1 If~'~(z)lPdxdy} lip < ~  

for p < ~ ,  and 

If~")(OI 
I l f l l a , - - j l f l lL -+sup  

e~D ( 1 - I ~ 1 )  ~-" 

for p =  o% where n>s. The case p = ~  is simpler. Let us obtain the lower estimate 
for  I{~o,llB ~ in the case p <  co: 

IIoCIB; -~ const �9 (1 - ~)t/p-~. 
We have 

ll'o~ll~ => f f . (1-Izl) ~-~)~-~ ]f(~)(z)lV dx dy, 

where f2={~=rlS~D: 1 - ~ < r < l ,  0 ~ B < = l - x } .  Then 

IIco~llf~; ~ c o n s t . f f ~ ( l - l z l )  ~ - ~ ' - ~  I I - ~ z l  ~§ dxdy  

"-" const �9 (1 - e ) - ' P .  f f ~  (1 - Izl) ~- ')p~I & dy 

~ const.  ( 1 - e) - "~ (1 - e) .  f 2  - ~ r(" - "~p - ~ dr = const �9 ( 1 - e)l - ~v, 

which yields the desired lower estimate. 
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The upper estimate can be easily obtained if we split the integral on the right-hand 
side in (3) as the sum of  integrals over the sets {(=riaED: 1 - ( k + l ) ( l - 0 t ) < r <  
1 - k ( 1  -~ ) ,  m(1 - , t ) < 3 < ( m +  1)(1 -~t)} and observe that the integral over t2 yields 
the main contribution. [2 

Lemma 3. Let nEZ+. Then 

This can be proved by direct computations. 
Theorem 1 will be proved if we prove the following fact. 

Lemma 4. There exists a number 7 > l / p - s  such that 

Ile,ltx <= const. (1-00L 

Proof. Let us first estimate Ile~lrL-. We claim that 

(4) Ife~llL- --< const. (1 -- ~)1/2. 

Indeed let z = e  t~ be as in the proof of Lemma 1, Re z =o~. Then for ( in the arc 
[ - z ,  z] of  the unit circle 

11o9~(~)-- ~21 _ 11 <= sup {1~21 : 2E[- z, z]} _~ const �9 (1 - ct) t/2. 

But if ~ ~ [ - z ,  z], then o9, (0  lies on the arc [1 -  r, 1 + z] of  the circle {(: [1-  (I--1 }. So 

1109~(()-r 11 -<_ sup {19.1 : 2E[1 -T ,  1 +r]} _~ const.  (1 _ ~)~/2. 

Let us represent Q~ as Q~=f~(g~- 1), where 

(~o~ (z) - ~ )  
f~(z) = io~(z)_ ~21 , g~(z) = lo~(z)--5~l. 

Since o)~(z)-52 is separated away from zero, we have I[f, llx~_const �9 II%llx. 
Such estimates are well-known for experts, they can be proved by direct computa- 
tions and they can also be easily obtained with the help of  the technique of  ~-exten- 
sions developed by Dyn'kin [6]. 

We shall use in the proof the following formula which can easily be established 
by induction. 

n n n - - k  i k t  k (5) (A~'q~k)(() - Zk=0 (k) (A, ~0)(e ()(A, ~b)( O. 

To obtain the desired estimate, we consider several cases. 

1. The case p =  co. We shall work with the following semi-norm on X: 

I(A~f)(OI 
Ilflls.n = sup 

,~0 Itl' 
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Let  us first estimate II g~l[,,,- Let  6 be a positive number  which will be specified later. 
Suppose tha t  Itl =>(1 - ~)~. We  have 

I(A~'g~)(OI 
<= cons t .  II~o~IIL ~ �9 (1 - - ~ ) - ~  ~_ const .  (1 _ a)l/,-ss. 

l0 s 

Suppose now that  I t l < ( 1 - c 0  ~. Then  

I(A~'g~)(OI 
_<- cons t .  IIg~')llL - Itl ~-s <= cons t .  IIo~)IIL-Itl n - '  

Itl ~ 

~_ const �9 (1 -- ~t)-"(l -- ct) ~ - ~  = const-  (1 -- ~)a~-a~-~. 

Choose  now 6 so tha t  1 / 2 - & c = 6 n - 6 s - n .  So 6 = 1 + 1/2n and we have 

(6) Ilg~[l~., <-- const �9 (1 - ~)-~+~/~-~/2,. 

Note  that  1 / 2 - s / 2 n > O .  
Let  us now estimate I1~11~,,. To  this end we apply formula  (5) with q~=f,,  

r  Let  0 < k < n ,  then s = s l + s ~ ,  where O < S l < n - k ,  0 < s a < k .  We have 

l(AT-k @)(ei'k () (Akff)(~)t <= cons t .  IIq~ll~-k,~ I1~o11~.~ 
(7) iris 

<= cons t .  (1 - -~) -~(1  _ ~)-~,+l/~-~,/2k = cons t .  (1 -- 0t)-'+~/~-~,/2k 

by (6) and Lemma  2. Next ,  if  k = 0, then 

(8) I(A~q~)(O~(OI <_ cons t .  ][w~lla," IIo, IIL" <---- cons t .  (1 --c t) -~+x/z 
Itl ~ 

by (4) and L e m m a  2. Finally, if  k = n, then 

[q~ (e i", ~) ( A ~ ~k ) (OI 
<= cons t .  (1 -c t )  -~+1/2-'/~" 

ttl" 

by (6), which together  with (7) and (8) proves the lemma for  p = ~.  

2. The  case 2 < p <  ~.  We shall work  with the following semi-norm on X: 

ltll+,p 

Let  us first estimate Itg~ll,,.~,~. Le t  6 be a positive number  whose choice will be 
specified later. Let  t2x={tE [ -  1, 1]: Itl =>(1-~)~}, t 2 2 = { t E [ -  1, 1]: Itl-~(1-0t)6}. 
We have 

f,,, IfA 'g')(Ol' laCla, ~ const f.ol L (I -ct)'/z it[x+, p -- . itt~+,---------- ~ IdOl dt  

const  �9 (1 - ct) p/~ f l  t -~- '~  dt ~ const �9 (1 - ~t) ~t~/~-~') 
= d (l--a)~ 
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by (4). Next, 

fo L I(a~g.)(r Idr < const. Ho~_"'H[- f~'- '"t"t '- 'P-ldt 
, I t [  l + ~ p  = 

_~ const. (1 -~) -"p( l -~z)  n("p-'p) ~_ eonst. (1 _,,)po,-6s-,). 
1 

Let us choose now 6 so that p(1/2-aa)=p(an-as-n), i.e. 3 = l + - ~ n .  Then 

(9) l[g=]It,,s,, <= const �9 (1 - a) x/2 . . . .  /2,. 

Nowwecanpick  n>s/(1-2/p). Then 1/2-s-s /2n>l]p-s .  
We shall again use formula (5) with q~=f,, q , = g , - 1 .  Let 0 < k < n .  Let us 

represent s as S=Sl+S2, where O<sl<(n-k)(l-2]p), O<s,<k(1-2]p). This is 
possible because of the above choice of n. We have 

1 I(A~-kq~)(ei*tO(A~qO(OV Id~[dt (lO) f - l f~ Itl'+ ", 

J - , J ,  )t,l+,~., 1J~ )t),+~., 
<_ ii~ollgp,,,,,,_ k . ,,.i.i]~/[12p,,l,k p ~---<= const. (1 -a)x/2- P~,(I _ ~ ) u p  

by (9) and Lemma 2, where 1~>l/2p-s2. So the integral (10) is less than or equal 
to cons t . ( 1 -~ )  ~p, where ~,=l/2p-s~+l~>l/p-s. 

Let now k=O. Then 

Itll+~,p 

<= [kOl[p,s,. [[~!IL- ~ const. (1 --~)lW-~(I _~)l/~ 

by (4) and Lemma 2. Finally, let k=n. We have 

(f L I~P(e'"tO(A~O)(O!~ Id~ldt) 1/2< eonst.(1 _,)1/2-,-~m, 
-1 Itll+~p = 

by (9) which completes the proof of the lemma for p >2. 

3. The case p-<2. First of all let us note that 

(1 1) Jig=l[, .... <= const. (1 -~t) l/p-" 
for any s, p, n>0 .  This follows easily from Lemma 2. Let q be a positive number 
such that qp >4,  q ' =  q/(q-1). We have by the H61der inequality 

I(ATg,)(r plz I(A~g,)(OW 2 d~t 
Ilg.l)~.,.,: fl_, f ~ lee) Itl ~p12 It[ sp/~ Itl 

<-(f~- fT I(a?g')(OV'/2 la(I at ]l,,(f~ f_ i(a?gj(()W/, lar art ]11r 
, ItlSP,/' -~)  - , , ,r  ItWr "~) 
_ iig, llg/qffz.,.. ,/s (I__cX)~'p/a (l__ot)(llPr - Ilg=llor -~ const. �9 
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by (11), where ~ > 2 / p q - s  (such a ). exists since pq/2>2 and the lemma has al- 
ready been proved for p>2) .  It follows that 

llg~llp, s., ~- const �9 (1 - ~)~ + 2/pa'- ~)/~. 

Clearly, (~ + 2/pq' -  s)/2 > (2/pq- s + 2/pq ' -  s)/2 = 1 /p-  s which completes the proof 
of  the lemma. [] 

A similar result can be proved for the operators ~r 

Theorem 2. Let X =  A~, s>0 ,  or X=B~, 0 < p <  ~o, s>l/p,  mEZ+. Then there 
exists a sequence of  functions {tp,} such that 

II~p~llx -~ const 
but 

lim It~r ~Ilx 
n ~ a  

The proof of  Theorem 2 is similar to that of Theorem 1. The only difference 
is that in the definition of O, and ~, we have to replace ~z by ~m+~. Then it can be 
shown that 

wind (r/,,- co,) = - m, 

and so ~r All above estimates work in this situation too. 

4. Open problems 

As we have mentioned in the introduction the .~-spaces satisfy the bound- 
edness property (2). It is also clear that if X is an ~-space, then X A L  *~ satisfies 
the boundedness property. The following question seems very interesting. 

Question 1. Are there other Banach spaces X imbedded in VMO that satisfy the 
boundedness property (2)? 

In particular it is interesting to learn whether certain classical spaces satisfying 
(1) have the boundedness property. 

Question 2. Does the space X = ~ I  1 of functions with absolutely convergent 
Fourier series satisfy the boundedness property? 

I believe the answer to Question 2 should be negative. The following result 

gives an estimate for the norm of .dtp in ~-/x for functions in :~m. 

Proposition. Let cpE ~m. Then 

I ld~ l l~ l  ~ const, rn I[~PlI~, 
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Proof. Since B ~ c ~ r l  a and the operator ~r is bounded on B], it follows that 

II~01[~t~ ~ const.  II~011BI ~ const,  ll~0[IBI. 

Next, it follows from the nuclearity criterion for the Hankel operators (see 
w 2 and [16]) that 

IIP-~01IBI ~ const.  IIH~oll~x ~ const,  r a n k H , . / i a ,  II ~ const,  m II~0[IL', 

since 9 ~ m .  The same inequality is true for the function P_ ~. Thus 

ll~0]rBl ~_ const,  n7 II~011L ~ ~ const,  m Iko l l s t l .  [ ]  

The Besov spaces B~/p play an important role in these questions. The space Bt ~ 
is both an ~-space and satisfies the properties (AI)--(Aa) (see w 2). So this space 
satisfies the boundedness property, and the continuity points of  the operators ~r 
admit a characterization in terms of  the multiplicities of  the corresponding singular 
values of  Hankel operators (see w 2). So the space B~ is the most convenient space 
to work with the operators ~1,,. The spaces B~/p with p > 1 do not satisfy the prop- 
erties (A1)--(A4) since they contain unbounded functions. The question of  whether 
the continuity points of  the operator d (and the operators ~r admit a similar 
description remains unsolved. It follows from the results of  [19] that if so(H~,) has 
multiplicity greater than one, then ~0 is not a continuity point. 

1/p such that the singular value So(H,) has Question 3. Let  ~o be a function in Bp 
multiplicity one. Is it true that the operator d is continuous at ~o? 
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