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Abstract. In this paper, we prove a good-2 inequality between the nontangentiai maximal 
function and the square area integral of a subharmonic function u in a bounded NTA domain D in 
R'. We achieve this by showing that a weighted Riesz measure of u is a Carleson measure, with 
the Cadeson norm bounded by a constant independent of u. As consequences of the good-2 in- 
equality, we obtain McConnell--Uchiyama's inequality and an analogue of Murai--Uchiyama's 
inequality for subharmonic functions in D. 

1. Introduction 

In this paper we shall prove a good-), inequality between the nontangential 

maximal function and the square area integral of  a subharmonic function in a 

bounded nontangentially accessible (NTA) domain D in R", which leads to two L p 

inequalities comparing these two quantities. 
Throughout this paper D will denote a bounded NTA domain in R ", n=>2, 

with structure constants M and r0 (see [JK] for the definition). For  XE D, we let 

6(X) denote the Euclidean distance from X to the boundary OD of  D. For  Q~OD 
and ct >0,  define the nontangential region at Q by 

(l.l) F,(Q) = {X6D: IX- QI < (l +~)6(X)}.  

For a subset EcOD and ~>0,  the so-called sawtooth region ~ , ( E )  over E is 
given by 

(1.2) ',~a(E) = U Q ~ r , ( Q ) .  

The surface ball centered at Q~OD and r > 0  is defined by A(Q, r)=B(Q, r)nOD, 
where B(Q,r)={X~R": IX-Ql<r}. 

Let 0 be a fixed point o lD,  we shall use the notation co for the harmonic measure 

of  D evaluated at O, that is, for each Borel set EcOD, co(E) is the value at O of  
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the solution of  the Dirichlet problem with boundary data XE, where )~g is the char- 
acteristic function of E. It is well-known that the harmonic measure 09 satisfies the 
doubling property ([JK, Lemma 4.9]), that is, there is a constant C depending only 
on D and O such that 

(1.3) O9(A(Q, 2r)) ~_ CO9(A(Q, r)) 

for al l  QCOD a n d  r>0 .  
We recall that a positive measure a on 0D is said to satisfy the A.. condition 

with respect to o9, denoted by aEA~(og), if there exist positive constants q, cx and 
c2 such that for any surface ball A and any Borel set E~A, 

f o)(E)) 1'' if(E) ~ Og(E)) ~/ 
(1.4) c, ~-- -0) - )  -< ~(A) <- c~ ~ c0(A)) " 

A constant is said to be independent in A** (o9) if the constant depends only on the 
A~. (o9) constants of  a, cl and c2, the  dimension )l, and the doubling constant of  co 
in (1.3) rather than on the measure a itself. We remark that if aEA.o(og), then it 
follows from the doubling property of o9 and the first inequality of (1.4) with 
E=A(Q, r) and A=A(Q, 2r) that the measure a satisfies the doubling property 
as well. The most interesting examples of  A (o9) measures for us are the surface 
measures of the boundaries of some NTA domains, such as planar chord-arc do- 
mains, Lipschitz domains and BMO1 domains (see [JK]). 

For  a harmonic function h in D, the area integral A~h and the nontangential 
maximal function N~h are given by 

A,h(a) = { f  r.(e)6(x)"-" IVh(X)L 2 dX} x/z, 

and 
N,h(O) = sup {Ih(X)l: XEF,(Q)}, 

respectively. It has been shown in [DJK] (with a different but equivalent definition 
of  A,h) that, for any measure a~A=(og), the LP(a)-norms of  A,h and N,h are 
equivalent. 

If  u is a subharmonic function in an NTA domain D, we define the square area 
integral of u by 

(1.5) s,u(Q) = fr.(Q ~(X)~-"d~,(X), Q6OD. 

where/l ,  is the Riesz measure of  u, that is, 

dI~.(X) = a u ( x )  dX, 

with the Laplacian Au of  u understood in the sense of distributions. 
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As usual, the nontangential maximal function for a subharmonic function u in 
D is defined as 

(1.6) N,u(Q) = esssup {lu(X)l: XEF,(Q)}, QEOD. 

This type of (square) area integral was first introduced by McConnell [Mc] 
for positive subharmonic functions in the half-space of R n, based on the identity 
[Vh[Z=~-A(lh[ *) for a harmonic function h. He also showed that IIS~ullv, tR~-,) 
is controlled by Ita~ullv, cR--,) for a limited range ofp. Later, Uchiyama [U] proved 
the same result for all 0 < p <  oo by using a different argument. A slightly different 
proof is given in [K] so that it works for more general differential operators than 
the Laplacian (but the underlying domain is still the half-space). In this paper, 
we shall generalize this result to the setting of bounded NTA domains. Following 
Uchiyama [U], the main task is to prove the following good-), inequality: 

Theorem. Let D be an NTA domain in R ~, and 09 be the harmonic measure of 
D at af ixedpoint  OED. Then, for any trEA (~o) and 0-<ct<]~<oo, there exist 
constants C and c, which are independent in A (to), such that i f  u is a subharmonic 
function in D then 

(1.7) tr({QEOD: S,u(Q) > r)., Nr ~= 3.}) 

~_ Ce-C'a({aEOD: Sz~u(Q) > 2}), 
for all 2 > 0  and y~.l. 

We remark that, when u=lh[ 2 and h is harmonic, the same inequality was 
obtained earlier in [MU] for half-spaces and recently in [BM] for Lipschitz do- 
mains. 

Once the theorem is established, well-known arguments lead to the following 
corollaries. The first one is a generalized McConnell--Uchiyama inequality ([Mc; U]). 

Corollary 1. Under the hypothesis of  the Theorem, for any 0<a,  fl<oo and 
0<p<oo,  there exists a constant C, independent in A~(o)), such that i f  u is a sub- 
harmonic function in D, then 

IIS~ulIL~(,) <---- CIINa*IIIL,(~). 

Another application of the last theorem is the following analogue of a result of 
Murai--Uchiyama [MU] for subharmonic functions in D (see also [K]). 

Corollary 2. Under the hypothesis of  the Theorem, suppose that 0 < a < f l < o o  
and 0 < p < ~ .  Then there exist constants C~ and C2, independent in A,(o)), such 
that for an), subharmonic function u in D, 

fooexp C~ S, ufQ)) ~= C, �9 
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Before we prove the Theorem, we notice that, by replacing u by u/2, we may 

assume that  2 =  1. In what follows, we fix 7 and fl with 0 < ~ < f l <  ~,  and for a 
subharmonic function u in D we denote 

(1.8) E,  = {QEOD: Npu(Q) >- 1}, and ~ .  = ~ ( E , ) .  

Let G(X) denote the Green function of  D with the pole at O. (We shall use the con- 
vention that the Green function is positive and hence superharmonic in D.) We 
now introduce a weighted Riesz measure v, on D, which is defined by 

(1.9) v, (W) = f ~.o w G(X) dp,(X) 

for  each Borel subset W of  D. 
The key step in the p roof  of  the Theorem is the following: 

Main Lemma. Under the hypothesis of the Theorem, the measure ~,. defined by 
(1.9) is a Carleson measure, and furthermore, the Carleson norm livJc is bounded 
by a constant which is independent of u (but dependent on a, fl, 0 and D). 

We recall that  a positive measure v on D is a Carleson measure if 

(1.1o) Ilvllc = sup v(Bc~D) 
og(BnOD) <~" 

where B is a ball centered at a point in 0D, and I[Vl[c is called the Carleson 
norm of  v. 

In what follows, we shall use letters N, C, c . . . .  to indicate constants which 
are not necessarily the same at each occurrence. We also use the notation ql < q2 
to mean that  there is a constant c > 0  such that q~<=cqz, if the dependency of  
the constant c is clear in the context. By ql ~ q2 we mean that q~ < q2 and q2 ~< qx. 

2. Proof  of the M a i n  L e m m a  

We begin the proof  by recalling a well-known estimate of  the harmonic measure 
in terms of  the Green function, which we refer to as the Dahlberg-Jer ison-Kenig 
Comparison Theorem ([JK, Lemma 4.8]). This theorem states that  if QEOD, 2r<r0  
and [ O - Q l > 2 r  then there exists a constant C, depending only on D, such that  

(2.1) C-lr2-"o)(A(Q, r)) <= G(Y) <= Cr2-"og(A(Q, r)), 

for all YED with 6 ( Y ) > M - l r  and IY -Ql<r .  As before, r 0 and M are the 
structure constants in the definition of  the NTA domain D, G is the Green func- 
tion o l d  with pole at O and co is the harmonic measure o l D  evaluated at the point O. 
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The main lemma will be an immediate consequence of the following two lemmas. 
The first lemma deals with balls with small radii, while the second one takes care of 
large balls. 

Lemma 1. L e t  r be such that 0<5r<min  {r0, 3(O)}. Then there is a constant 
C, independent of r and u, such that if B= B(Qo, r) for some QoEOD, and A = BnD, 
then 

(2.2) v.(B) <- Co(A). 

Proof First we recall that there exists a so-called regularized distance func- 
tion 6*ECg=(D) such that 

(2.3) 

and 

q a ( x )  ~ a*(x) ~_ c=a(x), 

C2 (2.4) IVa*(x)l ~_ q ,  Iv,s*(x)l ~_ a ( x )  ' 

for all XED, where the constants Cl, c2, C 1 and C2 depend only on the dimension n. 
(See Theorem 6.2 of IS].) 

Now, for e>O, let D~={XED: 6(X)>e} and P~={XED: 6*(X)>e}. Then, 
by (2.3), we have D~/ccf2~cD~/c,, so that the family {P~: e>0} of subdomains 
of D increases to D as ~ \ 0 .  Clearly, 

v,(B) =< lim f G(x) au,(x) 

Hence, to complete the proof it is enough to show that 

f G(x)d~, (x) -< Co~(A) 

for some constant C independent of r, u and e. 
We next observe that if XEY~unB then 6(X)~-IX-Qol<r and 

(l+~)6(X) for some QEE,, so that 

IQ-Q0[ =< IX-QI+IX-Qol < (2+~)r.  

Let us denote by A*=B(Qo, (2+~)r)n0D and D , = D \ ~ .  Then the last fact 
implies that ~ , n B c ~ , ( E . n A * ) c ~ , .  

We now fix e>0 and take a number z>0 (which is independent of e) suffi- 
ciently small so that 

I x - o I < -  

1 f l -a}  
z~_min 2c2' 2c= 
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We then have 

B(X, ~6*(X)) c ~t(~+~)/2(E.nA*) for 

B(X, z6*(X))n~l(,+p)/~(E.nA*) = 0 for 

, (x .  ~6*(x)) c 15.. for 

B (X, ,6* (X)) n/3, ,  = r for 

B (X, r6* (X)) c f2~, for 

B(X, r6* (X)) n O~. = Z) for 

where the constants r', r", s' and s" are given by 

r" = ( l + c ~ z ) r ,  r " -  l+c~T 
1 - c 2 ~  

Let q~E~o (R") 

XEa~(E.nA*), 

XED\~p(E. nd*), 

XE/3r, 

XED,,,, 

XEO~, 

XED\O~,,, 

I F ,  

/~, = Cl(C~_l_T)/~ ' /~,.t c1(c2 "1-'~) 
- c~(ci_l+r) s. 

be such that ~o(X)=~0(IXl), spt(p)c{XER": IX[<l}, and 
its integral over R" is equal to 1. Here <~o (D) is the space of smooth functions com- 
pactly supported in D and spt (q~) is the support of the function ~o. We now define 
the function �9 as 

X - Y  

where the subset W of D is given by 

W= ~(,+~)/2(E, nA*)nD,,nO,,. 

The function 4~ turns out to be a smoothing of the characteristic function of the set 
~(E,,nA*)nb, nO, (which contains ~, ,nBnt2,) .  Indeed, ~E~fo(R") satisfies the 
properties that q~(X)=I if XE.~(E, nA*)n,O, nf2~, and 

spt (4~) c ~ ( E , , n A * ) n / 3 , , , n  O~,, c D. 

Moreover, by using (2.4), a straightforward computation shows that 

1 1 
(2.5) IV~(X)I < 6 ( X ) '  IA~(X)I < 6(X) ~, 

for all XED. 
We next note that, by the implicit function theorem, if r/is a regular value of 6* 

(that is, V6*(X)r for all XED with 6*(X)=q), then O0~={XED: 6*(X)=q} is 
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smooth. According to Sard's theorem (see [F]), almost all values of  a smooth func- 
tion are regular, so we are able to choose a number )1 with 0<q~_e" such that ~ 
is a smooth subdomain of  D. 

Let {ul} be a non-increasing sequence of  ff~o subharmonic functions which 
converges to u (see [HK]). Moreover, it was essentially shown in Chapter 3 of  [HK] 
that the sequence (or a subsequence of  it, if necessary) {Pu,} of  Riesz measures of  
ui converges vaguely to the Riesz measure pu of  u on D, i.e., 

.lim fo f (X )  dp.,(X) = f,, f (X )  dp.(X) 
1 ~ o o  

for all fECgo(D). Since u<= 1 on ~p(E.),  by choosing i sufficiently large, we may 
assume that ui<=2 on ~p(E.)  for all i. 

Set W0=sp t (V#)wsp t (Ar  ). Apply Green's theorem on (2~ for each u~ to 
obtain 

f ~.n,,n~,~ G(x)d~.,(X) ~= f ~ +(X)G(X)au,(X)dX 

= f~,  h @ (X) G(X)) u~ (X) dX+ {zero boundary terms} 

<- fo +(x) AG(X) u,(X) dX + fWo I A+(X)I G(x) u,(x) dX 
)7 

+ 2fw ~ IV+(g)l IVG(X)I u~ (X)dX 

r G(x) dS+fWo IVG(X)I dS. 
< Jwo 6(xy  6(x) 

In the above we have used r  and (2.5). Therefore, since p:, converges to p: 
vaguely on D and G(X) is bounded and continuous on the compact set ~ : n B n f 2 : ,  
it can easily be seen that 

G(X) dX+ fw, IVG(X)I 
(2.6) f~.o.n~ G(X)a~,.(x) Z f..o6(X), ,~(x) ax. 

by taking the limit as i ~  oo (see also the proof  of  Lemma 2 below). 
To estimate the right hand side of  the last inequality, let ,x > 0  be a fixed num- 

ber such that 

(2.7) ~ :~  m i n { 1  2 ~ }  
- -  ' ~ + 3  " 

Let D = Ok~l Ik be a Whitney decomposition of  D so that {Ik} is a family of  dyadic 
cubes in R ~ with disjoint interiors and 

41/n (2.8) f n  l(Ik) ~ dist (Ik, OD) ~ l(Ik), 
7g 
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where l(Ik) is the side len~h of the cube lk. Let Z k be the center of the cube lk, 

rk=~ ~ l(Ik), Bk=B(Zk, rk), and B~ =B(Zk, 2rk). Let ~'k60D be such that IZ~-~1 = 
6(Zk), and Ak=A(Z.k, rk). 

Let J={kEN:  Ikc~Wo~O }. Then for each kEJ, we have 6(Zk)-~rk, and, 
by Harnack's inequality, G(X)~G(Zk) for XEB~. Thus, for the first term on 
the right hand side of (2.6), the Dahlberg-Jerison-Kenig Comparison Theorem 
gives that 

fB G(X) 6(X)  2 dX "~ ~-2G(Zk) ~-- og(Ak). 

For the second term, it is well-known (see [M]) that, for the harmonic function 
G(X) on B~, we have 

1 
f ., IVG(X)l~dX <~ ~ f B* 6(X)'dX. 

This inequality together with Schwarz's inequality gives 

f B~ IVG(X)I [Bkl 1/a 
,~(x) z t . ~  ( f  n~ IVG(X)I2dX) v' 

<~ r(kn-a)"2(fB G ( X ) Z d X ) l ! 2  

~ -  ~ G(Z ) ~ (A ) k =(.D k " 

We now claim the following: under the notation above, there exist constants c 
and C, which are independent of u, r and e, such that 

(2.9) ~'kC.1X4k <= C~(~(Qo.c,). 

Assuming that (2.9) holds, it then follows from Fubini's theorem and the doubling 
property of 09 that 

G(x)...(x> z . ,  {L, ax+L " -  (~(xy 

<% f oo Z ,  cJ ,/.j~(Q)do(Q) 

<~ (o(A(Qo, or)) ~ o2(A). 

The lemma is therefore established, once we prove (2.9). 

JVG(X)I dX} 
,~(X) 
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Proof of(2.9). We first notice that WocWx~)W~uW~, where 

W~ = (~p(E.  n A*) \~I . (E.  n A*)) n spt (c/,). 

W, = ((/3, . \ /~i,)nspt (r 

W3 = ((a~. \Q,)  n spt (~))\(Wx u I4/2). 

A close look at the definitions shows that there is a constant c such that Akc 
A(Qo, cr) for all k~J. Now, for each QEA(Qo, cr ), let JQ={k~J: Q6Ak}. We 
observe that, if J~ is a subfamily of  JQ with the property that there are constants c' 
and c" such that ' < < " c Q=6(Zk)=c ~ for all k~J" o and some constant ~ > 0  (which 
may depend on Q), then 

X C  t 

[Zj -  Zkt ~_ (2 + ~)c" Q, rk >-- 2 + ~  O, 

J p 
for all j ,  kEJQ. This fact implies that the cardinality of JQ is not greater than some 
integer N, which depends only on the constants c', c" and • but is independent of 
Q and ~. 

We now consider two cases: 

Case L I f  Q6Eund(Qo, cr), then, for k(J~ and X6I k, we have by (2.8) 
and (2.7) that 

I x -  al ~- I X -  Z~l + lZ~- 2~l + lZk- al 

~-- rk+6(Zk)+r~ ~_ 3rk+6(X) 

~ ( l + 2 3 - ~ - ~ } f i ( X ) < ( l + ~ ) 6 ( X )  . _ .  

This implies that IkCF,(Q)c~l,(EunA*), namely, Ik only intersects with W2 and 
IV3. Thus, if kEJQ then either 6(Zk)~r or 6(Zk)~e, and hence (2.9) holds at Q, 
by the observation above. 

CaselL For QEA(Qo, cr)\(E.nA*), let e(Q)=d(Q,E, nA*). If  kEJ o so 
that IknWa#~, then there is XEFp(P) for some PEE, nA*, and hence 

o(Q) ~- IQ- PI <= IQ- Zd + IZk- ZkI + IZ~- XI + I X -  PI 

~= rk +6(Zk)+rk +(l +/~)~(X) 

1 _~ -~((1 +/~)(2 + ~) + 2 (l + ~)) ~(z~). 

On the other hand, since EunA* is closed, there is a P~E, nA* such that IQ-PI = 
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o(Q). We then take XCIk\F,(P ) and find that 

6(Zk) <= 6(X)+rk ~_ (l +~)- t lX-Pl+rk  

<= (1 + ~)-~ (IX-Z~I + IZ~- Zkl + IZk- QI + ] Q -  PI)+ rk 

<= (1 +~)-~(rk+6(Zk)+rk+o~(Q))+rk 

<= (1 +~) -~e(a )  ++(2(1  +~)-~(1 +u)+x)6(Zk). 

This yields that 
e(Q) => +((1 + ~ ) ( 2 -  ~ ) -  2(1 +u)) 6(ZD. 

Therefore, if kEJQ, then either 6(Zk)-~e(Q) or 6(Zk)~-r, and so (2.9) holds 
at Q. This concludes the proof of (2.9) and hence the lemma is proved. 

Lemma 2. There exists a constant C, which is independent of u, such that 
v.(D)<=C. 

Proof We first claim that, if r > 0  is a fixed number, then 

(2.10) f  .no, c, 

for a constant C which is independent of u, where D,={X~D: 6(X)>r} as in 
the last lemma. 

This claim can be proved in the same way as the last one, but is somewhat 
simpler. 

Let {Ik} be the family of dyadic Whitney cubes of D, which satisfies (2.8) with 

• ~_ min ' 3(2p+3)/"  

.We denote by Bk and B~ the balls corresponding to I k as in the last lemma, and 
rk the radius of  Bk. 

Since D--~ is compact, there are at most N cubes in the family which touch D,. 

Let J={kCN:  lkc~j~Drr fO }. Then r<rk, ~c~D, cU~.r  Bk, and 

[.)kesB~ c Jlp(E#) c {XED: u(X) ~_ 1}. 

Now fix k~J, and let cpkCCgo(R ") with the properties that q~=l  on Bk, 
spt (cpk) c B~, and 

C1 C~ 
IVq~kl < -  IAq,~l < 

- r k '  - r ~ '  
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with some constants (71 and C~ depending only on the dimension n. Let {ui} be a 
non-increasing sequence of  if= subharmonic functions as in the last lemma, so that 
{ul} converges to u and p,, converges to it~ vaguely on D. As before, we may assume 
that ui~_2 on B~ for all i. 

It is well-known that G is integrable over D, furthermore, the argument in [GW] 
shows that its gradient VG is also integrable over D (as D is a bounded domain). 
Thus, for each fixed i and k we are able to apply Green's theorem to get that 

f ~ ~ G(X)d~,u, (X) <= f ~: ~o.(X)G(X)Au, (X)dX 

= fB: A (9, (X) G(X)) ui(X) dX + {zero boundary terms} 

-~ ]fn?, AtPk(X) G(X)u, (X) dX + f B: IA~Ok(X)I G(X) u,(X) dX 

+ 2 fB  . lV~ok(X)[ [VG(X)[ u, (X) dX 

~-- tpk(O)u,(O)+-~:f G ( X ) d x + C l f  lVG(X)IdX 
r k o r k ~ D  

C2 + C1 
~_2+r--- ~- - t - = c o ,  

Unlike the last lemma, we cannot simply take the limit as i-~ 0% since G(X) 
might not be a bounded continuous function on Bk. This difficulty can be over- 
come as follows. For  each positive integer m, we let 

Gm(X ) = ~b,,,(X) min {m, G(X)}, XED. 

where q~,, is a function in ~0(R") such that 0<= ~b,,<= 1, ~b,, = 1 on the ball concentric 
with B k but  having the radius of  (1 - l/m) times the radius of  B k, and q~,. = 0  out- 
side B k. Then, G,.~rgo(D) and 

f Gm(X)dm,(X) = < f G(X)d.,,,(X) <= co 
D B k 

for  every m. As #u, converges to Pu vaguely on D, we have 

f (X) d.(X) f (X) d.(X)<C0. G,,, ,, = lim Gm ., = 
D i ~  D 

Since the sequence {Gin} of  positive continuous functions on D is increasing to G 
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on Bk, by the monotone convergence theorem we have 

, ,,f-kG(X) dlt.(X) = m-=lim f o Gm(X ) dlt,(X) ~_ Co. 

(In fact, a much stronger result is true, for details see [HI, p. 114.) 
Finally, summing over kCJ, we obtain that 

f <- NCo = C. ,no G(X)dlI,(X) <= ~ k ~  B~ 

This proves the claim. 
Now, we choose the number r to be such that 0 < 1 0 r < m i n  {r0, fi(O)}. We 

can then cover the set D \ D ,  by finitely many balls {Bi: 1 ~_j_~ N} of  the form 
Bj=B(Qj,  2r) with Qj~D.  Therefore, it follows from (2.2) and (2.10) that 

v~ (D) = f G(X) dp,(X) 

" L <: ~j=1 v,(Bj) + G(X) d~t,(X) 
u O D  r 

N <"% ,~j= 1 co (Bj c~ OD) + 1 s 1. 

This completes the proof of the lemma. 

3. Some results about BMO functions on OD 

In order to prove the Theorem, we need to use BMO functions on OD. This 
section is devoted to generalizing some well-known results of BMO functions on 
R" to special types of  spaces of homogeneous type (OD, d, o~), where D is the NTA 
domain we are working with, d is the Euclidean distance in R", and o~ is the har- 
monic measure of D "evaluated at a fixed point OED. (The argument will work 
for the general case.) For the definition of  spaces of  homogeneous type we refer 
to [JK] or [ST]. In this section, by a constant C depending on D we mean that the 
constant C depends on the triple (OD, d, ~o). 

The following covering lemma of Vitali-type is not difficult to prove on its 
own, but we refer to [ST] for a proof in the general setting of  spaces of  homogen- 
ous type. 

Lemma A. There exists a positive constant N, depending only on D, such that 
if  ~---{A (Q, r)} is a family of sulface balls of ~D (with bounded radii} then there 
is a pairwise disjoint, countable subfamily {A (Qj, rj)} of ~ such that each surface 
ball A (Q, r) in ~ is contained in one of the surface balls A (Q~, Nrj). 
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By using the last lemma, a welt-known argument shows that the Hardy--Little- 
wood maximal function with respect to co for fELl(to), 

1 
= sup M~,f(a) eE,t to(d) f a If(e)l  dto(P), QEOD, 

is weak-Li(to). 
We next recall some more notation. For fELl(to), let 

= i n f e r  I f ( Q ) -  a] dto(Q), Ilfll,  sup 1 
,~R to(d) ./~, 

where A is a surface ball of OD, and set 

ItfllnMo = ItfllLl(,o) + [If l l , -  

The John--Nirenberg class of functions on OD is defined by 

BMO (to) = {fELl(to): Ilftl~Mo < oo}. 

It is easy to see that if fE BMO (to), then 

(3.1) 

where 

Ilftl, ~ sup I f ( Q ) - f ~ l  dto(Q) ~ 2 Ilfll, ,  

1 
A = to(A----T f(Q) dto(Q) 

is the average o f f  over A. 
The most important result we need from the general theory of spaces of ho- 

mogeneous type is the so-called John--Nirenberg inequality, which we state for 
BMO functions on OD. A more general statement and a proof of it can be found 
in [ST]. 

Theorem B. There exist positive constants C and c, which depend only on D, 
such that for every fEBMO (to), ever), surface ball A, and every 2>0,  

(3.2) to({QEA: ] f (Q)- fa [  > 2}) ~ Cto(A)exp (H~,)'-c2 

We note that the John--Nirenberg inequality (3.2) is also valid if the harmonic 
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measure co replaced by a measure aEA~(co), which can easily be seen from tee 
second inequality of (1.4). 

The next proposition is a consequence of the John--Nirenberg inequality. This 
result was observed in the case of half-spaces by Murai and Uchiyama [MU], and 
our proof is on the same line as theirs. 

Proposition 1. Let aEA~(co), then there exist positive constants C and c, in- 
dependent in A~(co), such that if fEBMO (co) with IlfllBMO <- 1, then 

(3.3) a({QEOD: If(Q)l > ~'}) ~ Ce-*ra({QE OD: If(Q)[ > 1}) 

for all y > l .  

Proof. For y > l ,  let F~={QEOD: If(Q)l>y}.  Since l l f l lv .0}~l ,  c o ( G ) ~ { .  
The weak-LX(co) estimate for the Hardy--Littlewood maximal function M~,f o f f  
implies that the set of points of density of Fa, 

ffa={QEFa: lira co(A(Q,r)nF~)- 1} 
,\~o co(A(Q,r)) 

has full co-measure in G, i.e., co(G\ff3)=0. Thus, for each QEff3 we have 

0 < sup {rER: co(A(Q, r )n  F~)> lco(A(Q, r))} <co. 

Let N be the constant in Lemma A. By a stopping time argument, for each 
QEF3, we can choose a number r e>0  so that 

(3.4) co(ztQnG) > 1 -r coOe), 

(3.5) 

where 

co(zte), 

A a =A(Q,  rQ), and A~=A(Q, NrQ). 

Applying Lemma A to the covering {AQ}QEp8 of /V3, there are countably many 
surface balls Aj=AQj, j = l ,  2, . . . ,  in this covering, which are pairwise disjoint, 
such that  Fsc[ , jT= 1 ZI;, where A~.=A~, or in other words, 

(3.6) F 3 = L~j= 1 A j, co-a.e.. 



Square area integral estimates for subharmonic functions in NTA domains 359 

Now, (3.1) and (3.5) give that 

If4:l = ~ L~f(Q)do)(Q)I  

1 
o, (AT)(If~: n,, f(Q) e'~ + L: o o0\,,, I f(O)l eco (Q)) 

17.) f,, If(Q)-f,:l a,o(Q) <- co(A "; 

o~(z~ :~ F3) co (,1'; n (OD\F~)) 
+ Ifa~'l co (Ay) + 3 co(AT) 

_-< 2 Ilfll, + ~" If,~: 1 + 3, 

so that, by using []fl[.~_l, we get [f,~.l_~10. It follows that if y>10  then 

A*" {QEA*: [f(Q)l > y} c {QE a. [ f (a)- fa~[ > y -  10}. 

Hence by (3.6) and the John--Nirenberg inequality (3.2) with the measure trE A** (co), 
we obtain 

a ({QEOD: if(Q)I > y}) <-- ~ = x  tr ({QEA~. : If(Q)I > 7}) 

O" *"  -<- ~'j=x ({QEAj. I f (a)- faTI  > 7 -  10}) 

~- Ce-a'-l~ Z7"=1 tr(A~) 

< = Ce -~  Z7=1 ~ ( ' D  

~- Ce-~' Z*~=I a(Aj n F3) 

<= Ce-*~ a(Fs), 

where we have used the doubling property of a, (3.4) and the fact that {A j} are pair- 
wise disjoint. To finish the proof, we choose a bigger constant C, if necessary, so 
that Ce-SC~_l. 

As an analogue to the balayage of a Carleson measure on a half-space (see [G]), 
the following proposition links BMO functions on OD and Carleson measures 
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on D. We shall use the following notation: For fixed Q, PEOD and XED, let 

lo.p(X) = min { IX-a l ,  IX-e l} ,  

and let ~Q,r be one of the points of a and P such that IX-~ .pI=IQ,  p(X). 

Proposition 2. Let K(X, Q) be a continuous function on D• which sat- 
isfies the following condition: There exist positioe constants C~, C2 and ~ such that 

(3.7) 

and 

ess s u p /  IK(X, Q)I dto(Q) <= C~, 
XED J /}D 

C~ (IQ-PI]" 
(3.8) IK(X, Q)-  K(X, P)I =< to(A(f{e.e, le, e(X)) ) t ~ )  ' 

for all Q, PEOD and XED with IQ,p(X)>IQ-PI. 

Assume that v is a Carleson measure, then the function Kv on OD defined by 

(3.9) Kv(O) = f oK(X, Q) dv(X), QEOD 

is in BMO(0D) with IIKvllsMo<=Cltvllc for some constant C which depends only 
on C1, C2, ~ and D. 

Proof. To see that Kv~Ll(to), we apply Fubini's theorem and condition (3.7) 
to obtain that 

fad IKv(a)l dw(Q) <= f Df .o IK(X, a)l dw(a) dr(X) <~ Ilvllc, 

since e~(OD)= 1. 
Now let A---A(P, r) be a fixed surface ball in 0D, and let Bj=B(P, 2ir) 

and Aj=Bjc~OD, j=0 ,  1, 2, .... Then Fubini's theorem and (3.7) again give that 

f t f  . K(x,  Q)dv(X) dog(Q) Z Y(Ba) Z HYHcO)(A), 

where the doubling property of to has been used. Next, for X~Bj+I\Bj, j ~  1, and 
QEA, the condition (3.8) implies that 

If.,§ Q)-K(x, e))av(x) I do(Q) 

•(Bj+I) Iivllc , , ,  
~< 2,(j_l)to(Al_x) to(A) ~< ~ t o t z l ) .  
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The last inequality is because ok(Aj+a)~< ok(A~_a), which follows from the doubling 
property of co. Summing on j, we obtain that 

1 
f . IKv(a)-a,jl dok(O) <.% Ilvllc, (o(/t) 

where the number aj is given by 

aa = f o\.l K(X, P)dv (X). 

Hence, IIKvll, ~llv[Ic. The conclusion of the proposition follows from the above 
two estimates. 

A glance at the proof shows that condition (3.7) can be replaced by 

(3.10) f [gv(a)l dok(Q) <= Callvllc, 
#o 

for some positive constant Ca. 

4. Proof of the Theorem 

We first notice that the Dahlberg-Jerison-Kenig Comparison Theorem implies 

(4.1) 6 (x)  2-"ok (A (Y, 6 (X))) ~< ~(X) 

for all XED. We shall use this inequality and the doubling property of 09 and a 
over and over again, and so we will feel free to use these facts without mentioning 
them. 

We now put 

0 =  min{2~, ~ 2-----~ }, 

$(X)  = max {0, 1 -IXI}. 

and define the kernel function K on DXOD by 

(4.2) K(X, Q)=O ~ G ( X ) '  XCD, QEOD. 

Clearly, K is a continuous function on D)<OD. Now, for the given subharmonic 
function u, let vu be the measure defined by (1.9). By the Main Lemma, v, is a Carleson 
measure with ][vullc<=C for some constant C independent of u. Let Kv, be the func- 
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tion on OD defined by (3.9), i.e., 

(4.3) 
~ ( ] X - Q  
. .  , 

Q~,SD. 

We now claim that the kernel function K satisfies the conditions (3.10) and 
(3.8), and hence by Proposition2, Kv,EBMO(o~) with IIKvl[B~o<=l[v, Ilc~-C. We 
shall keep the notation used in Proposition 2 and denote 

Fo(X) = {QEOD: X6Fo(Q)}. 

It is easy to see that /~0(X)cA()?, (2+0)6(X)) for XqD. Then, by (4.3) and 
Lemma 2, we have 

f~o Ix~.(Q)lao~(Q) = f~,~(x)~-" f~ ~ ~[ x - Q  )d~o(Q)am(x) t oo(x) J 

6 ( x )  f~o 2-"foDfro(x)(Q)dw(Q)d~"(X) 

z f~6(x)2-.~(a<y,~(x)))+.(x) 

f~G(X)@,,(X) ~ IIv, llc. 

Hence the condition (3.10) holds. 
To check the condition (3.8), let X6D and Q, 

three cases: 
P~OD. We need to consider 

Case L IX-QI>O6(X) and IX-PI>O6(X). In this case we have K(X, Q)= 
K(X, P)=0, so there is nothing to show. 

and 
Case H(a). IX- QI < 06(X) and IX-  PI >05(X). In this case IQ, e(X) = IX- Q[ 
~Q,e=Q. As K(X,P)=O, we have 

IK(X, Q)-K(X, P)I = K(X, Q) = [1 
Ix-QI] 6(x) 2-. 
o6(x) ) G(X) \ 

<<, 1 I X -  PI - I X -  QI 
~o(A()~, 5(X))) IX-QI 

1 IQ-PI 
og(A(Q, [ X - Q I ) ) I X - Q I  ' 
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where we have used the fact that 

A (Q, I X -  QI) c A (A r, (1 +20)6(X)), 

which follows easily from the triangle inequality. 

CaseH(b). IX-QI>O6(X) and ]X-PI<O~5(X). This is similar to the 
last case. 

Case 111. I X -  QI < 06 (X), I X -  P I < 06 (X). By interchanging the roles of Q and 
P, we may assume that Ix -a[<=lX-PI  . In this case, Io, e (X )= lX-QI  and 
~Q,e=Q, and the same reason as in Case II(a) gives that 

t l X - e l  IX-QI  6(x)  ~-" 
IK(X, Q ) - K ( X ,  P)[ = 06(X) ~ 

1 I x - P I - I X - Q I  
z og(A(~, 6(s ) ) )  I X -  QI 

1 IQ-PI 
<~ og(A(Q, [X-QI))  IX-QI  " 

Therefore, condition (3.8) has been verified, and thus 
We next observe that, if X~D then 

-~ 1 - v  =ra in  , ~ 

and 

X - Q  <=1 for Q~OD. 

We deduce from this and (4.3) that 

0 
S,u(Q) <= O------~-Kv.(Q) for Q(E. ,  

and 

Kvu(Q) ~_ S,~u(Q) for Q~c~D. 

the claim is proved. 
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Thus,  by  P ropos i t ion  l ,  for  aCA~(to), 

a({Q6OD: S ,u(Q)  > r, Nau(Q) <: 1}) 

= r  S, tt(Q) > ~,}) 

< K v . ( Q )  > 

<= Ce-~ra({Q~OD: Kv.(Q) > 1}) 

~_ Ce-Cra({Q6OD: S 2 , u ( Q ) >  I}). 

This  concludes  the  p r o o f  o f  the  theorem.  
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