The Milnor fiber of a generic arrangement

Peter Orlik and Richard Randell
In memoriam Deane Montgomery

1.Introduction

Let $f=f\left(z_{1}, \ldots, z_{l}\right)$ be a homogeneous polynomial of degree $n \geq 2$ in l complex variables. The Milnor fibration [6] of f is usually defined in a neighborhood of the origin. Since f is homogeneous there is a global fibration

$$
f: \mathbf{C}^{l} \backslash f^{-1}(0) \rightarrow \mathbf{C} \backslash\{0\}
$$

and $F=f^{-1}(1)$ is the Milnor fiber of the map f. Let $\xi=\exp (2 \pi i / n)$. Let $h^{*}: H^{*}(F)$ $\rightarrow H^{*}(F)$ be the monodromy induced by $h\left(z_{1}, \ldots, z_{l}\right)=\left(\xi z_{1}, \ldots, \xi z_{l}\right)$. Consider all homology and cohomology with complex coefficients and let $b_{k}=\operatorname{dim} H^{k}(F)$ be the k-th Betti number of F. Since F is a Stein space of dimension ($l-1$) we have $H^{k}(F)=0$ for $k \geq l$.

If f has an isolated singularity it is known from Milnor's work that $b_{k}(F)=0$ for $1 \leq k \leq l-2$ and that $b_{l-1}(F)=(n-1)^{l}$. The characteristic polynomial of the automorphism induced by the monodromy on $H^{l-1}(F)$ was computed in [7]. In [9] we gave an explicit basis of differential forms for the nonvanishing group $H^{l-1}(F)$. The classes are all represented as restrictions to F of differential forms $q \omega$ where q is a homogeneous polynomial and

$$
\omega=\sum_{k=1}^{l}(-1)^{k-1} z_{k} d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{l}
$$

If the singularity of f is not isolated very little is known about the cohomology of F. Special cases have been studied by Dimca [3], Esnault [4], Randell [10], Siersma [11], and others. In this note we consider the case where f is the product of distinct linear forms which define an arrangement. Let V be a vector space of
dimension l over \mathbf{C}. An arrangement in V is a finite set \mathcal{A} of hyperplanes. It is central if all hyperplanes contain the origin and affine otherwise. If $H \in \mathcal{A}$ is a hyperplane, let α_{H} be a polynomial of degree 1 with kernel H. Call

$$
Q=Q(\mathcal{A})=\prod_{H \in \mathcal{A}} \alpha_{H}
$$

a defining polynomial of \mathcal{A}.
If \mathcal{A} is central then $Q(\mathcal{A})$ is homogeneous of degree $n=|\mathcal{A}|$ and for $l \geq 3$ the singularity is not isolated. The hyperplane complement $M=M(\mathcal{A})=V \backslash Q^{-1}(0)$ is the total space of the Milnor fibration with fiber $F=Q^{-1}(1)$. From Brieskorn's work [2] we have a complete description of the cohomology of M in terms of differential forms. This allows us to detect some cohomology in F as follows. Recall the Hopf bundle $p: \mathbf{C}^{l} \backslash\{0\} \rightarrow \mathbf{C} P^{l-1}$ with fiber \mathbf{C}^{*}. Let $B=p(M)$. It is easy to see that the restriction $p_{M}: M \rightarrow B$ is trivial. Moreover B is the complement of an affine arrangement in \mathbf{C}^{l-1} and therefore a Stein space of dimension ($l-1$). Thus $H^{k}(B)=0$ for $k \geq l$. The Betti numbers of B may be computed in terms of the intersection lattice of \mathcal{A}, see [8]. In fact there is a complete description of $H^{*}(B)$ in terms of differential forms. The monodromy map h generates a cyclic group G of order $n=|\mathcal{A}|$. The restriction of the Hopf bundle $p_{F}: F \rightarrow B$ is the orbit map of the free action of G. These fibrations fit into a commutative diagram.

$$
\begin{array}{ccccc}
& F & \rightarrow & F / G \\
& & \downarrow & & \downarrow \\
\mathbf{C}^{*} & \rightarrow & M & \rightarrow & B \\
\downarrow & & \downarrow & & \\
\mathbf{C}^{*} / G & = & \mathbf{C}^{*} & &
\end{array}
$$

Since we use cohomology with complex coefficients we get $\left[H^{k}(F)\right]^{G}=H^{k}(B)$. This describes the 1 -eigenspace of the monodromy. The eigenspaces of the other n-th roots of unity are harder to detect in general, but we get lower bounds:

$$
\begin{equation*}
b_{k}(F) \geq b_{k}(B) \tag{1}
\end{equation*}
$$

Definition 1.1. A central l-arrangement with n hyperplanes is called generic and denoted \mathcal{G}_{n}^{l}, if $n>l$ and the intersection of every subset of l distinct hyperplanes is the origin.

In this note we compute the cohomology groups of the Milnor fiber and the characteristic polynomial of the monodromy for a generic arrangement. We also find a basis of Kähler differentials for $H^{k}(F)$ provided $0 \leq k \leq l-2$. We close with the
description of a space of Kähler ($l-1$)-forms which we conjecture to be isomorphic to $H^{l-1}(F)$.

We would like to thank Norbert A'Campo and Louis Solomon for several helpful discussions.

2. The cohomology of F

Definition 2.1. An affine l-arrangement with n hyperplanes is called a general position arrangement and denoted \mathcal{B}_{n}^{l}, if $n>l$, the intersection of every subset of l distinct hyperplanes is a point, and the intersection of every subset of $l+1$ distinct hyperplanes is empty.

Proposition 2.2. Let \mathcal{G}_{n}^{l} be a generic arrangement. Let $M=M\left(\mathcal{G}_{n}^{l}\right)$ and let $p_{M}: M \rightarrow B$ be the restriction of the Hopf bundle. Then B is the complement of a general position arrangement, $B=M\left(\mathcal{B}_{n-1}^{l-1}\right)$.

Proof. Fix $H_{0} \in \mathcal{G}_{n}^{l}$ and choose coordinates so that $H_{0}=\operatorname{ker}\left(z_{l}\right)$. Let $Q=Q\left(\mathcal{G}_{n}^{l}\right)$. A defining polynomial for \mathcal{B}_{n-1}^{l-1} is obtained by setting $z_{l}=1$ in Q.

Hattori [5] obtained a complete description of the homotopy type of B. Let $J=\{1, \ldots, n-1\}$. If $I \subset J$ let $|I|$ denote its cardinality. Define the subtorus T_{I} of T^{n-1} by

$$
T_{I}=\left\{z_{1}, \ldots, z_{n-1} \in T^{n-1} \mid z_{j}=1 \text { for } j \notin I\right\}
$$

Theorem 2.3. Let \mathcal{B}_{n-1}^{l-1} be a general position arrangement with $l \geq 3$ and let $B=M\left(\mathcal{B}_{n-1}^{l-1}\right)$. Then B has the homotopy type of

$$
B_{0}=\bigcup_{|I|=l-1} T_{I} .
$$

Corollary 2.4. Let \mathcal{B}_{n-1}^{l-1} be a general position arrangement with $l \geq 3$ and let $B=M\left(\mathcal{B}_{n-1}^{l-1}\right)$. Then
(i) $\pi_{1}(B)$ is free abelian of rank $n-1$,
(ii) $\pi_{k}(B)=0$ for $2 \leq k \leq l-2$,
(iii) for $0 \leq k \leq l-1$

$$
b_{k}(B)=\binom{n-1}{k}
$$

(iv) the Euler characteristic of B is

$$
\chi(B)=(-1)^{l-1}\binom{n-2}{l-1}
$$

Proof. We think of T^{n-1} as the ($n-1$)-dimensional hypercube with opposite faces identified. Then B_{0} is obtained from T^{n-1} by removing cells in dimensions $n-1, n-2, \ldots, l$ corresponding to the interior of the cube, and to pairs of faces of the cube. Thus B_{0} has the same ($l-1$)-skeleton as T^{n-1}. The boundaries of the removed l-cells give rise to nonvanishing homotopy classes but they are nullhomologous. This proves parts (i), (ii), and (iii). Part (iv) follows from Lemma 2.5 below.

Lemma 2.5. For $m>k$ we have

$$
\binom{m-1}{k}=\binom{m}{k}-\binom{m}{k-1}+\ldots+(-1)^{k}\binom{m}{0}
$$

Proof. We use induction on k. The formula holds for $k=1$, and if we assume it for $k-1$ then it follows for k from the formula

$$
\binom{m}{k}=\binom{m-1}{k}+\binom{m-1}{k-1}
$$

Theorem 2.6. Assume that $l \geq 3$. Let \mathcal{G}_{n}^{l} be a generic arrangement with total space $M=M\left(\mathcal{G}_{n}^{l}\right)$. Let $p_{M}: M \rightarrow B$ be the restriction of the Hopf bundle. Let $Q: M \rightarrow \mathbf{C}^{*}$ be the Milnor fibration and let F be the associated Milnor fiber. Let $\xi=\exp (2 \pi i / n)$. Let $h^{*}: H^{*}(F) \rightarrow H^{*}(F)$ be the monodromy induced by $h\left(z_{1}, \ldots, z_{l}\right)=$ $\left(\xi z_{1}, \ldots, \xi z_{l}\right)$. Let $u=\binom{n-2}{l-2}$ and let $v=\binom{n-2}{l-1}$. Then
(i) $\pi_{1}(F)$ is a free abelian group of rank $(n-1)$,
(ii) $b_{k}(F)=b_{k}(B)$ for $0 \leq k \leq l-2$ and hence the monodromy is trivial in this range,
(iii) $b_{l-1}(F)=u+n v$,
(iv) the characteristic polynomial of the monodromy on $H^{l-1}(F)$ is

$$
\Delta_{l-1}(t)=(1-t)^{u}\left(1-t^{n}\right)^{v}
$$

Proof. If we think of the universal cover of T^{n-1} as \mathbf{R}^{n-1} subdivided into hypercubes by the integer lattice, then the universal cover of B is a giant "Swiss cheese" since in each hypercube the same cells are removed as the cells removed to get B_{0}. Since the restriction of the Hopf map $p_{F}: F \rightarrow B$ is an n-fold covering, F has the homotopy type of the union of n such hypercubes with the appropriate identifications. This proves (i) and (ii). Part (iii) follows from (ii) together with the formula for the Euler characteristic of a covering $\chi(F)=n \chi(B)$, and the calculation of $\chi(B)$ in 2.4(iv).

To prove (iv) we use Milnor's work [6, pp. 76-77]. The Weil ζ function of the mapping h can be expressed as a product

$$
\zeta(t)=\prod_{d \mid n}\left(1-t^{d}\right)^{-r_{d}}
$$

where the exponents $-r_{d}$ can be computed from the formula

$$
\chi_{j}=\sum_{d \mid j} d r_{d}
$$

Here χ_{j} is the Lefschetz number of the mapping h^{j}, the j-fold iterate of h. Milnor showed that χ_{j} is the Euler characteristic of the fixed point manifold of h^{j}. Since h^{j} has no fixed points for $1 \leq j<n$ and $\chi(F)=n \chi(B)$ we conclude that

$$
\begin{equation*}
\zeta(t)=\left(1-t^{n}\right)^{-\chi(B)} . \tag{2}
\end{equation*}
$$

The zeta function can be expressed as an alternating product of polynomials

$$
\begin{equation*}
\zeta(t)=\Delta_{0}(t)^{-1} \Delta_{1}(t) \Delta_{2}(t)^{-1} \ldots \Delta_{l-1}(t)^{ \pm 1} \tag{3}
\end{equation*}
$$

where $\Delta_{k}(t)$ is the characteristic polynomial of the monodromy on $H^{k}(F)$. Part (iv) now follows from (2), (3), and the fact that $\Delta_{k}(t)=(1-t)^{b_{k}(F)}$ for $0 \leq k \leq l-2$, which is a consequence of (ii).

Remark 2.7. If $l=2$ then $\pi_{1}(F)$ is free of rank $(n-1)^{2}$. Conclusions (ii)-(iv) of the theorem are valid.

A central 2-arrangement is always generic. In this case Q has an isolated singularity at the origin. Thus $b_{0}(F)=1$ and $b_{1}(F)=(n-1)^{2}$. In fact F has the homotopy type of a wedge of $(n-1)^{2}$ circles. In this case B is the complex line with $(n-1)$ points removed. Thus $b_{0}(B)=1$ and $b_{1}(B)=n-1$. This agrees with assertions (ii) and (iii). The characteristic polynomial of the monodromy on $H^{1}(F)$ may be computed using the divisor formula in [7]:

$$
\delta(h)=\left(n E_{n}-1\right)^{2}=n(n-2) E_{n}+1=(n-2) \Lambda_{n}+1
$$

Thus $\Delta_{1}(t)=(1-t)\left(1-t^{n}\right)^{n-2}$, which agrees with (iv).
Remark 2.8. It is shown in [1] that the complexification of the D_{3} arrangement has $b_{1}(F)=7$, while $b_{1}(B)=5$. Thus Theorem 2.6 does not hold in general.

It follows from Milnor's fibration theorem that F is the interior of a closed manifold with boundary. Let F^{c} denote this closed manifold and let ∂F^{c} be its
boundary, a smooth closed orientable ($2 l-3$)-manifold. Sard's theorem implies that there exists a closed ball $B^{2 l}$ centered at the origin whose boundary $S^{2 l-1}$ intersects F transversely. Then $F^{c}=F \cap B^{2 l}$ and $\partial F^{c}=F \cap S^{2 l-1}$. Since the singularity of $Q^{-1}(0)$ is not isolated, the compact set $K=Q^{-1}(0) \cap S^{2 l-1}$ is not a manifold. The degeneration map $\partial F^{c} \rightarrow K$ is a resolution of the singularities of K. Since the monodromy h leaves $S^{2 l-1}$ invariant, there is an induced monodromy $h: \partial F^{c} \rightarrow \partial F^{c}$. Norbert A'Campo has informed us that he can prove the following.

Theorem 2.9. The induced monodromy $h: \partial F^{c} \rightarrow \partial F^{c}$ acts trivially on $H^{*}\left(\partial F^{c}\right)$.

Kähler differentials

We define Kähler differentials as in [9]. Let $S=K\left[z_{1}, \ldots, z_{l}\right]$ be the polynomial ring over the field K with its usual grading, so $\operatorname{deg} z_{j}=1$ for all j. Let S_{r} be the homogeneous component of degree r. Write $(\Omega, d)=\left(\Omega_{S}, d\right)$ for the cochain complex of Kähler differential forms on S.

Definition 3.1. For $0 \leq p \leq l$ and $J=\left(j_{1}, \ldots, j_{p}\right)$ let $\sigma_{J}=d z_{j_{1}} \ldots d z_{j_{p}}$ and let

$$
\omega_{J}=\sum_{k=1}^{p}(-1)^{k-1} z_{j_{k}} d z_{j_{1}} \wedge \ldots \wedge \widehat{d z_{j_{k}}} \wedge \ldots \wedge d z_{j_{p}}
$$

The symbol ω_{J} is skew symmetric in its indices. Since Ω^{p} is a free S-module with basis consisting of the elements σ_{J} with $|J|=p$ and $j_{1}<\ldots<j_{p}$, and the symbol σ_{J} is also skew symmetric in its indices, we may define an S-linear map $\delta: \Omega^{p} \rightarrow \Omega^{p-1}$ for $p \geq 1$ by $\delta\left(\sigma_{J}\right)=\omega_{J}$. For $p=0$ let $\delta=0$. Computation shows that $\delta^{2}=0$. In fact the complex (Ω, δ) is the Koszul complex based on z_{1}, \ldots, z_{l}. The next result is the Poincaré lemma in our setting. For a proof see [9, Lemma 4.5].

Lemma 3.2. Let $a \in S_{r}$ and let $J=\left(j_{1}, \ldots, j_{p}\right)$. Then

$$
\begin{align*}
\delta d\left(a \sigma_{J}\right) & =r a \sigma_{J}-d a \wedge \omega_{J} \tag{1}\\
d \delta\left(a \sigma_{J}\right) & =p a \sigma_{J}+d a \wedge \omega_{J} \tag{2}\\
(d \delta+\delta d) a \sigma_{J} & =(p+r) a \sigma_{J} . \tag{3}
\end{align*}
$$

Now assume that \mathcal{A} is any arrangement over $K=\mathbf{C}$. According to Brieskorn [2] the cohomology of M is represented by rational forms.

Theorem 3.3. Let \mathcal{A} be an arrangement. For $H \in \mathcal{A}$ let $\eta_{H}=d \alpha_{H} / \alpha_{H}$. Then $H^{*}(M)$ is isomorphic to the \mathbf{C}-algebra $R(\mathcal{A})$ generated by 1 and the 1 -forms η_{H} for $H \in \mathcal{A}$.

If \mathcal{A} is a central arrangement then the α_{H} are linear forms. Define an operator $\partial: R \rightarrow R$ by $\partial 1=0, \partial \eta_{H}=1$ and for $p \geq 2$

$$
\partial \eta_{1} \ldots \eta_{p}=\sum_{i=1}^{p}(-1)^{i-1} \eta_{1} \ldots \eta_{i-1} \widehat{\eta_{i}} \eta_{i+1} \ldots \eta_{p}
$$

It is clear that $\partial \partial=0$ and it is known that (R, ∂) is an acyclic complex, see [8]. Let $R_{0}=\operatorname{ker} \partial$. Since ∂ is a derivation, it follows that R_{0} is a subalgebra. Given $H_{0} \in \mathcal{A}$ write $\eta_{0}=\eta_{H_{0}}$. We have $R=R_{0} \oplus \eta_{0} R_{0}$. Denote by A_{0} the subalgebra generated by 1 and η_{0}. Then $R=R_{0} \otimes A_{0}$. We obtain from (2.2):

Proposition 3.4. Let \mathcal{A} be a central arrangement and let $p_{M}: M \rightarrow B$ be the restriction of the Hopf bundle. Then $p_{M}^{*}: H^{*}(B) \rightarrow H^{*}(M)$ is injective and we may identify $p_{M}^{*}\left(H^{*}(B)\right)$ with R_{0}.

Proposition 3.5. Let \mathcal{A} be a central arrangement and let $p_{F}: F \rightarrow B$ be the restriction of the Hopf bundle. We may identify $p_{F}^{*}\left(H^{*}(B)\right)$ with $Q R_{0}=\left\{Q \varrho \mid \varrho \in R_{0}\right\}$.

If \mathcal{G}_{n}^{l} is a generic arrangement then Proposition 3.5 and Theorem 2.6 provide Kähler differential form representatives for all cohomology except $H^{l-1}(F)$. In the rest of this section we discuss the problem of finding Kähler form representatives for $H^{l-1}(F)$. Let $T=S /(Q-1) S$ be the coordinate ring of F. Let $\pi^{0}: S \rightarrow T$ be the natural projection, and let $\pi: \Omega_{S} \rightarrow \Omega_{T}$ be the induced map. In the top dimension we use special notation.

Definition 3.6. Let

$$
\begin{gathered}
\tau=\sigma_{1, \ldots, l}=d z_{1} \wedge \ldots \wedge d z_{l} \\
\tau_{j}=(-1)^{j-1} \sigma_{1, \ldots, \hat{\jmath}, \ldots, l}=(-1)^{j-1} d z_{1} \wedge \ldots \wedge \widehat{d z_{j}} \wedge \ldots \wedge d z_{l}, \\
\omega=\delta(\tau)=\omega_{1, \ldots, l}=\sum_{k=1}^{l}(-1)^{k-1} z_{k} d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{l},
\end{gathered}
$$

and $\omega_{j}=\delta\left(\tau_{j}\right)$. Note that $d z_{j} \wedge \tau_{j}=\tau$. Also $d \omega=l \tau$ and $d \omega_{j}=(l-1) \tau_{j}$.
Definition 3.7. If $\alpha, \alpha^{\prime} \in \Omega$ write $\alpha \equiv \alpha^{\prime}$ if $\pi \alpha=\pi \alpha^{\prime}$. If $\beta \in \Omega_{T}$ is a cocycle, let $[\beta]$ denote its cohomology class in $H^{*}\left(\Omega_{T}\right)$. If $\alpha, \alpha^{\prime} \in \Omega$ are cocycles, write $\alpha \sim \alpha^{\prime}$ if $[\pi(\alpha)]=\left[\pi\left(\alpha^{\prime}\right)\right]$.

In the next result we establish certain inhomogeneous relations in Ω_{T}.

Lemma 3.8. Let $a \in S_{r}$, Then

$$
\begin{align*}
n \tau_{k} & \equiv \frac{\partial Q}{\partial z_{k}} \omega, \tag{4}\\
n d\left(\delta a \tau_{k}\right) & \equiv\left[(n+r-1) a \frac{\partial Q}{\partial z_{k}}-n \frac{\partial a}{\partial z_{k}}\right] \omega, \\
(n+r-1) a \frac{\partial Q}{\partial z_{k}} \omega & \sim n \frac{\partial a}{\partial z_{k}} \omega .
\end{align*}
$$

Proof. For $J=\left(j_{1}, \ldots, j_{p}\right)$, define $(j, J)=\left(j, j_{1}, \ldots, j_{p}\right)$. From (3.2.1) we get for an arbitrary index set J

$$
r a \sigma_{J}-d a \wedge \omega_{J}=\sum_{j=1}^{l} \frac{\partial a}{\partial z_{j}} \omega_{(j, J)}
$$

To prove (4) let $a=Q$ so $r=n, J=(1, \ldots, \hat{k}, \ldots, l)$ and note that $Q \equiv 1$ and $d Q \equiv 0$. From (3.2) and the equation above we get for an arbitrary index set J with $|J|=p$

$$
d \delta\left(a \sigma_{J}\right)=(p+r) a \sigma_{J}-\sum_{j=1}^{l} \frac{\partial a}{\partial z_{j}} \omega_{(j, J)} .
$$

Now choose J as above, multiply the last equation by n and substitute (4) to obtain (5). The inhomogeneous relation (6) follows from (5).

Proposition 3.9. Every cohomology class of $H^{l-1}\left(\Omega_{T}\right)$ has the form $[\pi(p \omega)]$ where $p \in S$.

Proof. Since $\tau_{1}, \ldots, \tau_{l}$ generate Ω^{l-1} as S-module, it follows that their images under π generate Ω_{T}^{l-1} as T-module. The assertion follows from (3.8).

If f has an isolated singularity then the Jacobi ideal I generated by the partials of f has finite codimension in S. In [9] we showed that there is a homogeneous subspace H with $S=H \oplus I$ such that every cohomology class of $H^{l-1}(F)$ has the form $[\pi(h \omega)]$ with $h \in H$.

If the singularity of f is not isolated then the Jacobi ideal has infinite codimension. In the case of a generic arrangement we have an explicit conjecture for a finite dimensional subspace which carries the cohomology. First we need some notation. Let \mathcal{G}_{n}^{l} be a generic arrangement. Let $\mathcal{M} \subset \mathcal{G}_{n}^{l}$ be a subarrangement with $|\mathcal{M}|=l-1$. Write $\mathcal{M}=\left\{H_{1}, \ldots, H_{l-1}\right\}$. Then $Q(\mathcal{M})=\alpha_{H_{1}} \ldots \alpha_{H_{l-1}}$. Define $Q^{\mathcal{M}}=Q\left(\mathcal{G}_{n}^{l}\right) / Q(\mathcal{M})$. Given $s \in S$ let $J_{\mathcal{M}}(s)$ be the determinant of the Jacobian matrix of $\left(s, \alpha_{1}, \ldots, \alpha_{l-1}\right)$. The next result proves the existence of certain homogeneous relations in Ω_{T}.

Lemma 3.10. For every $a \in S_{r}$ and $\mathcal{M} \subset \mathcal{G}_{n}^{l}$ with $|\mathcal{M}|=l-1$ we have

$$
r a J_{\mathcal{M}}\left(Q^{\mathcal{M}}\right) \omega \sim n Q^{\mathcal{M}} J_{\mathcal{M}}(a) \omega
$$

Proof. We may choose coordinates so that $Q(\mathcal{M})=z_{2} \ldots z_{l}$. Then $J_{\mathcal{M}}(s)=$ $\partial s / \partial z_{1}$. In the notation of (3.6):

$$
d\left(a Q^{\mathcal{M}} \omega_{1}\right)=Q^{\mathcal{M}} d a \wedge \omega_{1}+a d Q^{\mathcal{M}} \wedge \omega_{1}+a Q^{\mathcal{M}} d \omega_{1}
$$

Direct calculation gives

$$
\begin{aligned}
Q^{\mathcal{M}} d a \wedge \omega_{1} & =Q^{\mathcal{M}}\left[r a \tau_{1}-\frac{\partial a}{\partial z_{1}} \omega\right] \\
a d Q^{\mathcal{M}} \wedge \omega_{1} & =a\left[(n-l+1) Q^{\mathcal{M}} \tau_{1}-\frac{\partial Q^{\mathcal{M}}}{\partial z_{1}} \omega\right] \\
a Q^{\mathcal{M}} d \omega_{1} & =(l-1) a Q^{\mathcal{M}} \tau_{1} .
\end{aligned}
$$

Recall from (3.8) that $n \tau_{1} \equiv\left(\partial Q / \partial z_{1}\right) \omega$. Since $\partial Q / \partial z_{1}=Q(\mathcal{M})\left(\partial Q^{\mathcal{M}} / \partial z_{1}\right)$ we have

$$
n Q^{\mathcal{M}} \tau_{1} \equiv Q^{\mathcal{M}} Q(\mathcal{M}) \frac{\partial Q^{\mathcal{M}}}{\partial z_{1}} \omega \equiv \frac{\partial Q^{\mathcal{M}}}{\partial z_{1}} \omega
$$

It follows that

$$
\begin{aligned}
d\left(n a Q^{\mathcal{M}} \omega_{1}\right) & =n(n+r) a Q^{\mathcal{M}} \tau_{1}-n a \frac{\partial Q^{\mathcal{M}}}{\partial z_{1}} \omega-n Q^{\mathcal{M}} \frac{\partial a}{\partial z_{1}} \omega \\
& \equiv\left[r a \frac{\partial Q^{\mathcal{M}}}{\partial z_{1}}-n Q^{\mathcal{M}} \frac{\partial a}{\partial z_{1}}\right] \omega
\end{aligned}
$$

Lemma 3.11. Define $\phi: \Omega^{l-2} \rightarrow S$ by $d Q \wedge d \varrho=\phi(\varrho) \tau$ for $\varrho \in \Omega^{l-2}$. Define $E=\{e \in S \mid e Q \in \operatorname{im} \phi\}$. For every $a \in S_{r}$ and $\mathcal{M} \subset \mathcal{G}_{n}^{l}$ with $|\mathcal{M}|=l-1$ we have

$$
r a J_{\mathcal{M}}\left(Q^{\mathcal{M}}\right)-n Q^{\mathcal{M}} J_{\mathcal{M}}(a) \in E
$$

Proof. As in (3.10) we may choose coordinates so that $Q(\mathcal{M})=z_{2} \ldots z_{l}$. Since $d Q \wedge \omega=n Q \tau$ we get as in the proof of (3.10)

$$
\begin{aligned}
d Q \wedge d\left(a Q^{\mathcal{M}} \omega_{1}\right) & =d Q \wedge\left[(n+r) a Q^{\mathcal{M}} \tau_{1}-a \frac{\partial Q^{\mathcal{M}}}{\partial z_{1}} \omega-Q^{\mathcal{M}} \frac{\partial a}{\partial z_{1}}\right] \omega \\
& =\left[r a \frac{\partial Q^{\mathcal{M}}}{\partial z_{1}}-n Q^{\mathcal{M}} \frac{\partial a}{\partial z_{1}}\right] Q \tau
\end{aligned}
$$

Conjecture 3.12. Let \mathcal{G}_{n}^{l} be a generic arrangement defined by Q.
(i) There exists a finite dimensional homogeneous subspace $U \subset S$ such that

$$
S \approx E \oplus \mathbf{C}[Q] \otimes U
$$

(ii) $\Omega_{T}^{l-1}=\pi(U \omega) \oplus d_{T} \Omega_{T}^{l-2}$, and the map $U \rightarrow H^{l-1}(F)$ defined by $u \rightarrow[\pi(u \omega)]$ is an isomorphism.
(iii) Let $U_{r}=U \cap S_{r}$, let $u_{r}=\operatorname{dim} U_{r}$, and let $P(U, t)=\sum_{r} u_{r} t^{r}$ be the Poincaré polynomial of U. Then

$$
u_{r}= \begin{cases}\binom{r+l-1}{l-1} & \text { for } 0 \leq r \leq n-l, \\ \binom{n-2}{l-1} & \text { for } n-l+1 \leq r \leq n-1 \\ \binom{n-2}{l-1}-\binom{r-n+l-1}{l-1} & \text { for } n \leq r \leq 2 n-l-2\end{cases}
$$

Example 3.13. Consider \mathcal{G}_{5}^{3} and use coordinates x, y, z. Let $Q=x y z(x+y+z) \times$ $(x+2 y+3 z)$. The cohomology of its Milnor fiber is described as follows.

Label the linear forms $\alpha_{1}, \ldots, \alpha_{5}$. For $i<j$ define 1 -forms in Ω^{1} by

$$
\zeta_{i, j}=Q\left(\frac{d \alpha_{i}}{\alpha_{i}}-\frac{d \alpha_{j}}{\alpha_{j}}\right)
$$

It follows from (3.5) that a C-basis for $H^{1}(F)$ consists of $\pi^{1}\left(\zeta_{i, 5}\right)$ for $i=1,2,3,4$.
In the description of $H^{2}(F)$ note that

$$
\omega=x d y \wedge d z-y d x \wedge d z+z d x \wedge d y
$$

Direct calculation shows that in our case $U_{r}=S_{r}$ for $r=0,1,2$. For $r=3,4$ only homogeneous relations occur, but for $r=5$ the inhomogeneous relation $Q \omega \sim \omega$ is also required. We get

$$
P(U, t)=1+3 t+6 t^{2}+3 t^{3}+3 t^{4}+2 t^{5}
$$

This agrees with (3.12). The monodromy h has order $n=5$. Let $\xi=\exp (2 \pi / 5)$. Recall that the action of h is contragradient in S. Thus $h \omega=\xi^{-3} \omega$ and U_{r} is an eigenspace with eigenvalue ξ^{-r-3}. It follows that the eigenvalues computed from this Poincaré polynomial agree with the characteristic polynomial of the monodromy from (2.6):

$$
\Delta_{2}(t)=(1-t)^{3}\left(1-t^{5}\right)^{3}
$$

See also the preprint "On Milnor fibrations of arrangements" by D. C. Cohen and A. I. Suciu.

References

1. Artal-Bartolo, E., Sur le premier nombre de Betti de la fibre de Milnor du cône sur une courbe projective plane et son rapport avec la position des points singuliers, Preprint.
2. Brieskorn, E., Sur les groupes de tresses, in Séminaire Bourbaki 1971/72, Lecture Notes in Math. 317, pp. 21-44, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
3. Dimca, A., On the Milnor fibrations of weighted homogeneous polynomials, Preprint.
4. Esnault, H., Fibre de Milnor d'un cône sur une courbe plane singulière, Invent. Math. 68 (1982), 477-496.
5. Hattori, A., Topology of \mathbf{C}^{n} minus a finite number of affine hyperplanes in general position, J. Fac. Sci. Tokyo 22 (1975), 205-219.
6. Milnor, J., Singular Points of Complex Hypersurfaces, Princeton Univ. Press, Princeton, N.J., 1968.
7. Milnor, J. and Orlik, P., Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393.
8. Orlik, P., Introduction to Arrangements, CBMS Lecture Notes 72, Amer. Math. Soc., Providence, R.I., 1989.
9. Orlik, P. and Solomon, L., Singularities I: Hypersurfaces with an isolated singularity, Adv. in Math. 27 (1978), 256-272.
10. Randell, R., On the topology of non-isolated singularities, in Proceedings of the Georgia Topology Conference 1977, pp. 445-473, Academic Press, New York, 1979.
11. SiERSMA, D., Singularities with critical locus a 1-dimensional complete intersection and transversal type A_{1}, Topology Appl. 27 (1987), 51-73.

Received October 23, 1991
Peter Orlik
Department of Mathematics
University of Wisconsin
Madison, WI 53706
U.S.A.
email: orlik@math.wisc.edu

Richard Randell
Department of Mathematics
University of Iowa
Iowa City, IA 52242
U.S.A.
email: randell@math.uiowa.edu

