Wavelets and paracommutators

Lizhong Peng(${ }^{1}$)

1. Introduction

Let P denote the collection of all dyadic cubes in $\mathbf{R}^{d}, E=\{0,1\}^{d} \backslash\{0,0\}$ and $\Lambda=P \times E$. The construction of the wavelet bases $\left\{\psi_{\lambda}\right\}_{\lambda \in \Lambda}$ on $L^{2}\left(\mathbf{R}^{d}\right)$ is a celebrated result in mathematical analysis. Y. Meyer [7] and G. David [3] have used the bases $\left\{\psi_{\lambda}\right\}$ to study the boundedness of the Calderón-Zygmund operators, and have successfully simplified the proofs of the " $T 1$ Theorem" and the " $T b$ Theorem". It is well known that operators of the form

$$
T f(x)=\int_{R^{d}} K(x, y) f(y) d y
$$

can be compact; for example $T \in S_{2}$, i.e. T is Hilbert-Schmidt, if and only if $K \in$ $L^{2}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$. In this paper we will study the compactness and the Schatten-von Neumann properties by wavelet bases.

Precisely speaking, we consider the bilinear form $T(f, g)=\langle T(f), g\rangle$ on $\mathcal{D} \times \mathcal{D}$ with the distributional kernel $K(x, y)$. Let $\alpha_{\lambda, \lambda^{\prime}}=T\left(\psi_{\lambda}, \psi_{\lambda^{\prime}}\right)$, for $\lambda, \lambda^{\prime} \in \Lambda$. Then the bilinear form T is determined by the infinite matrix $\left\{\alpha_{\lambda, \lambda^{\prime}}\right\}$. In other words, $\sum_{\lambda} \sum_{\lambda^{\prime}} \alpha_{\lambda, \lambda^{\prime}} \psi_{\lambda} \otimes \psi_{\lambda^{\prime}}$ gives a decomposition for T, called the standard decomposition. We will also consider non-standard decompositions for T. And we will find out the conditions for $T \in S_{p}$ (the Schatten-von Neumann class). Then we will consider an important example: paracommutators, which are defined and studied systematically by Janson and Peetre [5]. Supplementary results are given by Peng [9], [10], and Peng-Qian [11].

In Section 2 we will give some notations and definitions, and in Section 3 we will give some lemmas for the S_{p} estimates. In Section 4 we will revisit the paracommutator, and will give simplified proofs for most results on paracommutators by wavelet basis expansions.

[^0]
2. Preliminaries

2.1. Multidimensional wavelets (see David [3])

Definition 2.1. A multiscale analysis (MSA) of $L^{2}\left(\mathbf{R}^{d}\right)$ is an increasing sequence $V_{j}, j \in \mathbf{Z}$, of closed subspaces of $L^{2}\left(\mathbf{R}^{d}\right)$, with the properties:
(1) $\bigcap_{j \in \mathbf{Z}} V_{j}=\{0\}$ and $\bigcup_{j \in \mathbf{Z}} V_{j}$ is dense;
(2) $f(x) \in V_{j} \Leftrightarrow f(2 x) \in V_{j+1}$;
(3) $f(x) \in V_{0} \Leftrightarrow f(x-k) \in V_{0}$, for each $k \in \mathbf{Z}^{d}$;
(4) There is a function $g \in V_{0}$ such that the sequence of functions $g(x-\underline{k})$, $\underline{k} \in \mathbf{Z}^{d}$, is a Riesz basis of V_{0}.

Definition 2.2. A MSA is " γ-regular" (for some $\gamma \in N$) if one can choose g in Definition 2.1 such that

$$
\left|\partial^{\alpha} g(x)\right| \leq C_{M, \alpha}(1+|x|)^{-M} \quad \text { for all } M,|\alpha| \leq \gamma
$$

Theorem 2.1. Given a MSA of $L^{2}\left(\mathbf{R}^{d}\right)$, of regularity γ, one can find a function $\varphi=\psi^{0}(x)$ and $2^{d}-1$ functions $\psi^{\varepsilon}(x), \quad \varepsilon \in E, \quad$ such that $\left|\partial^{\alpha} \psi^{\varepsilon}(x)\right| \leq$ $C_{M, \alpha}(1+|x|)^{-M}$ for $|\alpha| \leq \gamma$, all $M \geq 0$, and such that if $\psi_{\lambda}(x)=\psi_{Q}^{\varepsilon}(x)=$ $2^{j d / 2} \psi^{\varepsilon}\left(2^{j} x-\underline{k}\right)$, for $\lambda=(Q, \varepsilon) \in \Lambda, \quad Q \in P$ and $Q=\prod_{i=1}^{d}\left[k_{i} 2^{-j},\left(k_{i}+1\right) 2^{-j}\right]$ then $\left\{\varphi_{Q}\right\}_{\text {length }(Q)=2^{-j}}$ is an orthogonal basis of V_{j} and $\left\{\psi_{\lambda}\right\}_{\lambda \in \Lambda}$ is an orthogonal basis of $L^{2}\left(\mathbf{R}^{d}\right)$.

The functions $\left\{\psi^{\varepsilon}\right\}$ are called wavelets and $\left\{\psi_{\lambda}^{\varepsilon}\right\}_{\lambda \in \Lambda}$ is called a wavelet basis. An example of an orthogonal wavelet basis of regularity $\gamma=0$ is the Haar basis. An example of an orthogonal wavelet basis of regularity $\gamma=\infty$ is the Meyer basis $\left\{\psi_{\lambda}\right\}_{\lambda \in \Lambda}$, see David [3]. It is not only an orthogonal basis for $L^{2}\left(\mathbf{R}^{d}\right)$, but also an unconditional basis for many functionspaces, so it is called a universal unconditional basis.

2.2. Frames

Let H be a Hilbert space, $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ is a frame on H if $T\left(\left\{\alpha_{\lambda}\right\}\right)=\sum \alpha_{\lambda} e_{\lambda}$ is a bounded operator from $l^{2}(\Lambda)$ to H and T is onto. If $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ is a frame on H, then for all $x \in H, x=\sum\left\langle L^{-1}(x), e_{\lambda}\right\rangle e_{\lambda}$, where $L(x)=\sum\left\langle x, e_{\lambda}\right\rangle e_{\lambda}$ and $\|x\|^{2} \approx \sum\left|\left\langle x, e_{\lambda}\right\rangle\right|^{2}$.

Let us consider an important example-a so called smooth frame.
Let $\widehat{\varphi} \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ such that $\operatorname{supp} \widehat{\varphi} \subset\left\{\xi:|\xi| \leq \frac{1}{2}\right\},|\widehat{\varphi}(\xi)| \geq C>0$ on $\left\{\xi:|\xi| \leq \frac{1}{4}\right\}$, and $\widehat{\psi}(\xi)=\widehat{\varphi}(\xi)-\widehat{\varphi}(2 \xi)$ such that $\sum_{j=-\infty}^{\infty}\left|\widehat{\psi}\left(\xi / 2^{j}\right)\right|=1$ for $\xi \neq 0$. Now we denote $\Lambda=P$ and $\lambda=Q \in P$. Then $\psi_{\lambda}=\psi_{Q}=\psi_{j, \underline{k}}(x)=2^{j d / 2} \psi\left(2^{j} x-\underline{k}\right)$ form a frame (called a smooth frame) on $L^{2}\left(\mathbf{R}^{d}\right)$ by the Plancherel and Pólya Theorem. And for any
$f \in L^{2}\left(\mathbf{R}^{d}\right)$, we have $f=\sum_{\lambda \in \Lambda}\left\langle f, \psi_{\lambda}\right\rangle \psi_{\lambda}$, see Frazier and Jawerth [4]. We will show that this frame is universal for many function spaces.

2.3. Function spaces and sequence spaces

By the orthogonal wavelet basis in 2.1 or the smooth frame in 2.2 , we can give a realization of the isomorphism between $L^{2}\left(\mathbf{R}^{d}\right)$ and $l^{2}(\Lambda)$.

For the wavelet basis $\left\{\psi_{\lambda}\right\}_{\lambda \in \Lambda}$, where $\Lambda=P \times E$, we denote $|\lambda|=\operatorname{length}(Q)$ for $\lambda=(Q, \varepsilon) \in P \times E$, and we have two kinds of projections P_{j} and Q_{j},

$$
\begin{aligned}
& P_{j}: L^{2}\left(\mathbf{R}^{d}\right) \rightarrow V_{j}, \quad P_{j}(f)=\sum_{|\lambda|>2^{-j}}\left\langle f, \psi_{\lambda}\right\rangle \psi_{\lambda}=\sum_{|\lambda|=2^{-j}}\left\langle f, \varphi_{\lambda}\right\rangle \varphi_{\lambda}, \\
& Q_{j}: L^{2}\left(\mathbf{R}^{d}\right) \rightarrow W_{j}=V_{j+1} \ominus V_{j}, \quad Q_{j}(f)=\sum_{|\lambda|=2^{-j}}\left\langle f, \psi_{\lambda}\right\rangle \psi_{\lambda},
\end{aligned}
$$

and

$$
\begin{gathered}
P_{j} \uparrow 1(j \rightarrow+\infty), \quad P_{j} \downarrow 0(j \rightarrow-\infty), \\
Q_{j}=P_{j+1}-P_{j}, \quad \sum_{-\infty}^{+\infty} Q_{j}=1 .
\end{gathered}
$$

For the smooth frame given in 2.2 , where we denote $\widehat{\varphi}_{j}(\xi)=\widehat{\varphi}\left(2^{-j} \xi\right)$ and $\widehat{\psi}_{j}(\xi)=\widehat{\psi}\left(2^{-j} \xi\right)$, we have also the two kinds of operators P_{j} and Q_{j} :

$$
\begin{aligned}
& \widehat{P_{j} f}(\xi)=\widehat{\varphi}_{j}(\xi) \hat{f}(\xi), \\
& \widehat{Q_{j} f}(\xi)=\widehat{\psi}_{j}(\xi) \hat{f}(\xi),
\end{aligned}
$$

moreover,

$$
\begin{gathered}
P_{j} \uparrow 1(j \rightarrow+\infty), \quad P_{j} \downarrow 0(j \rightarrow-\infty), \\
Q_{j}=P_{j+1}-P_{j}, \quad \sum_{-\infty}^{+\infty} Q_{j}=1 .
\end{gathered}
$$

Now we introduce some sequence spaces:

$$
l^{p}\left(\mathbf{Z}^{d}\right)=\left\{\left(\alpha_{\underline{k}}\right)_{\underline{k} \in \mathbf{Z}^{d}}: \sum_{\underline{k} \in \mathbf{Z}^{d}}\left|\alpha_{\underline{k}}\right|^{p}<+\infty\right\} \quad \text { for } 0<p<\infty
$$

(modification if $p=\infty$).

$$
l^{p}\left(\underline{k}_{1}\right) l^{q}\left(\underline{k}_{2}\right)=\left\{\left(\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right)_{\underline{k}_{1}, \underline{k}_{2} \in \mathbf{Z}^{d}}: \sum_{\underline{k}_{1} \in \mathbf{Z}^{d}}\left[\sum_{\underline{k}_{2} \in \mathbf{Z}^{d}}\left|\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right|^{q}\right]^{p / q}<+\infty\right\}
$$

for $0<p, q<\infty$ (modification if $p=\infty$ or $q=\infty$).
Let $\Lambda=P \times E$ or $\Lambda=P$, we introduce:

$$
l^{p}(\Lambda)=\left\{\left(\alpha_{\lambda}\right)_{\lambda \in \Lambda}: \sum\left|\alpha_{\lambda}\right|^{p}<\infty\right\}
$$

for $0<p<\infty$ (modification if $p=\infty$).

$$
l_{p}^{s q}(\Lambda)=\left\{\left(\alpha_{\lambda}\right)_{\lambda \in \Lambda}: \sum_{j=-\infty}^{\infty} 2^{j s q}\left(\sum_{|\lambda|=2^{j}}\left|\alpha_{\lambda}\right|^{p}\right)^{q / p}<+\infty\right\}
$$

for $s \in R, 0<p, q<\infty$ (modification if $p=\infty$ or $q=\infty$).

$$
\begin{gathered}
l_{p}^{q}(\Lambda)=l_{p}^{0, q}(\Lambda), \quad l^{p}(\Lambda)=l_{p}^{p}(\Lambda) \\
\operatorname{BMO}(\Lambda)=\mathrm{QCM}_{d}=\left\{\left\{\alpha_{\lambda}\right\}_{\lambda \in \Lambda}: \sup _{R} \frac{1}{|R|} \sum_{Q \subset R: \lambda=(Q, \varepsilon) \text { or } Q}\left|\alpha_{\lambda}\right|^{2}|Q|<+\infty\right\}
\end{gathered}
$$

(for QCM_{d}, see Rochberg and Semmes [12]).

$$
l^{p}(\lambda) l^{q}\left(\lambda^{\prime}\right)=\left\{\left(\alpha_{\lambda, \lambda^{\prime}}\right)_{\lambda, \lambda^{\prime} \in \Lambda}: \sum_{\lambda}\left[\sum_{\lambda^{\prime}}\left|\alpha_{\lambda, \lambda^{\prime}}\right|^{q}\right]^{p / q}<\infty\right\}
$$

for $0<p, q<\infty$ (modification if $p=\infty$ or $q=\infty$).
Now let us show that both the Meyer wavelet basis $\left\{\psi_{\lambda}\right\}$ and the smooth frame given in 2.2 are universal unconditional bases for $\operatorname{BMO}\left(\mathbf{R}^{d}\right)$ and Besov spaces $B_{p}^{s, q}\left(\mathbf{R}^{d}\right)$.

First we give two lemmas, which will be used again in Section 4 below, the proof of them can be found in Triebel [15].

Lemma 2.1. Let Ω be a compact subset of \mathbf{R}^{d}. Then for $0<r<p<\infty$, there exist C_{1} and C_{2} such that

$$
\sup _{z \in \mathbf{R}^{d}} \frac{|\nabla \varphi(x-z)|}{1+|z|^{d / r}} \leq C_{1} \sup _{z \in \mathbf{R}^{d}} \frac{|\varphi(x-z)|}{1+|z|^{d / r}} \leq C_{2} M_{r}(\varphi)(x)
$$

holds for all $\varphi \in L_{\Omega}^{p}=\left\{\varphi \in L^{p}: \operatorname{supp} \widehat{\varphi} \subset \Omega\right\}$, where $M_{r}(\varphi)(x)=\left[M|\varphi|^{r}(x)\right]^{1 / r}$, and M is the Hardy-Littlewood maximal operator.

Lemma 2.2. (The Plancherel and Pólya Theorem) Let $0<p<\infty, a>0$. For any $a^{\prime}>a$, there exist C_{1} and C_{2} such that

$$
C_{1}\left(\sum_{\underline{k} \in \mathbf{Z}^{d}}\left|\varphi\left(\underline{k} / a^{\prime}\right)\right|^{p}\right)^{1 / p} \leq\|\varphi\|_{p} \leq C_{2}\left(\sum_{\underline{k} \in \mathbf{Z}^{d}}\left|\varphi\left(\underline{k} / a^{\prime}\right)\right|^{p}\right)^{1 / p}
$$

holds for all $\varphi \in\left\{\varphi \in S^{\prime}: \operatorname{supp} \widehat{\varphi} \subset B(0, a)\right\}$
Let $\left\{\psi_{\lambda}\right\}_{\lambda \in \Lambda}$ denote the Meyer wavelet basis $(\Lambda=P \times E)$ or the smooth frame given in $2.2(\Lambda=P)$, we have

$$
f \in \operatorname{BMO}\left(\mathbf{R}^{d}\right) \quad \text { if and only if } \sup _{R \in P} \frac{1}{|R|} \sum_{\{Q \subset R: \lambda=(Q, \varepsilon) \text { or } Q\}}\left|\left\langle f, \psi_{\lambda}\right\rangle\right||Q|<+\infty,
$$

i.e.

$$
\begin{gathered}
\mathrm{BMO}\left(\mathbf{R}^{d}\right) \longleftrightarrow \operatorname{BMO}(\Lambda), \quad \text { isomorphism. } \\
f \in B_{p}^{s, q}\left(\mathbf{R}^{d}\right) \text { if and only if } \quad\left(\left\langle f, \psi_{\lambda}\right\rangle\right)_{\lambda \in \Lambda} \in l_{p}^{s, q}(\Lambda)
\end{gathered}
$$

i.e.

$$
B_{p}^{s, q}\left(\mathbf{R}^{d}\right) \longleftrightarrow l_{p}^{s, q}(\Lambda) \longleftrightarrow l_{p}^{q}(\Lambda), \quad \text { isomorphisms }
$$

2.4. The Schatten-von Neumann class $\boldsymbol{S}_{\boldsymbol{p}}$

Let T be a bounded operator from one Hilbert space H_{1} to another Hilbert space H_{2}. If \mathcal{K}_{n} denotes the set of the operators of rank $\leq n$, then the singular number $s_{n}=s_{n}(T)$ is defined by

$$
s_{n}=\inf \left\{\left\|T-T_{n}\right\|: T_{n} \in \mathcal{K}_{n}\right\}
$$

If T is a compact operator, then $\left(T^{*} T\right)^{1 / 2}$ has its eigenvalues

$$
s_{0} \geq s_{1} \geq \ldots \geq s_{n} \geq \ldots, s_{n} \rightarrow 0
$$

The Schatten-von Neumann class S_{p} is the set

$$
S_{p}=\left\{T:\left(\sum s_{n}^{p}\right)^{1 / p}<\infty\right\}
$$

We denote the set of all bounded operators by S_{∞}, and denote the set of all compact operators by \mathcal{K}.

For further information on S_{p}, see e.g. McCarthy [6].
2.5. NWO (nearly weakly orthonormal) sequences (Rochberg and Semmes [12])

A nearly weakly orthonormal sequence (NWO) is a function sequence $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ in $L^{2}\left(\mathbf{R}^{d}\right)$ such that if

$$
\sup _{\left|\xi_{Q}-x\right| \leq|\lambda|}\left\{|Q|^{-1 / 2}\left|\left\langle f, e_{\lambda}\right\rangle\right|\right\}=f^{*}(x),
$$

then $\left\|f^{*}\right\|_{2} \leq C\|f\|_{2}$, where $|\lambda|=|Q|^{1 / d}$ for $\lambda=(Q, \varepsilon)$ or Q.
It is easy to see that any $\left\{\varphi_{\lambda}\right\}$ and $\left\{\psi_{\lambda}\right\}$ in Theorem 2.1 are NWO, and so are $\left\{\varphi_{\lambda}\right\}$ and $\left\{\psi_{\lambda}\right\}$ in the smooth frame in 2.2 .

Proposition 2.1. If $A=\sum_{\lambda \in \Lambda} s_{\lambda}\left\langle\cdot, e_{\lambda}\right\rangle f_{\lambda}$, with $\left\{e_{\lambda}\right\},\left\{f_{\lambda}\right\}$ are NWO, then

$$
\begin{gathered}
\|A\| \leq C\left\|\left\{s_{\lambda}\right\}\right\|_{\mathrm{BMO}(\Lambda)} \\
\|A\|_{s_{p}} \leq C_{p}\left(\sum_{\lambda \in \Lambda}\left|s_{\lambda}\right|^{p}\right)^{1 / p} \quad \text { for } 0<p<\infty,
\end{gathered}
$$

and

$$
\left(\sum_{\lambda}\left|<T e_{\lambda}, f_{\lambda}>\right|^{p}\right)^{1 / p} \leq C_{p}\|T\|_{s_{p}} \quad \text { for } 1<p<\infty .
$$

3. Estimates of operators on $L^{2}\left(R^{d}\right)$

First we consider the operators on $l^{2}\left(\mathbf{Z}^{d}\right)$.
Lemma 3.1. If $2 \leq p \leq \infty, 1 / p+1 / p^{\prime}=1$, then

$$
\begin{equation*}
\left(\alpha_{\underline{k}_{1}}, \underline{k}_{2}\right) \in l^{p}\left(\underline{k}_{1}\right) l^{p^{\prime}}\left(\underline{k}_{2}\right) \cap l^{p}\left(\underline{k}_{2}\right) l^{p^{\prime}}\left(\underline{\underline{k}}_{1}\right) \tag{1}
\end{equation*}
$$

implies

$$
\left(\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right) \in S_{p}
$$

$$
\begin{equation*}
\left(\alpha_{\underline{k}_{1}, k_{1}+\underline{k}_{2}}\right) \in l^{p^{\prime}}\left(\underline{k}_{2}\right) l^{p}\left(\underline{k}_{1}\right) \tag{2}
\end{equation*}
$$

implies

$$
\left(\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right) \in S_{p} ;
$$

(3) if $0<p \leq 2$, then

$$
\left(\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right) \in l^{p}\left(\underline{k}_{1}\right) l^{2}\left(\underline{k}_{2}\right) \quad \text { or } \quad l^{p}\left(\underline{k}_{2}\right) l^{2}\left(\underline{k}_{1}\right)
$$

implies

$$
\left(\alpha_{\underline{k}_{1}}, \underline{k}_{2}\right) \in S_{p} .
$$

Proof. (1) is proved by Russo [13].
An easy argument shows that $\left(\alpha_{\underline{k}_{1}, \underline{k}_{1}+\underline{k}_{2}}\right) \in l^{1}\left(\underline{k}_{2}\right) l^{\infty}\left(\underline{k}_{1}\right)$ or $\left(\alpha_{\underline{k}_{1}+\underline{k}_{2}, \underline{k}_{2}}\right) \in$ $l^{1}\left(\underline{k}_{1}\right) l^{\infty}\left(\underline{k}_{2}\right)$ implies that $\left(\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right) \in S_{\infty}$.

If $p=2$, the Hilbert-Schmidt norm shows that

$$
\left\|\left(\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right)\right\|_{S_{2}}^{2}=\sum_{\underline{k}_{1}} \sum_{\underline{k}_{2}}\left|\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right|^{2} .
$$

The interpolation theorems (cf. Bergh and Löfström [1]) show (2).
(3) is the consequence of the fact: $\|T\|_{S_{p}}^{p}=\inf \sum_{\alpha}\left\|T \varphi_{\alpha}\right\|^{p}$ for $0<p \leq 2$ (cf. McCarthy [6]).

Now we consider operators on $L^{2}\left(\mathbf{R}^{d}\right)$.
We start with an operator T from $\mathcal{D}\left(\mathbf{R}^{d}\right)$ to $\mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right)$, where $\mathcal{D}\left(\mathbf{R}^{d}\right)$ is a test function space in \mathbf{R}^{d} containing some family of wavelets or frame which will be specified in a concrete case.

Let $\left\{\psi_{\lambda}\right\}$ be a wavelet basis or the smooth frame in 2.2. Then we can give two decompositions for T (see [2]).
(1) Standard decomposition:

$$
T=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} T_{i j} \quad \text { (molecular decomposition) }
$$

where $T_{i j}=Q_{i} T Q_{j}$, and

$$
T_{i j}=\sum_{|\lambda|=2^{-i}} \sum_{\left|\lambda^{\prime}\right|=2^{-j}} \alpha_{\lambda \lambda^{\prime}} \psi_{\lambda} \otimes \psi_{\lambda^{\prime}} \quad \text { (atomic decomposition) }
$$

where $\alpha_{\lambda \lambda^{\prime}}=\left\langle T \psi_{\lambda}, \psi_{\lambda^{\prime}}\right\rangle$.
(2) Non-standard decomposition

$$
T=T_{1}+T_{2}+T_{3}
$$

where

$$
T_{1}=\sum_{|\lambda|>4\left|\lambda^{\prime}\right|} \beta_{\lambda \lambda^{\prime}} \varphi_{\lambda} \otimes \psi_{\lambda^{\prime}}
$$

$$
\begin{gathered}
T_{2}=\sum_{1 / 4 \leq|\lambda| /\left|\lambda^{\prime}\right| \leq 4} \alpha_{\lambda \lambda^{\prime}} \psi_{\lambda} \otimes \psi_{\lambda^{\prime}} \\
T_{3}=\sum_{\left|\lambda^{\prime}\right| \geq 4|\lambda|} \gamma_{\lambda \lambda^{\prime}} \psi_{\lambda} \otimes \varphi_{\lambda^{\prime}}
\end{gathered}
$$

with $\beta_{\lambda \lambda^{\prime}}=\left\langle T \varphi_{\lambda}, \psi_{\lambda^{\prime}}\right\rangle, \alpha_{\lambda \lambda^{\prime}}=\left\langle T \psi_{\lambda}, \psi_{\lambda^{\prime}}\right\rangle$, and $\gamma_{\lambda \lambda^{\prime}}=\left\langle T \psi_{\lambda}, \varphi_{\lambda^{\prime}}\right\rangle$.
For example, in the proofs of the " $T 1$ Theorem" (cf. Meyer [7]) and the " $T b$ Theorem" (cf. David [3]), the Calderón-Zygmund Operator T has been split into three parts $T=T_{1}+T_{2}+T_{3}$, where T_{1} and T_{3} are paraproducts, for T_{2}, let $\alpha_{\lambda \lambda^{\prime}}=$ $\left\langle T_{2} \psi_{\lambda}, \psi_{\lambda}\right\rangle$. Then $\alpha_{\lambda \lambda^{\prime}}$ satisfies

$$
\begin{equation*}
\left|\alpha_{\lambda \lambda^{\prime}}\right| \leq C(|Q| \wedge|R|)^{\alpha / d}|Q|^{d / 2}|R|^{d / 2}\left(|Q|^{1 / d}+|R|^{1 / d}+\operatorname{dist}(Q, R)\right)^{-d-\alpha} \tag{3.1}
\end{equation*}
$$

and by the Schur lemma, T_{2} is bounded on $L^{2}\left(\mathbf{R}^{d}\right)$.
If $T=T_{b}$ is an operator with a symbol b, let $\widehat{\varphi} \in C_{0}^{\infty}$, supp $\widehat{\varphi} \subset$ $\{\xi: 1-\varepsilon \leq|\xi| \leq 2+\varepsilon\}$, such that $\sum_{l=-\infty}^{\infty} \widehat{\varphi}\left(\xi / 2^{l}\right)=1$ for $\xi \neq 0$. Then $b=\sum_{l=-\infty}^{\infty} b_{l}$ with $b_{l}=b * \varphi_{l}$, thus we have the standard decomposition for T_{b} :

$$
T_{b}=\sum_{l} \sum_{j} \sum_{i} T_{i j}\left(b_{l}\right) \quad \text { (sub-molecular decomposition), }
$$

where $T_{i j}\left(b_{l}\right)=Q_{i} T_{b_{l}} Q_{j}$, and

$$
T_{i j}\left(b_{l}\right)=\sum_{|\lambda|=2^{-j}} \sum_{\left|\lambda^{\prime}\right|=2^{-j}} \alpha_{\lambda \lambda^{\prime}}^{l} \psi_{\lambda} \otimes \psi_{\lambda^{\prime}} \quad \text { (sub-atomic decomposition). }
$$

Similarly we have also the non-standard decomposition for T_{b}. By using the above decompositions, one can estimate the molecules or sub-molecules via atoms or subatoms by Lemma 3.1, then estimate T or T_{b} via molecules or sub-molecules by Lemma 3.2 below.

Lemma 3.2. If $2 \leq p \leq \infty, 1 / p+1 / p^{\prime}=1$, then

$$
\left(\left\|T_{i+j, j}\right\|_{S_{p}}\right) \in l^{p^{\prime}}(i) l^{p}(j)
$$

or

$$
\left(\left\|T_{i, i+j}\right\|_{S_{p}}\right) \in l^{p^{\prime}}(j) l^{p}(i)
$$

implies that $T \in S_{p}$.
If $0<p \leq 2$, then

$$
\left(\left\|T_{i, j}\right\|_{S_{p}}\right) \in l^{p}(i) l^{p}(j)
$$

implies that

$$
T \in S_{p}
$$

These two steps of decompositions have another advantage, i.e. they can be used to get the converse estimates (see Timotin [14]).

Lemma 3.3. For $1 \leq p \leq \infty$, if there exist $i_{0} \in \mathbf{Z}$ and $\left\{S_{i, i+i_{0}}\right\}$ such that $\left\|T_{i, i+i_{0}}\right\|_{S_{p}} \geq C\left\|S_{i, i+i_{0}}\right\|_{S_{p}}$, then

$$
\|T\|_{S_{p}}^{p} \geq \sum_{i}\left\|T_{i, i+i_{0}}\right\|_{S_{p}}^{p} \geq C \sum_{i} \sum_{\underline{k} \in \mathbf{Z}^{d}}\left|\alpha_{i, i+i_{0}}\left(\underline{k}, \underline{k}+\underline{k}_{0}\right)\right|^{p}
$$

where $\alpha_{i, j}\left(\underline{k}_{1}, \underline{k}_{2}\right)=S_{i, j}\left(\psi_{i, \underline{k}_{1}}, \psi_{j, \underline{k}_{2}}\right)$.
To estimate T_{1} and T_{3} in the non-standard decomposition, we need a result on paraproducts. Paraproducts were introduced by Bony. Nowadays there exist hundreds of equivalent definitions. Here we use the following definition:

$$
\pi_{b}(f)=\sum_{|\lambda|>4\left|\lambda^{\prime}\right|}\left\langle b, \psi_{\lambda^{\prime}}\right\rangle\left\langle f, \varphi_{\lambda}\right\rangle \psi_{\lambda^{\prime}}
$$

where $\varphi_{\lambda}, \psi_{\lambda}$ are the functions in the Meyer wavelet basis or the smooth frame.
Notice that both φ_{λ} and ψ_{λ} are NWO, by Proposition 2.1, we have

$$
\left\|\pi_{b}\right\|_{S_{p}} \approx\|b\|_{B_{p}^{d / p, p}\left(\mathbf{R}^{d}\right)} \quad \text { for } 1 \leq p<\infty
$$

and

$$
\left\|\pi_{b}\right\| \approx\|b\|_{\mathrm{BMO}}
$$

Remark. In fact the S_{p}-estimates of paraproducts hold also for $0<p<1$, see Peng [9].

4. Paracommutators

The paracommutator is an operator of the form:

$$
\begin{equation*}
\left(T_{b}^{s t}(A) f\right)^{\wedge}(\xi)=(2 \pi)^{-d} \int_{\mathbf{R}^{d}} \hat{b}(\xi-\eta) A(\xi, \eta)|\xi|^{s}|\eta|^{t} \hat{f}(\eta) d \eta \tag{4.1}
\end{equation*}
$$

It is defined in Janson-Peetre [5].
We adopt the notation of [5] for the norm $\|A(\xi, \eta)\|_{M(U \times V)}$ of the Schur multiplier $A(\xi, \eta) \in M(U \times V)$ and the S_{p}-norm $\|K(\xi, \eta)\|_{S_{p}(U \times V)}$.

As in [5], we let $\Delta_{j}=\left\{\xi: 2^{j} \leq|\xi| \leq 2^{j+1}\right\}$ and $\bar{\Delta}_{j}=\Delta_{j-1} \cup \Delta_{j} \cup \Delta_{j+1}$.
For convenience, we list here some assumptions on $A(\xi, \eta)$, which come from Janson-Peetre [5], Peng [9] and [10].

A0: There exists an $r>1$ such that $A(r \xi, r \eta)=A(\xi, \eta)$.
$\mathrm{A} 1:\|A\|_{M\left(\Delta_{j} \times \Delta_{k}\right)} \leq C$, for all $j, k \in \mathbf{Z}$.

A2: There exist $A_{1}, A_{2} \in M\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ and $\delta>0$ such that

$$
\begin{aligned}
& A(\xi, \eta)=A_{1}(\xi, \eta) \quad \text { for } \quad|\eta|<\delta|\xi| \\
& A(\xi, \eta)=A_{2}(\xi, \eta) \quad \text { for }|\xi|<\delta|\eta|
\end{aligned}
$$

$\mathrm{A} 3(\alpha)$: There exist $\alpha>0$ and $\delta>0$ such that if $B=B\left(\xi_{0}, r\right)$ with $r<\delta\left|\xi_{0}\right|$, then $\|A\|_{M(B \times B)} \leq C\left(r /\left|\xi_{0}\right|\right)^{\alpha}$.

A4: There exist no $\xi \neq 0$ such that $A(\xi+\eta, \eta)=0$ for a.e. η.
A4 $\frac{1}{2}$: For every $\xi_{0} \neq 0$ there exist $\eta_{0} \in \mathbf{R}^{d}$ and $\delta>0$ such that, with $B_{0}=$ $B\left(\xi_{0}+\eta_{0}, \delta\left|\xi_{0}\right|\right)$ and $D_{0}=B\left(\eta_{0}, \delta\left|\xi_{0}\right|\right), A(\xi, \eta)^{-1} \in M\left(B_{0} \times D_{0}\right)$.

A5: For every $\xi_{0} \neq 0$ there exist $\delta>0$ and $\eta_{0} \in \mathbf{R}^{d}$ such that, with $U=$ $\left\{\xi:\left|\xi /|\xi|-\xi_{0} /|\xi|\right|<\delta\right.$ and $\left.|\xi|>\left|\xi_{0}\right|\right\}$ and $V=B\left(\eta_{0}, \delta\left|\eta_{0}\right|\right), A(\xi, \eta)^{-1} \in M(U \times V)$.

A10: For any $0 \neq \theta \in \mathbf{R}^{d}$, there exist a positive $\delta<\frac{1}{2}$ and a subset V_{θ} of \mathbf{R}^{d} such that if N_{r} denote the number of integer points contained in $V_{\theta} \cap B_{r}$, where $B_{r}=B(0, r)$, then

$$
\varlimsup_{r \rightarrow \infty} \frac{N_{r}}{r^{d}}>0
$$

and for every $\underline{n} \in V_{0}$,

$$
\left\|A(\xi+\underline{n}+\theta, \eta+\underline{n})^{-1}\right\|_{M(B \times B)} \leq C|n|^{\alpha}, \quad \text { where } B=B(0, \delta) .
$$

We adopt the notation of Peng [9] for $\Lambda_{p}, 0<p<1$, instead of using M in A1, $\mathrm{A} 3(\alpha)$ and $\mathrm{A} 4 \frac{1}{2}$, we can list the conditions of $\mathrm{A}_{p} 1, \mathrm{~A}_{p} 3(\alpha)$ and $\mathrm{A}_{p} 4 \frac{1}{2}$ by using Λ_{p}.

The paracommutators contain many examples, cf. Janson-Peetre [5] and PengQian [11].

Now let us estimate the S_{p}-norm of a paracommutator by its molecular-atomic structure. Here we use smooth frame expansion.

First we estimate the direct results. We split the operator (4.1) into three parts via the molecules $T_{i j}=Q_{i} T_{b}^{s t} Q_{j}$:

$$
T_{b}^{s t}(A)=T_{1}+T_{2}+T_{3}
$$

where

$$
\begin{aligned}
& T_{1}=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{i-3} T_{i, j}=\sum_{j=-\infty}^{-3} \sum_{i=-\infty}^{\infty} T_{i, i+j} \\
& T_{2}=\sum_{i=-\infty}^{\infty} \sum_{j=i-2}^{i+2} T_{i, j} \\
& T_{3}=\sum_{i=-\infty}^{\infty} \sum_{j=i+3}^{\infty} T_{i, j}=\sum_{i=-\infty}^{-3} \sum_{j=-\infty}^{\infty} T_{i+j, j}
\end{aligned}
$$

To estimate them, we need the following three lemmas.

Lemma 4.1. Suppose that A satisfies A1, A3(α), $\widehat{\varphi} \in C_{0}^{\infty}, \operatorname{supp} \widehat{\varphi} \subset$ $\{\xi: 1-\varepsilon \leq|\xi| \leq 2+\varepsilon\}$ and $\widehat{\varphi}_{l}(\xi)=\widehat{\varphi}\left(\xi / 2^{l-2}\right)$, then for $|i-j| \leq 3$,

$$
\begin{equation*}
\left\|A(\xi, \eta) \widehat{\varphi}_{l}(\xi-\eta)\right\|_{M\left(\Delta_{i} \times \Delta_{j}\right)} \leq C\left(\frac{2^{l}}{2^{i}}\right)^{\alpha} \tag{4.2}
\end{equation*}
$$

Lemma 4.2. Suppose that A satisfies A1, ψ is the function of the smooth frame in $2.2, \widehat{\varphi} \in C_{0}^{\infty}, \widehat{\varphi}(\xi) \equiv 1$ on $\bar{\Delta}_{0}$, and $\widehat{\varphi}_{i}(\xi)=\widehat{\varphi}\left(\xi / 2^{i-2}\right)$. Then for $i>j+3$, $x \in Q_{2^{-i}}^{-\underline{k}_{1}}, x^{\prime} \in Q_{2-i}^{2^{i-j} \underline{k}_{2}-\underline{k}_{1}}$ and $r>0$ small enough,

$$
\begin{equation*}
\left|\left\langle T_{b}^{s t}\left(\psi_{i, \underline{k}_{1}}\right), \psi_{j, \underline{k}_{2}}\right\rangle\right| \leq C 2^{-i d / 2+i s+j t} M_{r}\left(b_{i}\right)(x) M_{r}\left(\psi_{j}\right)\left(x^{\prime}\right) \tag{4.3}
\end{equation*}
$$

where $b_{i}=\varphi_{i} * b, Q_{2^{-i}}^{\underline{k}}$ is the cube with side 2^{-i} and center $2^{-i} \underline{k}$.
Remark. For $j>i+3$, we have the same result.
Lemma 4.3. Suppose that A satisfies A1, A3(α) with $\alpha>0, \psi$ is the function of the smooth frame in $2.2, \widehat{\varphi} \in C_{0}^{\infty}, \operatorname{supp} \widehat{\varphi}(\xi) \subset \bar{\Delta}_{0}$, and $\widehat{\varphi}_{i}(\xi)=\widehat{\varphi}\left(\xi / 2^{i-2}\right)$, then for $|i-j| \leq 3, x \in Q_{2^{-i}}^{-\underline{k}_{1}}, x^{\prime} \in{Q^{2^{-i}}{ }^{2 i-j} \underline{k}_{2}-\underline{k}_{1}}$ and $r>0$ small enough,

$$
\begin{equation*}
\left|\left\langle T_{b_{l}}^{s t}\left(\psi_{i, \underline{k}_{1}}\right), \psi_{j, \underline{k}_{2}}\right\rangle\right| \leq C\left(\frac{2^{l}}{2^{i}}\right)^{\alpha} 2^{-i d / 2+i s+j t} M_{r}\left(b_{l}\right)(x) M_{r}\left(\psi_{j}\right)\left(x^{\prime}\right) \tag{4.4}
\end{equation*}
$$

where $b_{l}=\varphi_{l} * b$.
Proof of Lemma 4.1. By the Fourier transform:

$$
\widehat{\varphi}_{l}(\xi-\eta)=\int \varphi_{l}(x) e^{-i x \xi} e^{i x \eta} d x
$$

so $\left\|\widehat{\varphi}_{l}(\xi-\eta)\right\|_{M\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)} \leq C\|\varphi\|_{1}=C<\infty$.
Let Q_{l}^{n} denote the cube with side 2^{l} and center $2^{l} n$ for $n \in \mathbf{Z}^{d}$, then

$$
\begin{aligned}
\left\|A(\xi, \eta) \widehat{\varphi}_{l}(\xi-\eta)\right\|_{M\left(\Delta_{i} \times \Delta_{j}\right)} & =\left\|A(\xi, \eta) \widehat{\varphi}_{l}(\xi-\eta) \sum_{|n-m| \leq c} \chi_{\Delta_{i} \cap Q_{i}^{n}}(\xi) \chi_{\Delta_{j} \cap Q_{i}^{m}}(\eta)\right\|_{M} \\
& \leq \sum_{|m| \leq c} \sup _{n}\left\|A(\xi, \eta) \widehat{\varphi}_{l}(\xi-\eta)\right\|_{M\left(\Delta_{i} \cap Q_{l}^{n} \times Q_{j} \cap Q_{l}^{n-m}\right)} \\
& \leq C\left(\frac{2^{l}}{2^{i}}\right)^{\alpha}
\end{aligned}
$$

Proof of Lemma 4.2. By Lemma 2.4,

$$
\begin{aligned}
& \left|\left\langle T_{b}^{s t}\left(\psi_{i, \underline{k}_{1}}\right), \psi_{j, \underline{k}_{2}}\right\rangle\right|=\left|\left\langle T_{b_{i}}^{s t}\left(\psi_{i, \underline{k}_{1}}\right), \psi_{j, \underline{k}_{2}}\right\rangle\right| \\
& =\left.\left|\iint \hat{b}_{i}(\xi-\eta) A(\xi, \eta)\right| \xi\right|^{s}|\eta|^{t} \widehat{\psi}_{i, \underline{k}_{1}}(\xi) \widehat{\psi}_{j, \underline{k}_{2}}(\eta) d \xi d \eta \mid \\
& \leq \\
& \leq C 2^{i s} 2^{j t} 2^{-i d / 2}\left|\int \widehat{\psi}_{i}(\xi) \hat{b}_{i,-\underline{k}_{1}} * \widehat{\psi}_{j, 2^{i-j} \underline{k}_{2}-\underline{k}_{1}}(\xi) d \xi\right| \\
& = \\
& =C 2^{i s} 2^{j t} 2^{-i d / 2}\left|\int b_{j}\left(y-\frac{\underline{k}_{1}}{2^{i}}\right) \psi_{j}\left(y+\frac{2^{i-j} \underline{k}_{2}-\underline{k}_{1}}{2^{i}}\right) \psi_{i}(y) d y\right| \\
& \leq \\
& \leq C 2^{i s} 2^{j t} 2^{-i d / 2} \int \frac{\left|b_{i}\left(y-\frac{\underline{k}_{1}}{2^{i}}-x+x\right)\right|}{1+\left|2^{i}\left(y-\frac{\underline{k}_{1}}{2^{i}}-x\right)\right|^{d / r}} \frac{\left|\psi_{j}\left(y+\frac{2^{i-j} \underline{k}_{2}-\underline{k}_{1}}{2^{i}}-x^{\prime}+x^{\prime}\right)\right|}{1+\left|2^{i}\left(y+\frac{2^{i-j} \underline{k}_{2}-\underline{k}_{1}}{2^{i}}-x^{\prime}\right)\right|} \\
& \quad \times\left[1+\left(2^{i}|y|+2\right)^{d / r}\right] \cdot\left[1+\left(2^{i}|y|+2\right)^{d / r}\right]\left|\psi_{j}(y)\right| d y \\
& \leq \\
& \quad C 2^{i s} 2^{j t} 2^{-i d / 2} M_{r}\left(b_{i}\right)(x) M_{r}\left(\psi_{j}\right)\left(x^{\prime}\right)
\end{aligned}
$$

where $\hat{b}_{i,-\underline{k}_{1}}(\xi)=\hat{b}(\xi) \widehat{\varphi}\left(\xi / 2^{i}\right) e^{-i 2 \pi \xi \cdot \underline{k}_{1} / 2^{i+2}}$.
The proof of Lemma 4.3 is similar, we omit it here. Now we deal with T_{1}.
Lemma 4.4. Suppose that A satisfies $\mathrm{A} 1, \mathrm{~A}_{p} 1$ if $0<p<1, t>\max (-d / 2,-d / p)$ and $0<p \leq \infty$, then

$$
\begin{equation*}
\left\|T_{1}\right\|_{S_{p}} \leq C\|b\|_{B_{p}^{s+t+d / p, p}\left(\mathbf{R}^{d}\right)} \tag{4.5}
\end{equation*}
$$

Proof. This is a consequence of Lemma 3.1, Lemma 3.2 and Lemma 4.2. We give the proof only for $2 \leq p \leq \infty$. We choose $r<p$. Integrating over $x \in Q_{2^{-\frac{k}{i}}}$ and $x^{\prime} \in Q_{2^{-i}}^{2^{i-j} \underline{k}_{2}-\underline{k}_{1}}$ in (4.3), we get

$$
\begin{aligned}
& \left|\left\langle T_{b}^{s t}\left(\psi_{i, \underline{k}_{1}}\right), \psi_{j, \underline{k}_{2}}\right\rangle\right| \\
& \quad \leq C 2^{j s+j t} 2^{i d / 2}\left(\int_{Q_{2-i}^{-\underline{k}_{1}}} M_{r}\left(b_{i}\right)(x)^{p} d x\right)^{1 / p}\left(\int_{\left.Q_{2-i}^{2^{i-j}}{\underline{k_{2}-\underline{k}_{1}}} M_{r}\left(\psi_{j}\right)\left(x^{\prime}\right)^{p^{\prime}} d x\right)^{1 / p^{\prime}}} .\right.
\end{aligned}
$$

By the atomic decomposition of $T_{i j}$ and Lemmas 3.1 and 3.2 we have

$$
\begin{aligned}
\left\|T_{i, j}\right\|_{S_{p}} & \leq\left[\sum_{\underline{k}_{2}}\left(\sum_{\underline{k}_{1}}\left|\left\langle T_{b}^{s t}\left(\psi_{i, \underline{k}_{1}}\right), \psi_{j, \underline{k}_{2}+2^{j-i} \underline{k}_{\mathbf{1}}}\right\rangle\right|^{p}\right)^{p^{\prime} / p}\right]^{1 / p^{\prime}} \\
& \leq C 2^{j s+j t} 2^{i d / 2}\left\|b_{j}\right\|_{p}\left\|\psi_{j}\right\|_{p^{\prime}} \\
& \leq C 2^{j s+j t} 2^{j d / p}\left\|b_{i}\right\|_{p}
\end{aligned}
$$

By the molecular decomposition of T_{1} and Lemma 3.2 we have

$$
\begin{aligned}
\left\|T_{1}\right\|_{S_{p}} & \leq\left\{\sum_{j=-\infty}^{-3}\left(\sum_{i=-\infty}^{\infty}\left\|T_{i, i+j}\right\|_{S_{p}}^{p}\right)^{p^{\prime} / p}\right\}^{1 / p^{\prime}} \\
& \leq\left\{\sum_{j=-\infty}^{-3}\left(\sum_{i=-\infty}^{\infty} 2^{i(s+t+d / p) p}\left\|b_{i}\right\|_{p}^{p} 2^{j(t+d / p) p}\right)^{p^{\prime} / p}\right\}^{1 / p^{\prime}} \\
& \leq C\|b\|_{B_{p}^{s+t+q / p, p}\left(\mathbf{R}^{d}\right)} .
\end{aligned}
$$

For T_{3} we have the same estimates.
Now we turn to estimate $\left\|T_{2}\right\|_{2}$.
Lemma 4.5. Suppose that A satisfies A1, A3(α) $\left(\mathrm{A}_{p} 1, \mathrm{~A}_{p} 3(\alpha)\right.$ if $\left.0<p<1\right)$, $s+t+d / p<\alpha$ and $0<p \leq \infty$. Then

$$
\begin{equation*}
\left\|T_{2}\right\| \leq C\|b\|_{B_{p}^{s+t+(d / p), p}\left(\mathbf{R}^{d}\right)} \tag{4.6}
\end{equation*}
$$

Remark. It should be noticed that there is no assumption $\alpha>0$ in Lemma 4.5.
The proof is similar to the one of Lemma 4.4.
For $p=\infty$, the sub-atomic and sub-molecular decomposition of $T_{2}(b)$, Lemmas 3.1, 3.2 and 4.3 give us:

$$
\left\|T_{2}\right\|_{\infty} \leq C\|b\|_{B_{\infty}^{s+t, \infty}\left(\mathbf{R}^{d}\right)}
$$

For $0<p \leq 2$, again the sub-atomic and sub-molecular decomposition of $T_{2}(b)$, Lemmas 3.1, 3.2 and 4.3 give us:

$$
\left\|T_{2}\right\|_{p} \leq C\|b\|_{B_{p}^{s+t+(d / p), p}\left(\mathbf{R}^{d}\right)}
$$

The interpolation theorem gives us (4.6).
Lemmas 4.4 and 4.5 yield the following
Theorem 4.1. Suppose that A satisfies A1 and $\mathrm{A} 3(\alpha)$ with some $\alpha>0$ (or $\mathrm{A}_{p} 1$ and $\mathrm{A}_{p} 3(\alpha)$ if $\left.0<p<1\right)$ and that $s, t>\max (-d / 2,-d / p), s+t+d / p<\alpha$ and $0<p \leq \infty$. Then

$$
\begin{equation*}
\left\|T_{p}^{s t}(A)\right\|_{S_{p}} \leq C\|b\|_{B_{p}^{s+t+(d / p), p}\left(\mathbf{R}^{d}\right)} \tag{4.7}
\end{equation*}
$$

If $p=\infty$ and $s=t=0$, we have
Theorem 4.2. Suppose that A satisfies A1, A2, A3(α). Then

$$
\begin{equation*}
\left\|T_{b}(A)\right\| \leq C\|b\|_{\mathrm{BMO}} \tag{4.8}
\end{equation*}
$$

The proof of Theorem 4.2 can be found in Janson-Peetre [5]. The main idea is the same as in the proofs of the " $T 1$ Theorem" or the " $T b$ Theorem", i.e. by the non-standard decomposition $T_{b}(A)=T_{b}\left(A_{1}\right)+T_{b}\left(A_{2}\right)+T_{b}\left(A_{3}\right)=T_{1}+T_{2}+T_{3}, T_{1}$ and T_{2} can be estimated by the results of paraproducts and T_{3} can be estimated by Theorem 4.1.

Secondly we estimate the converse results.
Theorem 4.3. Suppose that A satisfies A0, A4 $\frac{1}{2}$ and $1 \leq p \leq \infty$. Then

$$
\begin{equation*}
\|b\|_{B_{p}^{s+t+(d / p), p}\left(\mathbf{R}^{d}\right)} \leq C\left\|T_{b}^{s t}(A)\right\|_{S_{\mathfrak{p}}} \tag{4.9}
\end{equation*}
$$

Proof. By A4 $\frac{1}{2}$, there exist finite sets of points $\left\{\xi_{0}^{(j)}\right\}_{j=1}^{J}$ in Δ_{0} and $\left\{\eta_{0}^{(j)}\right\}_{j=1}^{J}$ in \mathbf{R}^{d} with corresponding open ball $B\left(\xi_{0}^{(j)}, \delta^{(j)}\right)$ and $B\left(\eta_{0}^{(j)}, \delta^{(j)}\right)$ such that $\eta^{(j)} \neq$ $0, \eta_{0}^{(j)} \neq-\xi_{0}^{(j)}, \bigcup_{j=1}^{J} B\left(\xi_{0}^{(j)}, \delta^{(j)}\right) \supset \Delta_{0}, \delta^{(j)}<\frac{1}{4} \min \left(\left|\xi_{0}^{(j)}+\eta_{0}^{(j)}\right|,\left|\eta_{0}^{(j)}\right|, 1\right)$, and, with $B_{j}=B\left(\xi_{0}^{(j)}+\eta_{0}^{(j)}, \delta^{(j)}\right)$ and $D_{j}=B\left(\eta_{0}^{(j)}, \delta^{(j)}\right), A^{-1} \in M\left(B_{j} \times D_{j}\right)$. Let $\bar{B}_{j}=2 B_{j}$ and $\bar{D}_{j}=2 D_{j}$. We may assume that $\bar{B}_{j} \subset \bar{\Delta}_{0}, \bar{D}_{j} \subset \bar{\Delta}_{i_{0}}$ for some i_{0}, where $\bar{\Delta}_{i}=\Delta_{i-1} \cup \Delta_{i} \cup \Delta_{i+1}$. Now we choose the positive functions $h_{j}^{\prime}(\xi)$ and $h_{j}(\eta)$ such that $h_{j}^{\prime}, h_{j} \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right), \quad \operatorname{supp} h_{j}^{\prime}=\bar{B}_{j}, \quad h_{j}^{\prime}(\xi) \geq C>0 \quad$ on $\quad B_{j}, \quad \operatorname{supp} h_{j}=\bar{D}_{j} \quad$ and $h_{j}(\eta) \geq C>0$ on D_{j}.

Let

$$
\widehat{\psi}(\xi)=\sum_{j=1}^{J} \int|\xi+\eta|^{s}|\eta|^{t} h_{j}^{\prime}(\xi+\eta) h_{j}(\eta) d \eta
$$

Then $\widehat{\psi} \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$, supp $\widehat{\psi} \subset\left\{\frac{1}{2} \leq|\xi| \leq 2+\frac{1}{2}\right\}$ and $\widehat{\psi}(\xi) \geq C>0$ on Δ_{0}, thus ψ can be used to define the norm of $B_{p}^{s, p}$.
Thus

$$
\begin{equation*}
\left\|T_{b}^{s t}(A)\right\|_{S_{p}}^{p} \geq \frac{1}{3} \sum_{i} \sum_{l=-1}^{1}\left\|T_{i+l, i+i_{0}}\right\|_{S_{p}}^{p} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|T_{i+l, i+i_{0}}\right\|_{S_{p}}^{p} & =\left\|\hat{b}(\xi-\eta) A(\xi, \eta)|\xi|^{s}|\eta|^{t}\right\|_{S_{p}\left(\Delta_{i+l} \times \Delta_{i+i_{0}}\right)}^{p} \\
& \geq C\left\|\hat{b}(\xi-\eta) \sum_{j=1}^{J}|\xi|^{s}|\eta|^{t} h_{j}^{\prime}\left(\frac{\xi}{2^{i+l}}\right) h_{j}\left(\frac{\eta}{2^{i+i_{0}}}\right)\right\|_{S_{p}}^{p} \tag{4.11}\\
& =C\left\|S_{i}\right\|_{S_{p}}^{p} .
\end{align*}
$$

We claim that

$$
\begin{equation*}
\left\|S_{i}\right\|_{S_{p}} \geq C 2^{i(s+t+d / p)}\left\|b * \psi_{i}\right\|_{p} \tag{4.12}
\end{equation*}
$$

Therefore

$$
\left\|T_{b}^{s t}(A)\right\|_{S_{p}} \geq C\|b\|_{B_{p}^{s+t(d / p), p}\left(\mathbf{R}^{d}\right)}
$$

By the homogeneity, it suffices to prove (4.12) for $i=0$. Note that S_{0} is an operator on $L^{2}\left((3 T)^{d}\right)$. We choose an orthonomal basis of $L^{2}\left((3 T)^{d}\right)\left\{e_{\underline{k}}\right\}_{\underline{k} \in \mathbf{Z}^{d}}$, $e_{\underline{k}}(\eta)=1 /\left((6 \pi)^{d / 2}\right) e^{i \underline{k} \cdot \eta / 3}$. Then S_{0} is determined by $\left(\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right)$, where $\alpha_{\underline{k}_{1}, \underline{k}_{2}}=$ $\left\langle S_{0}\left(e_{\underline{k}_{1}}\right), e_{\underline{k}_{2}}\right\rangle$. Note that

$$
\left.\left|\alpha_{\underline{k}_{1}, \underline{k}_{2}}\right|=\left.\left|\iint \hat{b}(\xi-\eta) \sum_{j=1}^{J}\right| \xi\right|^{s}|\eta|^{t} h_{j}^{\prime}(\xi) h_{j}(\eta) e_{\underline{k}}(-\xi) e_{\underline{k}}(\eta) d \xi d \eta|=C| b * \psi\left(-\frac{\underline{k}}{3}\right) \right\rvert\,,
$$

then we have

$$
\left\|S_{0}\right\|_{S_{p}}^{p} \geq \sum_{\underline{k}}\left|\alpha_{\underline{k}, \underline{k}}\right|^{p}=C \sum_{\underline{k}}\left|b * \psi\left(-\frac{k}{3}\right)\right|^{p} \geq C\|b * \psi\|_{S_{p}}^{p} \quad \text { by Lemma } 2.5 \text { and 3.3, }
$$

i.e. (4.12) holds.

Remark. For statement and proof of Theorem 4.3 for $0<p<1$, see Peng [9]. If $p=\infty$, we have also the BMO result.

Theorem 4.4. Suppose that A satifies $\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 3(\alpha)$ and A 5 . Then

$$
\begin{equation*}
\|b\|_{\mathrm{BMO}} \leq C\left\|T_{b}(A)\right\| . \tag{4.13}
\end{equation*}
$$

Its proof can be found in [5]. It can be proved also by the non-standard decomposition.

For completeness we list also the following theorems which describe the JansonWolff phenomenon and compactness of paracommutators. They can also be proved by taking the special frame of $L^{2}\left(\mathbf{R}^{d}\right)$.

Theorem 4.5. Suppose that A satisfies $\mathrm{A} 10(\alpha), 1 \leq p \leq d /(\alpha-s-t)$ and $T_{b}^{s t}(A) \in S_{p}$. Then b must be a polynomial.

For the proof, see Theorem 4 of Peng [9], which contains the case $0<p<1$.

Theorem 4.6. Suppose that A satisfies A0, A1, A3(α) and A4 $\frac{1}{2}, s, t>0$, and $s+t<\alpha$; then $T_{b}^{s t}(A)$ is compact if and only if $b \in b_{\infty}^{s+t}$. And suppose that A satisfies $\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{~A} 3(\alpha)$ and A 5 ; then $T_{b}(A)$ is compact if and only if $b \in \mathrm{CMO}$.

For the proof of Theorem 4.6, see Peng [10].
Finally we give another example of paracommutator. We consider the classical Toeplitz operator $T_{b}=P(\bar{b} f)$, where the symbol b is an analytic function, $f \in H^{2}(\mathbf{R})$ (Hardy space) and P denotes the projection from $L^{2}(\mathbf{R})$ to $H^{2}(\mathbf{R})$. Let I^{s} denote the fractional integral operator defined by $\widehat{I^{s} f}(\xi)=|\xi|^{-s} \hat{f}(\xi)$. Let us study the operator $J_{b}^{s t}=I^{-s} T_{b} I^{t}$. It is easy to check that $J_{b}^{s t}$ is a paracommutator with $A(\xi, \eta)=\chi(\xi>0, \eta>0)$, which satisfies A0, A1, A3(0), A4 $\frac{1}{2}$ and $\mathrm{A} 10(0)$. So we have

Theorem 4.7. (i) If $s \in \mathbf{R}, t>\max \left(-\frac{1}{2},-1 / p\right), 0<p \leq \infty$ and $s+t+1 / p<0$ then $J_{b}^{s t} \in S_{p}$ if and only if $b \in B_{p}^{s+t+(1 / p), p}$.
(ii) If $0<p<\infty$ and $s+t+1 / p \geq 0$ then $J_{b}^{s t} \in S_{p}$ only if $b \equiv 0$.
(iii) If $s \in \mathbf{R}, t>0$ and $s+t<0$, then $J_{b}^{s t}$ is compact if and only if $b \in b_{\infty}^{s+t}$.
(iv) If $t>0$, then $J_{b}^{-t t}$ is bounded if and only if $b \in L^{\infty}$, and $J_{b}^{-t t}$ is compact only if $b \equiv 0$.

References

1. Bergh, J. and Löfström, J., Interpolation Spaces, Springer-Verlag, Berlin-Heidel-berg-New York, 1976.
2. Beylkin, G., Coifman, R. and Rokhlin, V., Fast wavelet transforms and numerical algorithms I, Comm. Pure. Appl. Math. 44 (1991), 141-183.
3. G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Mathematics 1465, Springer-Verlag, Berlin-Heidelberg-New York, 1991.
4. Frazier, M. and Jawerth, B., Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
5. Janson, S. and Peetre, J., Paracommutators-boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504.
6. McCarthy, C. A., c_{p}, Israel J. Math. 5 (1967), 249-271.
7. Meyer, Y., Ondelettes et Opérateurs, Hermann, Paris, 1990; English translation, Wavelets and Operators, Cambridge Univ. Press, 1992.
8. Peetre, J., New Thoughts on Besov Spaces, Duke Univ., Durham, N. C., 1976.
9. Peng, L. Z., Paracommutators of Schatten-von Neumann class $S_{p}, 0<p<1$, Math. Scand. 61 (1987), 68-92.
10. Peng, L. Z., On the compactness of paracommutators, Ark. Mat. 26 (1988), 315-325.
11. Peng, L. Z. and Qian, T., A kind of multilinear operators and the Schatten-von Neumann classes, Ark. Mat. 27 (1989), 145-154.
12. Rochberg, R. and Semmes, S., Nearly weakly orthonormal sequence, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 239306.
13. Russo, B., On the Hausdorff-Young theorem for integral operators, Pacific J. Math. 68 (1977), 241-253.
14. Timotin, D., A note on C_{p} estimates for certain kernels, Integral Equations Operator Theory 9 (1989), 295-304.
15. Triebel, H., Theory of Function Spaces, Birkhäuser, Basel-Boston-Stuttgart, 1983.

Received July 25, 1989, in revised form May 27, 1991

Lizhong Peng
Institute of Mathematics
Peking University
Beijing 100871
People's Republic of China

[^0]: $\left.{ }^{1}\right)$ The project supported by the National Natural Science Foundation of China

