A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane

Michael Reissig and Lothar v. Wolfersdorf

0. Introduction

In [7] Richardson derived a mathematical model for describing Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. This model can be represented in the following form (see also [3]): Given $f_{0}(z)$, $f_{0}(0)=0$, analytic and univalent in a neighbourhood of $|z| \leq 1$, find $f(z, t)$, analytic and univalent as a function of z in a neighbourhood of $|z| \leq 1$, continuously differentiable with respect to t in a right-sided neighbourhood of $t=0$, satisfying

$$
\begin{align*}
\operatorname{Re}\left(\frac{1}{z} \frac{\partial f}{\partial t}(z, t) \frac{\overline{\partial f}}{\partial z}(z, t)\right) & =1 & & \text { for }|z|=1 \tag{1}\\
f(z, 0) & =f_{0}(z) & & \text { for }|z| \leq 1 \tag{2}\\
f(0, t) & =0 & & \tag{3}
\end{align*}
$$

With the results of Vinogradov-Kufarev [9] one gets the existence and uniqueness of solutions which depend analytically on z and t under the additional assumption $f_{z}(0, t)>0$. But the proofs in [9] are fairly complicated.

For this reason Gustafsson gave in [3] a more elementary proof of existence and uniqueness of solutions of $(1)-(3)$ in the case that $f_{0}(z)$ is a polynomial or a rational function. In both cases the solution is of the same sort with regard to z as the initial value $f_{0}(z)$. The restriction to rational initial values seems to be indispensable for the used reduction of (1) to a finite system of ordinary differential equations in t.

The goal of the present paper is to give a simplified proof for a generalized Hele-Shaw problem containing as a special case the above formulated problem (1)(3). This proof is based on the application of the non-linear abstract CauchyKovalevsky theorem which was proved by Nishida in [5]. Moreover, this theorem gives uniqueness for solutions depending continuously differentiably on t.

Theorem 1 ([5]). Let us consider the abstract Cauchy-Kovalevsky problem

$$
\begin{equation*}
\frac{d w}{d t}=\mathcal{L}(t, w), \quad w(0)=0 \tag{4}
\end{equation*}
$$

satisfying the following conditions in a scale of Banach spaces $\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}(A$ family of continuously embedded Banach spaces $\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}$ is called a Banach space scale if for all $0<s^{\prime} \leq s \leq 1$ the norm of the canonical embedding operator $\left\|I_{s \rightarrow s^{\prime}}\right\| \leq 1$.) (C, K, R and T are certain positive constants independent of $\left.s^{\prime}, s, t\right)$:
(i) the right-hand side $\mathcal{L}(t, w)$ is a continuous, in t, mapping of

$$
\begin{equation*}
[0, T] \times\left\{w \in B_{s}:\|w\|_{s}<R\right\} \quad \text { into } B_{s^{\prime}} \quad \text { for all } 0<s^{\prime}<s \leq 1 \tag{5}
\end{equation*}
$$

(ii) the continuous function $\mathcal{L}(t, 0)$ satisfies

$$
\begin{equation*}
\|\mathcal{L}(t, 0)\|_{s} \leq K /(1-s) \quad \text { for all } 0<s<1 \tag{6}
\end{equation*}
$$

(iii) for all $0<s^{\prime}<s \leq 1, t \in[0, T]$ and w_{1}, w_{2} belonging to $\left\{\|w\|_{s}<R\right\}$ we have

$$
\begin{equation*}
\left\|\mathcal{L}\left(t, w_{1}\right)-\mathcal{L}\left(t, w_{2}\right)\right\|_{s^{\prime}} \leq \frac{C}{s-s^{\prime}}\left\|w_{1}-w_{2}\right\| \tag{7}
\end{equation*}
$$

Under these assumptions there exists one and only one solution

$$
w \in C^{\mathbf{1}}\left(\left[0, a_{0}(1-s)\right), B_{s}\right)_{0<s<1}, \quad\|w(t)\|_{s}<R
$$

where a_{0} is a suitable positive constant.
This theorem represents an essential tool for solving non-linear time-dependent mixed problems for harmonic or holomorphic functions in the mathematical literature ($[1,2,4,6]$). Our problem (1)-(3) is of such a type. We shall show that after the reduction of the generalized Hele-Shaw problem to an equivalent problem for $w=(\partial f / \partial z)^{-1}$, which fulfills all the conditions (5)-(7) in suitable scales of Banach spaces, the abstract theorem is applicable and yields immediately the main result of [9] as a special case.

The result of Gustafsson [3] can be interpreted as a regularity result concerning the corresponding structures of the initial value and the solution. A result of the same type is derived at the end of this paper for $(\partial f / \partial z)^{-1}$ or $\left(\partial f_{0} / \partial z\right)^{-1}$ belonging to special classes of entire functions.

1. Heuristic considerations and the derivation of a scale-type problem

Let us start with a generalization of (1) to

$$
\begin{equation*}
\operatorname{Re}\left(\frac{1}{h(z, t)} \frac{\partial f}{\partial t}(z, t) \frac{\overline{\partial f}}{\partial z}(z, t)\right)=g(z, \bar{z}, t) \tag{8}
\end{equation*}
$$

for all $|z|=1$ and $t>0$, where
(i) the real-valued function $g=g(z, \bar{z}, t)$ is continuous on $\{|z|=1\} \times[0, T]$ and possesses a holomorphic extension from $|z|=1$ into a circular ring

$$
\begin{equation*}
K_{b}=\{1 / b<|z|<b\}, \quad b>1, \quad \text { for all } t \in[0, T] \tag{9}
\end{equation*}
$$

(ii) the function $h=h(z, t)$ is continuous in $t \in[0, T]$ and for each such t analytic in a neighbourhood of

$$
\begin{equation*}
|z| \leq 1, \quad h(0, t)=0, \quad h_{z}(0, t) \neq 0 \quad \text { for all } t \in[0, T] \tag{10}
\end{equation*}
$$

and

$$
h(z, t) \neq 0 \quad \text { for all }(z, t) \in\{0<|z| \leq 1\} \times[0, T] .
$$

Setting $h(z, t)=z$ and $g(z, \bar{z}, t)=1$ in (8) we have the condition (1). The condition (8) is equivalent to

$$
\operatorname{Re}\left(\frac{1}{h(z, t)} \frac{\partial f}{\partial t}(z, t)\left(\frac{\partial f}{\partial z}\right)^{-1}(z, t)\right)=\left|\frac{\partial f}{\partial z}(z, t)\right|^{-2} g(z, \bar{z}, t)
$$

From the assumptions (3), (9), (10) and the univalence of $f(z, t)$ in a neighbourhood of $\{|z| \leq 1\}$ for all $t \in[0, T]$ we get the holomorphy of

$$
\frac{\partial f}{\partial t}(z, t)\left(\frac{\partial f}{\partial z}\right)^{-1}(z, t) / h(z, t)
$$

in $\{|z|<1\}$. Using (8) and the fact that every holomorphic function in $\{|z|<1\}$ with prescribed real part on $\{|z|=1\}$ is uniquely determined by the value for the imaginary part in $z=0$ we are able to formulate the additional condition

$$
\begin{equation*}
\operatorname{Im}\left(\frac{1}{h(z, t)} \frac{\partial f}{\partial t}(z, t)\left(\frac{\partial f}{\partial z}\right)^{-1}(z, t)\right)(0, t)=0 \tag{11}
\end{equation*}
$$

The application of the Schwarz formula leads to

$$
\begin{equation*}
\frac{\partial f}{\partial t}(z, t)-h(z, t) \frac{\partial f}{\partial z}(z, t) \frac{1}{2 \pi i} \int_{|z|=1}\left|\frac{\partial f}{\partial \varrho}\right|^{-2} g(\varrho, \bar{\varrho}, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho}=0 \tag{12}
\end{equation*}
$$

for $|z|<1$. For our further investigations we need the space $\mathcal{H}\left(G_{r}\right) \cap C\left(\bar{G}_{r}\right)$, that is the space of all complex-valued functions defined and continuous in \bar{G}_{r} and holomorphic in $G_{r}=\{|z|<r\}$. In the same manner we introduce the spaces $\mathcal{H}\left(G_{r}\right) \cap C^{\alpha}\left(\bar{G}_{r}\right)$, $\mathcal{H}\left(G_{r}\right) \cap C^{1}\left(\bar{G}_{r}\right)$ and $\mathcal{H}\left(G_{r}\right) \cap C^{1, \alpha}\left(\bar{G}_{r}\right)$.

Lemma 1. Let us suppose that $f(z, t) \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C^{1}\left(\bar{G}_{1}\right)\right)$ is for each $t \in\left[0, a_{0}\right)$ a univalent function in $|z| \leq 1$ and in $G_{1} \times\left(0, a_{0}\right)$ a solution of the problem (8), (11), (2) and (3), and equivalently, of the problem (12), (2) and (3). Then $v(z, t)=(\partial f / \partial z)^{-1} \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C\left(\bar{G}_{1}\right)\right)$ is a solution of

$$
\begin{gather*}
\frac{\partial v}{\partial t}-h T_{t}(v) \frac{\partial v}{\partial z}+v \frac{\partial}{\partial z}\left(h T_{t}(v)\right)=0 \quad \text { for }(z, t) \in G_{1} \times\left(0, a_{0}\right), \tag{13}\\
v(z, 0)=v_{0}(z)=\left(\partial f_{0} / \partial z\right)^{-1} \quad \text { for } z \in \bar{G}_{1}, \tag{14}
\end{gather*}
$$

where $v(z, t) \neq 0$.
Here $T_{t}(v)$ denotes the non-linear operator

$$
\begin{equation*}
T_{t}(v):=\frac{1}{2 \pi i} \int_{\partial G_{1}}|v(\varrho)|^{2} g(\varrho, \bar{\varrho}, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho} . \tag{15}
\end{equation*}
$$

Conversely, let us suppose that $v(z, t) \in C^{1}\left(\left[0, a_{1}\right), \mathcal{H}\left(G_{1}\right) \cap C\left(\bar{G}_{1}\right)\right)$ is a solution of (13) and (14) with $v(z, t) \neq 0$ in $\bar{G}_{1} \times\left[0, a_{0}\right)$. Then $f(z, t)=\int_{0}^{z}(d \varrho) /(v(\varrho, t))$ belonging to $C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C^{1}\left(\bar{G}_{1}\right)\right)$ represents a locally univalent solution of (12), (2), and (3) and, equivalently, of (8), (11), (2) and (3) in $\bar{G}_{1} \times\left[0, a_{0}\right)$.

Proof. Let $f=f(z, t)$ as a univalent solution of (12), (2) and (3) satisfy the conditions of this lemma. Then $v=(\partial f / \partial z)^{-1}$ belongs to $C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C\left(\bar{G}_{1}\right)\right)$. Differentiating (12) with respect to z, one obtains with $v=(\partial f / \partial z)^{-1}$

$$
\frac{\partial(1 / v)}{\partial t}-h T_{t}(v) \frac{\partial(1 / v)}{\partial z}-\frac{1}{v} \frac{\partial}{\partial z}\left(h T_{t}(v)\right)=0
$$

and hence,

$$
\frac{\partial v}{\partial t}-h T_{t}(v) \frac{\partial v}{\partial z}+v \frac{\partial}{\partial z}\left(h T_{t}(v)\right)=0 \quad \text { with } v(z, 0)=\left(\partial f_{0} / \partial z\right)^{-1} .
$$

Conversely, if $v \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C\left(\bar{G}_{1}\right)\right)$ solves (13) and (14) with $v(z, t) \neq 0$ in $\bar{G}_{1} \times\left[0, a_{0}\right)$, then $1 / v$ belongs to $C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C\left(\bar{G}_{1}\right)\right)$ and f belongs to $C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C^{1}\left(\bar{G}_{1}\right)\right)$, where $\partial_{z} f(z, t) \neq 0$. Hence, f is locally univalent. The definition of f implies $f(0, t)=0$ for $t \in\left[0, a_{0}\right)$. Furthermore,

$$
f(z, 0)=\int_{0}^{z} \frac{d \varrho}{v(\varrho, 0)}=\int_{0}^{z} \frac{\partial f_{0}}{\partial \varrho} d \varrho=f_{0}(z)-f_{0}(0)=f_{0}(z)
$$

Thus the conditions (2) and (3) are fulfilled.

If v solves (13), then the same reasoning as above gives

$$
\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial t}-h T_{t}\left(\left(\frac{\partial f}{\partial \varrho}\right)^{-1}\right) \frac{\partial f}{\partial z}\right)=0
$$

For $t \in\left(0, a_{0}\right)$ the term in the brackets is holomorphic in G_{1}, hence,

$$
\frac{\partial f}{\partial t}-h \frac{\partial f}{\partial z} T_{t}\left(\left(\frac{\partial f}{\partial \varrho}\right)^{-1}\right)=k(t)
$$

a constant depending on t. Inserting $z=0$, this shows that $k(t)=0$, hence (12) is satisfied.

Finally from the holomorphy of $(1 / h)(\partial f / \partial t)(\partial f / \partial z)^{-1}$ we obtain (8) and (11).
Remark 1. An analogous statement is valid for $f \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C^{1, \alpha}\left(\bar{G}_{1}\right)\right)$ and $v \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C^{\alpha}\left(\bar{G}_{1}\right)\right)$ instead of $f \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C^{1}\left(\bar{G}_{1}\right)\right)$ and $v \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C\left(\bar{G}_{1}\right)\right)$.

The lemma of equivalence just proved makes it possible to restrict ourselves to the problem (13) and (14). This is a scale-type problem. Thus it remains to show how we can interpret the problem (13) and (14) as a special case of (4) (see Section 3).

There is a gap between Richardson's mathematical model and Lemma 1. In Lemma 1 we obtain in the converse direction merely the local univalence of $f(z, t)$. But the following statement holds:

Suppose, that
(i) the initial value $f_{0}(z)$ from (2) is an analytic and univalent function in $\bar{G}_{r}, r>1$;
(ii) the family $\left\{f_{t}(z)\right\}$ of analytic functions belongs to $C\left([0, T], \mathcal{H}\left(G_{r^{\prime}}\right) \cap C\left(\bar{G}_{r^{\prime}}\right)\right)$, $r^{\prime}<r$.
Then there exists a positive constant $T_{0}\left(r^{\prime}\right)$ such that $f_{t}(z)$ is univalent in $\bar{G}_{r^{\prime}}$ for all $t \in\left[0, T_{0}\left(r^{\prime}\right)\right)$.

Using this statement the conditions
(i) univalence of the analytic function $f_{0}(z)$ in \bar{G}_{r};
(ii) $v \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{r^{\prime}}\right) \cap C\left(\bar{G}_{r^{\prime}}\right)\right)$ with $v(z, t) \neq 0$;
imply the univalence of $f(z, t)$ for small t in a neighbourhood of $\{|z| \leq 1\}$.
In Chapter 3 we shall prove the existence of such functions $v=v(z, t)$ as solutions of a modified problem to (13) and (14).

2. About the action of an operator $\widetilde{T}_{\boldsymbol{t}}$ representing a continuation of $\boldsymbol{T}_{\boldsymbol{t}}$ in some Banach spaces

Let v be in $C\left([0, T], H\left(G_{r}\right) \cap C\left(\bar{G}_{r}\right)\right)$ with $r>1$. Then $T_{t}(v)$ belongs to $\mathcal{H}\left(G_{1}\right)$
for each $t \in[0, T]$. But moreover $T_{t}(v)$ possesses an analytic continuation in a larger domain depending on G_{r} and K_{b} from (9).

Lemma 2. For an arbitrary $v \in \mathcal{H}\left(G_{r}\right) \cap C\left(\bar{G}_{r}\right)$ the image $T_{t}(v)$ of the nonlinear operator T_{t} applied to v can be analytically continued into $G_{r_{0}}$ with $r_{0}=\min (b, r)$.

Proof. From (15) we get

$$
\begin{aligned}
T_{t}(v) & =\frac{1}{2 \pi i} \int_{\partial G_{1}}|v(\varrho)|^{2} g(\varrho, \bar{\varrho}, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho} \\
& =\frac{1}{2 \pi i} \int_{\partial G_{1}} v(\varrho) \overline{v(1 / \varrho)} g(\varrho, 1 / \varrho, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho} \quad \text { for all } z \in G_{1}
\end{aligned}
$$

The assumption $v \in \mathcal{H}\left(G_{r}\right) \cap C\left(\bar{G}_{r}\right)$ and (9) guarantee that the kernel of the integral is holomorphic in the set $\left\{1 / r_{0}<|\varrho|<r_{0}\right\} \backslash\{z\}$ for all $t \in[0, T]$ and $z \in G_{1}$. Consequently,

$$
T_{t}(v)=\frac{1}{2 \pi i} \int_{\partial G_{a}} v(\varrho) \overline{v(1 / \bar{\varrho})} g(\varrho, 1 / \varrho, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho}
$$

for all $z \in G_{1}$ and $1<a<r_{0}$. Obviously, the right-hand-side can be defined for all $z \in G_{a}$, and $T_{t}(v)$ possesses an analytic continuation

$$
\begin{equation*}
\tilde{T}_{t}(v)=\frac{1}{2 \pi i} \int_{\partial G_{a}} v(\varrho) \overline{v(1 / \bar{\varrho})} g(\varrho, 1 / \varrho, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho} \tag{16}
\end{equation*}
$$

belonging to $\mathcal{H}\left(G_{a}\right)$. Since $G_{r_{0}}=\bigcup_{\widetilde{1}<a<t_{0}} G_{a}$ the operator \widetilde{T}_{t} maps $\mathcal{H}\left(G_{r}\right)$ into $\mathcal{H}\left(G_{r_{0}}\right)$. For all $z \in G_{1}$ we conclude $\widetilde{T}_{t}(v)(z)=T_{t}(v)(z)$. Hence $\widetilde{T}_{t}(v)$ represents an analytic continuation of $T_{t}(v)$ for $v \in \mathcal{H}\left(G_{r}\right) \cap C\left(\bar{G}_{r}\right)$ into $G_{r_{0}}$.

There arises the question whether it is possible to estimate the action of \widetilde{T}_{t} as a mapping of a Banach space B into itself. In the next lemma we shall give a positive answer for the case $B=\mathcal{H}\left(G_{p}\right) \cap C\left(\bar{G}_{p}\right), 1<p<r_{0}$.

Lemma 3. (a) For every function v from $\mathcal{H}\left(G_{p}\right) \cap C\left(\bar{G}_{p}\right)$ the following estimate connecting the norms $\|v\|_{p}=\sup _{G_{p}}|v|$ and $\left\|\widetilde{T}_{t}(v)\right\|_{p}=\sup _{G_{p}}\left|\widetilde{T}_{t}(v)\right|$ holds:

$$
\left\|\widetilde{T}_{t}(v)\right\|_{p} \leq C(p, g)\|v\|_{p}^{2}
$$

where the constant C is independent of $v \in \mathcal{H}\left(G_{p}\right) \cap C\left(\bar{G}_{p}\right)$ and $t \in[0, T]$. Moreover, we obtain for all $v_{1}, v_{2} \in B$ with $\left\|v_{1}\right\|_{p},\left\|v_{2}\right\|_{p}<R$ the Lipschitz condition

$$
\left\|\widetilde{T}_{t}\left(v_{1}\right)-\widetilde{T}_{t}\left(v_{2}\right)\right\|_{p} \leq 2 C(p, g) R\left\|v_{1}-v_{2}\right\|_{p}
$$

(b) The family of operators $\left\{\widetilde{T}_{t}(v)\right\}_{t \in[0, T]}$ depends continuously on $t \in[0, T]$. This means

$$
\lim _{t_{1} \rightarrow t_{2}}\left\|\widetilde{T}_{t_{1}}(v)-\widetilde{T}_{t_{2}}(v)\right\|_{p}=0 \quad \text { for all } v \in \mathcal{H}\left(G_{p}\right) \cap C\left(\bar{G}_{p}\right)
$$

Proof. (a) Let us remember that

$$
\widetilde{T}_{t}(v)=\frac{1}{2 \pi i} \int_{\partial G_{p}} v(\varrho) \overline{v(1 / \bar{\varrho})} g(\varrho, 1 / \varrho, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho}
$$

Using the holomorphy of $v(\varrho) \overline{v(1 / \bar{\varrho})} g(\varrho, 1 / \varrho, t)(\varrho+z) / \varrho$ in $\{1 / p<|\varrho|<p\}$, we obtain for all $z \in \partial G_{p^{\prime}}, p^{\prime} \rightarrow p$, and $t \in[0, T]$

$$
\begin{aligned}
\widetilde{T}_{t}(v)(z)= & \frac{1}{2 \pi i} \int_{\partial G_{1 / p}} v(\varrho) \overline{v(1 / \bar{\varrho})} g(\varrho, 1 / \varrho, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho} \\
& +\frac{1}{2 \pi i} \int_{\partial \mathcal{U}_{a}(z)} v(\varrho) \overline{v(1 / \bar{\varrho})} g(\varrho, 1 / \varrho, t) \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho}
\end{aligned}
$$

where $\mathcal{U}_{a}(z)$ is a sufficiently small neighbourhood of z contained in G_{p}. From Cauchy's integral formula and a simple estimation it follows that

$$
\begin{aligned}
\widetilde{T}_{t}(v)(z) \mid \leq & \left|\frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(\frac{1}{p} e^{i \varphi}\right) \overline{v\left(p e^{i \varphi}\right)} g\left(\frac{1}{p} e^{i \varphi}, p e^{-i \varphi}, t\right) \frac{e^{i \varphi} / p+z}{e^{i \varphi} / p-z} d \varphi\right| \\
& +2|v(z) v(1 / \bar{z}) g(z, 1 / z, t)| \\
\leq & \|v\|_{p}^{2} \sup _{(z, t) \in\{1 / p<|z|<p\} \times[0, T]}|g(z, 1 / z, t)|\left(2+\frac{|z|+1 / p}{|z|-1 / p}\right)
\end{aligned}
$$

for all $z \in \partial G_{p^{\prime}}$. But the continuity of v in \bar{G}_{p} guarantees that the last inequality remains valid for all $z \in \partial G_{p}$. Hence, by the maximum principle

$$
\left\|\widetilde{T}_{t}(v)\right\|_{p}=\sup _{z \in G_{p}}\left|\widetilde{T}_{t}(v)(z)\right| \leq C(p, g)\|v\|_{p}^{2}
$$

with

$$
C(p, g)=\sup _{(z, t) \in\{1 / p<|z|<p\} \times[0, T]}|g(z, 1 / z, t)|\left(2+\frac{p^{2}+1}{p^{2}-1}\right) .
$$

By (9) and $1<p<r_{0} \leq b$ the constant $C(p, g)$ is finite. The same reasoning leads to the Lipschitz condition.
(b) As in the proof of (a) one deduces

$$
\left\|\widetilde{T}_{t_{1}}(v)(z)-\widetilde{T}_{t_{2}}(v)(z)\right\|_{p} \leq\left(2+\frac{p^{2}+1}{p^{2}-1}\right)_{z \in\{1 / p<|z|<p\}} \sup \left|g\left(z, 1 / z, t_{1}\right)-g\left(z, 1 / z, t_{2}\right)\right| \leq \varepsilon
$$

for $\left|t_{1}-t_{2}\right|$ sufficiently small and all $1<p<r_{0}$, taking into consideration the uniform continuity of g in $\{1 / p \leq|z| \leq p\} \times[0, T]$.

Remark 2. It is possible to prove a corresponding inequality between $\|v\|_{p, \alpha}$ and $\left\|\widetilde{T}_{t}(v)\right\|_{p, \alpha}, 0<\alpha<1$, where $\|v\|_{p, \alpha}$ denotes the Hölder-norm of $v \in \mathcal{H}\left(G_{p}\right) \cap C^{\alpha}\left(\bar{G}_{p}\right)$. The proof of $\left\|\widetilde{T}_{t}(v)\right\|_{p, \alpha} \leq C(p, \alpha, g)\|v\|_{p, \alpha}^{2}$ is omitted.

For proving a regularity result for $(\partial f / \partial z)^{-1}$ in the sense of the results in [3] the next lemma represents an essential tool. For the formulation of this lemma we choose the following family $\left\{E_{r}\right\}_{r>0}$ of Banach spaces of entire functions:

$$
\left\{E_{r}\right\}_{r>0}=\left\{v \in \mathcal{H}(\mathbf{C}): \sup _{z \in \mathbf{C}}\left|v(z) e^{-r|z|}\right|=\|v\|_{r}<\infty\right\}_{r>0}
$$

Now we are choosing $g=1$ in (16).
Lemma 4. The operator

$$
\widetilde{T}(v)(z)=\frac{1}{2 \pi i} \int_{\partial G_{a}} v(\varrho) v \overline{(1 / \bar{\varrho})} \frac{\varrho+z}{\varrho-z} \frac{d \varrho}{\varrho}
$$

$z \in G_{a}, a>1$ arbitrary, maps E_{r} into itself, where $\|\widetilde{T}(v)\|_{r} \leq \frac{11}{3} \exp (5 r / 2)\|v\|_{r}^{2}$.
Moreover, we obtain for all $v_{1}, v_{2} \in E_{r}$ with $\left\|v_{1}\right\|_{r},\left\|v_{2}\right\|_{r}<R$ the Lipschitz condition $\left\|\widetilde{T}_{t}\left(v_{1}\right)-\widetilde{T}_{t}\left(v_{2}\right)\right\|_{r} \leq \frac{22}{3} R e^{5 r / 2}\left\|v_{1}-v_{2}\right\|_{r}$.

Proof. Supposing $v \in E_{r}$ the above-defined function $\widetilde{T}(v)(z)$ makes sense for all $z \in \mathbf{C}$. This follows from the fact that $v(\varrho) \overline{v(1 / \bar{\varrho})}(\varrho+z)$ is holomorphic in $\mathbf{C} \backslash\{0\}$. Hence $\widetilde{T}(v)$ is an entire function.

Now let us fix $z_{0} \in \mathbf{C}$ with $\left|z_{0}\right| \geq 2$. Then as in the proof of Lemma 3(a) we arrive at

$$
\widetilde{T}(v)\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\partial G_{1 / b}} v(\varrho) \overline{v(1 / \bar{\varrho})} \frac{\varrho+z_{0}}{\varrho-z_{0}} \frac{d \varrho}{\varrho}+2 v\left(z_{0}\right) \overline{v\left(1 / \bar{z}_{0}\right)}
$$

for an arbitrary $b>\left|z_{0}\right|$, and

$$
\begin{aligned}
\widetilde{T}(v)\left(z_{0}\right) \exp \left(-r\left|z_{0}\right|\right)= & \frac{1}{2 \pi i} \int_{\partial G_{1 / b}} v(\varrho) \overline{v(1 / \bar{\varrho})} e^{-r /|\varrho|} e^{r\left(1 /|\varrho|-\left|z_{0}\right|\right)} \frac{\varrho+z_{0}}{\varrho-z_{0}} \frac{d \varrho}{\varrho} \\
& +2 v\left(z_{0}\right) e^{-r\left|z_{0}\right|} \overline{v\left(1 / \overline{z_{0}}\right)}
\end{aligned}
$$

But this leads immediately to

$$
\begin{aligned}
\left|\widetilde{T}(v)\left(z_{0}\right) e^{-r\left|z_{0}\right|}\right| \leq & \frac{5}{3} \max _{|z|=1 / b}|v(z)| \max _{|z|=b}\left|v(z) e^{-r|z|}\right| e^{-r\left(b-\left|z_{0}\right|\right)} \\
& +2 \max _{|z|=1 / 2}|v(z)|\left|v\left(z_{0}\right)\right| e^{-r\left|z_{0}\right|} \\
\leq & \frac{11}{3} \max _{|z|=1 / 2}|v(z)|\|v\|_{r}
\end{aligned}
$$

if one takes into account that

$$
\frac{\left|z_{0}\right|+1 / b}{\left|z_{0}\right|-1 / b} \leq \frac{\left|z_{0}\right|+\frac{1}{2}}{\left|z_{0}\right|-\frac{1}{2}} \leq \frac{5}{3} \quad \text { for }\left|z_{0}\right| \geq 2, b>0
$$

and $e^{r\left(b-\left|z_{0}\right|\right)} \rightarrow 1$ for $\left|z_{0}\right| \rightarrow b$.
From the definition of $\|v\|_{r}$ we obtain

$$
\max _{|z|=1 / 2}|v(z)| \leq\|v\|_{r} e^{r / 2} \quad \text { and } \quad \max _{|z|=2}|v(z)| \leq\|v\|_{r} e^{2 r} .
$$

Thus it is possible to draw the following two conclusions:

$$
\left|\widetilde{T}(v)\left(z_{0}\right) e^{-r\left|z_{0}\right|}\right| \leq \frac{11}{3} e^{r / 2}\|v\|_{r}^{2} \quad \text { for each } z_{0} \in C \text { with }\left|z_{0}\right| \geq 2,
$$

and

$$
\left|\widetilde{T}(v)\left(z_{0}\right) e^{-r\left|z_{0}\right|}\right| \leq \max _{|z|=2}\left|\widetilde{T}(v)(z) e^{-2 r} e^{2 r}\right| \leq \frac{11}{3} e^{5 r / 2}\|v\|_{r}^{2}
$$

for each $z_{0} \in C$ with $\left|z_{0}\right|<2$.
But these conclusions yield $\|\widetilde{T}(v)\|_{r} \leq \frac{11}{3} e^{5 r / 2}\|v\|_{r}^{2}$.
The same reasoning gives the Lipschitz condition.
In this section we introduced the operator $\widetilde{T}_{t}(v)$ and studied some of its properties as for example the relation between T_{t} and \widetilde{T}_{t}. The results obtained are useful in examining the problem

$$
\begin{equation*}
\frac{\partial v}{\partial t}-h \widetilde{T}_{t}(v) \frac{\partial v}{\partial z}+v \frac{\partial}{\partial z}\left(h \widetilde{T}_{t}(v)\right)=0, \quad v(z, 0)=v_{0}(z)=\left(\partial f_{0} / \partial z\right)^{-1} \tag{17}
\end{equation*}
$$

The restriction of a solution $v \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{r}\right) \cap C\left(\bar{G}_{r}\right)\right)$ of this problem to $(z, t) \in \bar{G}_{1} \times\left[0, a_{0}\right)$ represents a solution $v \in C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{1}\right) \cap C\left(\bar{G}_{1}\right)\right)$ of (13) and (14).

3. The problem (17) and (14) as a special case of (4)

To apply Theorem 1 to the problem (17) and (14), we only have to show that the conditions (5)-(7) are fulfilled. The assumptions concerning f_{0} and h guarantee the existence of constants $1<r_{2}<b$ and $R>0$ such that

$$
R \leq\left|v_{0}(z)\right|=\left|\left(\partial f_{0} / \partial z\right)^{-1}\right| \quad \text { in } \bar{G}_{r_{2}}
$$

and $h \in C\left([0, T], \mathcal{H}\left(G_{r_{2}}\right) \cap C\left(\bar{G}_{r_{2}}\right)\right)$. For a fixed $1<r_{1}<r_{2}$ let us choose the Banach space scale

$$
\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}=\left\{\mathcal{H}\left(G_{r_{1}+s\left(r_{2}-r_{1}\right)}\right) \cap C\left(\bar{G}_{r_{1}+s\left(r_{2}-r_{1}\right)}\right), \sup _{G_{r_{1}+s\left(r_{2}-r_{1}\right)}}|\cdot|\right\}_{0<s \leq 1}
$$

Following Lemma $1(v(z, t) \neq 0)$ it is necessary to choose the sphere

$$
\left\{w \in B_{s}:\|w\|_{s}<R\right\}
$$

Introducing $w(z, t)=v(z, t)-v_{0}(z)$, this implies a homogeneous initial condition. Thus the problem (17) and (14) can be transformed to

$$
\begin{gather*}
\frac{\partial w}{\partial t}=\mathcal{L}_{0}(t, w)=-\left(w+v_{0}\right) \frac{\partial}{\partial z}\left(h \widetilde{T}_{t}\left(w+v_{0}\right)\right)+h \widetilde{T}_{t}\left(w+v_{0}\right) \frac{\partial}{\partial z}\left(w+v_{0}\right) \tag{18}\\
w(z, 0)=0
\end{gather*}
$$

Lemma 5. The operator \mathcal{L}_{0} satisfies in the above-introduced Banach space scale $\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}$ the conditions (5)-(7) of Theorem 1.

Proof. Every space B_{s} forms a Banach algebra. Consequently, from Lemma $3(\mathrm{a}), v_{0} \in B_{1}$ and $h \in C\left([0, T], B_{1}\right)$ we conclude that $h \widetilde{T}_{t}\left(w+v_{0}\right) \in B_{s}$ for all $0<$ $s \leq 1$ and all $w \in B_{s}$. Using the result of Tutschke [8] that $\partial / \partial z$ is a bounded operator as the mapping of B_{s} into B_{s}^{\prime} with $\|\partial / \partial z\|_{s \rightarrow s^{\prime}} \leq\left(\left(r_{2}-r_{1}\right)\left(s-s^{\prime}\right)\right)^{-1}$ one obtains $\mathcal{L}_{0}(t, w) \in B_{s^{\prime}}$ for every $(t, w) \in[0, T] \times\left\{w \in B_{s}:\|w\|_{s}<R\right\}$. From Lemma 3(b) it follows that for a given $w \in B_{s}$ the term $\widetilde{T}_{t}\left(w+v_{0}\right)$ depends continuously on t. But this leads to $\lim _{t_{1} \rightarrow t_{2}}\left\|\mathcal{L}_{0}\left(t_{1}, w\right)-\mathcal{L}_{0}\left(t_{2}, w\right)\right\|_{s^{\prime}}=0$ for all $t_{1}, t_{2} \in[0, T]$ and all $w \in B_{s}$. This proves (5).

Let us further consider the difference

$$
\begin{aligned}
\mathcal{L}_{0}\left(t, w_{1}\right)-\mathcal{L}_{0}\left(t, w_{2}\right)= & -\left(w_{1}-w_{2}\right) \frac{\partial}{\partial z}\left(h \widetilde{T}_{t}\left(w_{1}+v_{0}\right)\right)-\left(w_{2}+v_{0}\right) \frac{\partial}{\partial z}\left(h \left(\widetilde{T}_{t}\left(w_{1}+v_{0}\right)\right.\right. \\
& \left.\left.-\widetilde{T}_{t}\left(w_{2}+v_{0}\right)\right)\right)+h\left(\widetilde{T}_{t}\left(w_{1}+v_{0}\right)-\widetilde{T}_{t}\left(w_{2}+v_{0}\right)\right) \frac{\partial}{\partial z}\left(w_{1}+v_{0}\right) \\
& +h \widetilde{T}_{t}\left(w_{2}+v_{0}\right) \frac{\partial}{\partial z}\left(w_{1}-w_{2}\right)
\end{aligned}
$$

Using

$$
\left\|\frac{\partial}{\partial z}\left(w_{1}-w_{2}\right)\right\|_{p} \leq 2 C(p, g)\left(R+\left\|v_{0}\right\|_{1}\right)\left\|w_{1}-w_{2}\right\|_{p}
$$

for all $w_{1}, w_{2} \in \mathcal{H}\left(G_{p}\right) \cap C\left(\bar{G}_{p}\right)$ with $\left\|w_{1}\right\|_{p},\left\|w_{2}\right\|_{p}<R$ and all $t \in[0, T]$ the following estimates are valid in $\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}$:

$$
\begin{aligned}
\left\|\mathcal{L}_{0}\left(t, w_{1}\right)-\mathcal{L}_{0}\left(t, w_{2}\right)\right\|_{s^{\prime}} \leq & \left\|w_{1}-w_{2}\right\|_{s}\|h\|_{1} \frac{\left\|\widetilde{T}_{t}\left(w_{1}+v_{0}\right)\right\|_{s}}{\left(s-s^{\prime}\right)\left(r_{2}-r_{1}\right)} \\
& +\frac{\|h\|_{1}\left\|w_{2}+v_{0}\right\|_{s}}{\left(s-s^{\prime}\right)\left(r_{2}-r_{1}\right)}\left\|\widetilde{T}_{t}\left(w_{1}+v_{0}\right)-\widetilde{T}_{t}\left(w_{2}+v_{0}\right)\right\|_{s} \\
& +\|h\|_{1}\left\|\widetilde{T}_{t}\left(w_{1}+v_{0}\right)-\widetilde{T}_{t}\left(w_{2}+v_{0}\right)\right\|_{s} \frac{\left\|w_{1}+v_{0}\right\|_{s}}{\left(s-s^{\prime}\right)\left(r_{2}-r_{1}\right)} \\
& +\|h\|_{1}\left\|\widetilde{T}_{t}\left(w_{2}+v_{0}\right)\right\|_{s} \frac{\left\|w_{1}-w_{2}\right\|_{s}}{\left(r_{2}-r_{1}\right)\left(s-s^{\prime}\right)} \\
\leq & \frac{\left\|w_{1}-w_{s}\right\|_{2}}{\left(s-s^{\prime}\right)\left(r_{2}-r_{1}\right)}\|h\|_{1}\left(R+\left\|v_{0}\right\|_{1}\right)^{2} 6 C\left(r_{2}, r_{1}, g\right)
\end{aligned}
$$

with

$$
C\left(r_{2}, r_{1}, g\right)=\sup _{(z, t) \in\left\{1 / r_{2}<|z|<r_{2}\right\} \times[0, T]}|g(z, 1 / z, t)|\left(2+\frac{r_{2}^{2}+1}{r_{1}^{2}-1}\right)
$$

So, also (7) is proved.
Finally, in the same manner it can be verified that

$$
\left\|\mathcal{L}_{0}(t, 0)\right\|_{s}=\left\|v_{0} \frac{\partial}{\partial z}\left(h \widetilde{T}_{t}\left(v_{0}\right)\right)-h \widetilde{T}_{t}\left(v_{0}\right) \frac{\partial}{\partial z} v_{0}\right\|_{s} \leq K /(1-s)
$$

with a certain constant K independent of s and t. Hence also (6) is true, which completes the proof of this lemma.

Now the application of Theorem 1 to the problem (18) and (19) yields one and only one solution

$$
w \in C^{1}\left(\left[0, a_{0}(1-s)\right), \mathcal{H}\left(G_{r_{1}+s\left(r_{2}-r_{1}\right)}\right) \cap C\left(\bar{G}_{r_{1}+s\left(r_{2}-r_{1}\right)}\right)\right)_{0<s<1}
$$

with $\sup _{G_{r_{1}+s\left(r_{2}-r_{1}\right)}}|w(z, t)|<R$ for all $t \in\left[0, a_{0}(1-s)\right)$.
But then $v(z, t)=w(z, t)+v_{0}(z)$ represents a solution

$$
v \in C^{1}\left(\left[0, a_{0}(1-s)\right), \mathcal{H}\left(G_{r_{1}+s\left(r_{2}-r_{1}\right)}\right) \cap C\left(\bar{G}_{r_{1}+s\left(r_{2}-r_{1}\right)}\right)\right)_{0<s<1}
$$

of the problem (17) and (14) with $\sup _{G_{r_{1}+s\left(r_{2}-r_{1}\right)}}|v(z, t)|>0$ for all $t \in\left[0, a_{0}(1-s)\right)$.
The coincidence of the operators \widetilde{T}_{t} and T_{t} for all $v \in \mathcal{H}\left(G_{1}\right) \cap C\left(\bar{G}_{1}\right)$ guarantees that the restriction of $v(z, t)$ to $C^{1}\left(\left[0, a_{0}\right), \mathcal{H}\left(G_{r_{1}}\right) \cap C\left(\bar{G}_{r_{1}}\right)\right)$ is a solution of (13) and (14) with $\sup _{G_{r_{1}}}|v(z, t)|>0$ for all $t \in\left[0, a_{0}\right)$. From this result together with Lemma 1, the end of Chapter 1 and the equivalence of (12) with (8) and (11) we get the following theorem concerning problem (8), (2) and (3).

Theorem 2. Suppose that
(i) the real-valued function $g=g(z, \bar{z}, t)$ is continuous in $\{|z|=1\} \times[0, T]$ and possesses a holomorphic extension into a circular ring $K_{b}=\{1 / b<|z|<b\}$ for all $t \in[0, T]$;
(ii) the function $h=h(z, t)$ belongs to the space $C\left([0, T], \mathcal{H}\left(G_{r_{2}}\right) \cap C\left(\bar{G}_{r_{2}}\right)\right)$, $1<r_{2}<b, G_{r_{2}}=\left\{|z|<r_{2}\right\}$, where $h(0, t)=0, h_{z}(0, t) \neq 0$ and $h(z, t) \neq 0$ for all $(z, t) \in$ $\{0<|z| \leq 1\} \times[0, T]$;
(iii) the function $f_{0}(z), f_{0}(0)=0$, is holomorphic and univalent in $\bar{G}_{r_{2}}$.

Then for every $1<r_{1}<r_{2}$ there exist a positive constant $a_{0}\left(r_{1}\right)$ and a uniquely determined function $f=f(z, t)$, holomorphic and univalent in $\bar{G}_{r_{1}}$, belonging to $C^{1}\left(\left[0, a_{0}\left(r_{1}\right)\right), \mathcal{H}\left(G_{r_{1}}\right) \cap C^{1}\left(\bar{G}_{r_{1}}\right)\right)$ and satisfying the conditions

$$
\begin{gathered}
\operatorname{Re}\left(\frac{1}{h(z, t)} \frac{\partial f}{\partial t}(z, t) \frac{\overline{\partial f}}{\partial z}(z, t)\right)=g(z, \bar{z}, t) \quad \text { for all }(z, t) \in\{|z|=1\} \times\left(0, a_{0}\left(r_{1}\right)\right) ; \\
\operatorname{Im}\left(\frac{1}{h(z, t)} \frac{\partial f}{\partial t}(z, t) \frac{\partial f}{\partial z}(z, t)\right)(0, t)=0 \quad \text { for } t \in\left(0, a_{0}\left(r_{1}\right)\right) \\
f(z, 0)=f_{0}(z) \quad \text { for } z \in \bar{G}_{r_{1}} \\
f(0, t)=0 \quad \text { for } t \in\left[0, a_{0}\left(r_{1}\right)\right)
\end{gathered}
$$

As a conclusion from Theorem 2 we immediately get a statement concerning the classical Hele-Shaw problem in the plane $(h(z, t)=z, g(z, \bar{z}, t)=1)$.

Corollary 1. Under the assumption that the function $f_{0}(z), f_{0}(0)=0$, is holomorphic and univalent in $\bar{G}_{r_{2}}$, for every $1<r_{1}<r_{2}$ there exist a positive constant $a_{0}\left(r_{1}\right)$ and one and only one holomorphic and univalent in $\bar{G}_{r_{1}}$ function $f=f(z, t) \in C^{1}\left(\left[0, a_{0}\left(r_{1}\right)\right), \mathcal{H}\left(G_{r_{1}}\right) \cap C^{1}\left(\bar{G}_{r_{1}}\right)\right)$ satisfying

$$
\begin{gathered}
\operatorname{Re}\left(\frac{1}{z} \frac{\partial f}{\partial t}(z, t) \frac{\overline{\partial f}}{\partial z}(z, t)\right)=1 \quad \text { for }(z, t) \in\{|z|=1\} \times\left(0, a_{0}\left(r_{1}\right)\right) \\
\operatorname{Im}\left(\frac{1}{z} \frac{\partial f}{\partial t}(z, t) \frac{\overline{\partial f}}{\partial z}(z, t)\right)=0 \quad \text { for } t \in\left(0, a_{0}\left(r_{1}\right)\right) \\
f(z, 0)=f_{0}(z) \quad \text { for } z \in \bar{G}_{r_{1}} \\
f(0, t)=0 \quad \text { for } t \in\left[0, a_{0}\left(r_{1}\right)\right)
\end{gathered}
$$

Remark 3. In connection with the moment problem for holomorphic functions Gustafson [3] studied the conditions

$$
\operatorname{Re}\left(\frac{1}{z} \frac{\partial f}{\partial t}(z, t) \overline{\frac{\partial f}{\partial z}(z, t)}\right)=\left\{\begin{array}{l}
\cos n \varphi=\left(z^{n}+\bar{z}^{n}\right) / 2 \\
\sin n \varphi=\left(z^{n}-\bar{z}^{n}\right) /(2 i)
\end{array} \text { on }|z|=1\right.
$$

instead of (1).
These conditions are special cases of (8), (9) and (10). The conditions (8)-(10) represent the most general conditions for a successful application of the non-linear abstract Cauchy-Kovalevsky Theorem due to Nishida [5].

Remark 4. Comparing (11) $(h(z, t)=z)$ with Gustafsson's condition $f_{z}(0, t)>0$, it is easy to see that this assumption leads to (11). Hence the solutions of Theorem 2 for the classical Hele-Shaw problem coincide with the solutions constructed by Gustafsson in [3]. On the other hand, since $h(z, t) \sim h_{z}(0, t) z$ as $z \rightarrow 0$, (11) is equivalent to the representation $f_{z}(0, t)=\exp (i \alpha) \exp (g(t))$ if we additionally suppose that $h_{z}(0, t)$ is real-valued (α is a real constant, $g=g(t)$ a real-valued continuous function). Thus, (11) really generalizes the condition $f_{z}(0, t)>0$.

Remark 5. From Theorem 1 applied to problem (18) and (19) one obtains the estimate $\sup _{\bar{G}_{r_{1}}}\left|(\partial f(z, t) / \partial z)^{-1}\right| \leq\left\|\left(\partial f_{0} / \partial z\right)^{-1}\right\|_{r_{2}}+R$, where $f=f(z, t)$ is the solution from Theorem 2 and R fulfills $\left\|\left(\partial f_{0} / \partial z\right)^{-1}\right\|_{r_{2}} \geq R$ for all $z \in \bar{G}_{r_{2}}$.

Taking account of Remarks 1 and 2 and the result of [8] that the operator $\partial / \partial z$ is bounded as a mapping of $\mathcal{H}\left(G_{p}\right) \cap C^{\alpha}\left(\bar{G}_{p}\right)$ into $\mathcal{H}\left(G_{p^{\prime}}\right) \cap C^{\alpha}\left(\bar{G}_{p^{\prime}}\right) ;\left(p^{\prime}<p\right.$, $0<\alpha<1$ and $\|\partial / \partial z\|_{p \rightarrow p^{\prime}} \leq C /\left(p-p^{\prime}\right)$), we are able to prove a result corresponding to Theorem 2 based on the scale of Banach spaces

$$
\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}=\left\{\mathcal{H}\left(G_{r_{1}+s\left(r_{2}-r_{1}\right)}\right) \cap C^{\alpha}\left(\bar{G}_{r_{1}+s\left(r_{2}-r_{1}\right)}\right),\|\cdot\|_{s, \alpha}\right\}
$$

For in general a smaller interval $t \in\left[0, b_{0}\right)$ an upper bound for the Hölder-norm of $(\partial f(z, t) / \partial z)^{-1}$ in $\bar{G}_{r_{1}}$ can be obtained by $\left\|\left(\partial f_{0} / \partial z(z)\right)^{-1}\right\|_{r_{2}, \alpha}+R$ with the same R as in the case of the supremum-norms.

4. About the coincidence of the structures of $\left(\partial f_{0} / \partial z\right)^{-1}$ and $(\partial f(z, t) / \partial z)^{-1}$

Gustafsson proved in [3] that, if the initial value $f_{0}(z)$ is a univalent polynomial or a univalent rational function in a neighbourhood of $|z| \leq 1$, then the solution of (1)-(3) is as a function of z of the same structure as $f_{0}(z)$, which means a univalent polynomial or a univalent rational function. In the polynomial case this coincidence of the structures can be expressed by the aid of the derivatives in the following form:

If $\partial f_{0} / \partial z$ is a polynomial which has no zeros in a neighbourhood of $|z| \leq 1$ then also $\partial f(z, t) / \partial z$ is a polynomial which has no zeros in a neighbourhood of $|z| \leq 1$ for t from a suitable right-sided neighbourhood of $t=0$.

Such a formulation cannot be deduced for the rational case from the results of [3].

Using $\left(\partial f_{0} / \partial z\right)^{-1}$ and $(\partial f(z, t) / \partial z)^{-1}$ the last statement concerning the derivatives $\partial f_{0} / \partial z$ and $\partial f(z, t) / \partial z$ gets a new formulation.

If $\left(\partial f_{0} / \partial z\right)^{-1}=1 / P(z)$, where $P(z)$ is a polynomial without zeros in a
neighbourhood of $|z| \leq 1$, then $(\partial f(z, t) / \partial z)^{-1}=1 / Q(z, t)$, where $Q(z, t)$
is a polynomial in z without zeros in a neighbourhood of $|z| \leq 1$ for every t from a right-sided neighbourhood of $t=0$.

In the following we are interested in the proof of a result of the same type. For this purpose, let us choose with arbitrary $0<s_{1}<s_{2}$ the Banach space scale of entire functions

$$
\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}=\left\{E_{s_{1}+\left(s_{2}-s_{1}\right)(1-s)},\|\cdot\|_{s_{1}+\left(s_{2}-s_{1}\right)(1-s)}\right\}_{0<s \leq 1}
$$

where the spaces E_{r} were introduced in Section 2.
Theorem 3. In addition to the assumptions of Corollary 1 suppose that $\left(\partial f_{0} / \partial z\right)^{-1}$ is an entire function belonging to $E_{s_{1}}$. Then it is known that besides the statement of Corollary 1 , there holds $(\partial f(z, t) / \partial z)^{-1} \in C^{1}\left(\left[0, a_{0}\left(s_{2}\right)\right), B_{s_{2}}\right)$ with $s_{2}>s_{1}$ and a certain positive constant $a_{0}\left(s_{2}\right)$. In particular this means that $(\partial f(z, t) / \partial z)^{-1}$ is an entire function for all $t \in\left[0, a_{0}\left(s_{2}\right)\right)$.
$\left(\operatorname{In}\left[0, a_{0}\left(r_{1}, s_{2}\right)\right), a_{0}\left(r_{1}, s_{2}\right)=\min \left(a_{0}\left(s_{2}\right), a_{0}\left(r_{1}\right)\right)\right.$, both properties of $f(z, t)$ are fulfilled.)

Proof. It remains to prove the statement for $(\partial f(z, t) / \partial z)^{-1}$, which follows from the application of Theorem 1 to the problem (18) and (19), equivalently, (17) and (14) with the scale $\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}$.

From Lemma 4 the continuity of $\widetilde{T}_{t}(v)$ as a mapping of B_{s} into itself is clear. Hence we only have to study the behaviour of the differential operator $\partial / \partial z$ and the multiplication operator $z \cdot$ in the scale $\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}$.

For the first let v be a function from E_{r}. Applying Cauchy's integral formula in a small neighbourhood $U_{a}\left(z_{0}\right)$ of a fixed point z_{0} we obtain

$$
\frac{\partial v}{\partial z}\left(z_{0}\right) e^{-r z_{0}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{v(\varrho) e^{-r|\varrho|} e^{r\left(|\varrho|-\left|z_{0}\right|\right)}}{\varrho-z_{0}} d \varphi
$$

with $\varrho=z_{0}+a \exp (i \varphi)$. Using $\left||\varrho|-\left|z_{0}\right|\right| \leq\left|\varrho-z_{0}\right|$ this relation leads to

$$
\left|\frac{\partial v}{\partial z}\left(z_{0}\right) e^{-r\left|z_{0}\right|}\right| \leq\|v\|_{r} e^{a r} / a
$$

With $a=1 / r$ we have $\|\partial v / \partial z\|_{r} \leq e r\|v\|_{r}$. Hence $\partial / \partial z$ is a bounded operator from E_{r}, respectively, from B_{s} into itself. In the second place let v be a function from
E_{r}. Then it cannot be expected, that $z v$ belongs to E_{r}. For example, let us choose $v=\exp (2 z) \in E_{2}$. Then

$$
\sup _{z \in \mathbf{C}}\left|z e^{2 z} e^{-2|z|}\right| \geq \sup _{x \in R^{+}}|x \exp (2 x) \exp (-2 x)|=\infty
$$

as x tends to infinity. But if we consider z as a mapping of E_{r} into $E_{r^{\prime}}$ with $r^{\prime}>r$, then

$$
\|z v\|_{r^{\prime}}=\sup _{z \in \mathbf{C}}\left|z v e^{-r^{\prime}|z|}\right| \leq \sup _{z \in \mathbf{C}}\left|v e^{-r|z|}\right| \sup _{z \in \mathbf{C}}|z| e^{-\left(r^{\prime}-r\right)|z|} \leq\|v\|_{r} \frac{1}{e\left(r^{\prime}-r\right)} .
$$

Hence the multiplication operator $z \cdot$ is a bounded operator in the scale $\left\{B_{s},\|\cdot\|_{s}\right\}$ with $\|z v\|_{s^{\prime}} \leq\|v\|_{s} /\left(e\left(s_{2}-s_{1}\right)\left(s-s^{\prime}\right)\right)$.

As in Lemma 5 one proves that the oprator \mathcal{L}_{0} from (18) satisfies the conditions (5)-(7) from Theorem 1. The application of this Theorem to (18) and (19) with the scale $\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}$ yields the statement for $(\partial f(z, t) / \partial z)^{-1}$. This completes the proof.

Remark 6. Using the scale $\left\{B_{s},\|\cdot\|_{s}\right\}_{0<s \leq 1}$ one can also get the univalence of $f(z, t)$ from that of $f_{0}(z)$. Let us suppose $\left|\left(\partial f_{0} / \partial z\right)^{-1}\right| \geq R>0$ in $\bar{G}_{r_{2}}$ and fix the sphere $\left\|v-\left(\partial f_{0} / \partial z\right)^{-1}\right\|_{s}<R \exp \left(-r_{2} s_{2}\right)$ around $\left(\partial f_{0} / \partial z\right)^{-1}$. Then the application of Theorem 1 to the problem (18) and (19) leads to

$$
\left\|v(z, t)-\left(\partial f_{0}(z) / \partial z\right)^{-1}\right\|_{s}=\left\|(\partial f(z, t) / \partial z)^{-1}-\left(\partial f_{0}(z) / \partial z\right)^{-1}\right\|_{s}<R e^{-r_{2} s_{2}}
$$

But this means that

$$
\max _{G_{r_{2}}}\left|(\partial f(z, t) / \partial z)^{-1}-\left(\partial f_{0}(z) / \partial z\right)^{-1}\right| e^{-\left(s_{1}+\left(s_{2}-s_{1}\right)(1-s)|z|\right)}<R e^{-r_{2} s_{2}}
$$

and

$$
\max _{\bar{G}_{r_{2}}}\left|(\partial f(z, t) / \partial z)^{-1}-\left(\partial f_{0}(z) / \partial z\right)^{-1}\right|<R .
$$

Hence $\partial f(z, t) / \partial z \neq 0$ for all $z \in \bar{G}_{r_{2}}$ and all suitable $t \in\left[0, a_{0}\left(s_{2}\right)\right)$. Then an upper bound for $\left\|(\partial f(z, t) / \partial z)^{-1}\right\|_{s_{2}}$ is $\left\|\left(\partial f_{0}(z) / \partial z\right)^{-1}\right\|_{s_{1}}+R e^{-r_{2} s_{2}}$.

But we point out that the restriction to the above-introduced sphere around $\left(\partial f_{0} / \partial z\right)^{-1}$ can reduce the interval of existence of the solution with regard to t from Corollary 1.

Note. The authors thank the referee for the information about a new reference which gives more of the history and the physical background for equations (1) till (3) and which also contains an up-to-date bibliography for it: S. D. Howison: Complex variable methods in Hele-Shaw moving boundary problems, preprint 1991 (Mathematical Institute, Oxford OX1 3LB, United Kingdom).

References

1. Athanassoulis, G. A. and Makrakis, G. N., A function-theoretic approach to a two-dimensional transient wave-body interaction problem, WMAG Technical Report 3-89, National Technical University of Athens, 106.82 Athens 42, Greece.
2. Duchon, J. and Robert, R., Estimation d'opérateurs intégraux du type de Cauchy dans les échelles d'Ovsjannikov et application, Ann. Inst. Fourier (Grenoble) 36 (1986), 83-95.
3. Gustafsson, B., On a differential equation arising in a Hele-Shaw flow moving boundary problem, Ark. Mat. 22 (1984), 251-268.
4. Kano, T. and Nishida, T., A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves, Osaka J. Math. 23 (1986), 389-413.
5. Nishida, T., A note on a theorem of Nirenberg, J. Diff. Geom. 12 (1977), 629-633.
6. Ovsjannikov, L. V., The Cauchy problem in a Banach space scale of analytic functions, continuum mechanics and related problems of analysis, in Conference 23-29.9.1971 in Tbilisi (Georgia), vol. 11, pp. 219-229, 1974. (Russian)
7. Richardson, S., Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech. 56 (1972), 609-618.
8. Tutschke, W., Solution of Initial Value Problems in Classes of Generalized Analytic Functions, Teubner, Leipzig, and Springer-Verlag, Berlin-Heidelberg, 1989.
9. Vinogradov, Yu. P. and Kufarev, P. P., About a filtration problem, Prikl. Mat. Mekh. 12 (1948), 181-198. (Russian)

Received June 4, 1991

Michael Reissig
Department of Mathematics
Bergakademie Freiberg
Bernhard-von-Cotta-Str. 2
0 -9200 Freiberg
Germany
Lothar v. Wolfersdorf
Department of Mathematics
Bergakademie Freiberg
Bernhard-von-Cotta-Str. 2
$0-9200$ Freiberg
Germany

