A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane

Michael Reissig and Lothar v. Wolfersdorf

0. Introduction

In [7] Richardson derived a mathematical model for describing Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. This model can be represented in the following form (see also [3]): Given $f_0(z)$, $f_0(0)=0$, analytic and univalent in a neighbourhood of $|z|\leq 1$, find f(z,t), analytic and univalent as a function of z in a neighbourhood of $|z|\leq 1$, continuously differentiable with respect to t in a right-sided neighbourhood of t=0, satisfying

(1)
$$\operatorname{Re}\left(\frac{1}{z}\frac{\partial f}{\partial t}(z,t)\overline{\frac{\partial f}{\partial z}(z,t)}\right) = 1 \quad \text{for } |z| = 1;$$

(2)
$$f(z,0) = f_0(z)$$
 for $|z| \le 1$;

$$(3) f(0,t) = 0$$

With the results of Vinogradov–Kufarev [9] one gets the existence and uniqueness of solutions which depend analytically on z and t under the additional assumption $f_z(0,t)>0$. But the proofs in [9] are fairly complicated.

For this reason Gustafsson gave in [3] a more elementary proof of existence and uniqueness of solutions of (1)–(3) in the case that $f_0(z)$ is a polynomial or a rational function. In both cases the solution is of the same sort with regard to z as the initial value $f_0(z)$. The restriction to rational initial values seems to be indispensable for the used reduction of (1) to a finite system of ordinary differential equations in t.

The goal of the present paper is to give a simplified proof for a generalized Hele-Shaw problem containing as a special case the above formulated problem (1)–(3). This proof is based on the application of the non-linear abstract Cauchy–Kovalevsky theorem which was proved by Nishida in [5]. Moreover, this theorem gives uniqueness for solutions depending continuously differentiably on t.

Theorem 1 ([5]). Let us consider the abstract Cauchy-Kovalevsky problem

(4)
$$\frac{dw}{dt} = \mathcal{L}(t, w), \quad w(0) = 0$$

satisfying the following conditions in a scale of Banach spaces $\{B_s, \|\cdot\|_s\}_{0 \le s \le 1}$ (A family of continuously embedded Banach spaces $\{B_s, \|\cdot\|_s\}_{0 \le s \le 1}$ is called a Banach space scale if for all $0 \le s' \le s \le 1$ the norm of the canonical embedding operator $\|I_{s \to s'}\| \le 1$.) (C, K, R and T are certain positive constants independent of s', s, t):

(i) the right-hand side $\mathcal{L}(t, w)$ is a continuous, in t, mapping of

(5)
$$[0,T] \times \{ w \in B_s : ||w||_s < R \}$$
 into $B_{s'}$ for all $0 < s' < s \le 1;$

(ii) the continuous function $\mathcal{L}(t,0)$ satisfies

(6)
$$\|\mathcal{L}(t,0)\|_s \leq K/(1-s)$$
 for all $0 < s < 1;$

(iii) for all $0 < s' < s \le 1$, $t \in [0,T]$ and w_1, w_2 belonging to $\{||w||_s < R\}$ we have

(7)
$$\|\mathcal{L}(t,w_1) - \mathcal{L}(t,w_2)\|_{s'} \le \frac{C}{s-s'} \|w_1 - w_2\|_{s'}$$

Under these assumptions there exists one and only one solution

$$w \in C^1([0, a_0(1-s)), B_s)_{0 < s < 1}, \quad ||w(t)||_s < R,$$

where a_0 is a suitable positive constant.

This theorem represents an essential tool for solving non-linear time-dependent mixed problems for harmonic or holomorphic functions in the mathematical literature ([1, 2, 4, 6]). Our problem (1)–(3) is of such a type. We shall show that after the reduction of the generalized Hele-Shaw problem to an equivalent problem for $w=(\partial f/\partial z)^{-1}$, which fulfills all the conditions (5)–(7) in suitable scales of Banach spaces, the abstract theorem is applicable and yields immediately the main result of [9] as a special case.

The result of Gustafsson [3] can be interpreted as a regularity result concerning the corresponding structures of the initial value and the solution. A result of the same type is derived at the end of this paper for $(\partial f/\partial z)^{-1}$ or $(\partial f_0/\partial z)^{-1}$ belonging to special classes of entire functions.

102

A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane 103

1. Heuristic considerations and the derivation of a scale-type problem

Let us start with a generalization of (1) to

(8)
$$\operatorname{Re}\left(\frac{1}{h(z,t)}\frac{\partial f}{\partial t}(z,t)\overline{\frac{\partial f}{\partial z}(z,t)}\right) = g(z,\bar{z},t)$$

for all |z|=1 and t>0, where

(i) the real-valued function $g=g(z, \overline{z}, t)$ is continuous on $\{|z|=1\} \times [0, T]$ and possesses a holomorphic extension from |z|=1 into a circular ring

(9)
$$K_b = \{1/b < |z| < b\}, \quad b > 1, \quad \text{for all } t \in [0, T];$$

(ii) the function h=h(z,t) is continuous in $t \in [0,T]$ and for each such t analytic in a neighbourhood of

(10)
$$|z| \le 1, \quad h(0,t) = 0, \quad h_z(0,t) \ne 0 \quad \text{for all } t \in [0,T]$$

and

$$h(z,t) \neq 0$$
 for all $(z,t) \in \{0 < |z| \le 1\} \times [0,T]$

Setting h(z,t)=z and $g(z, \overline{z}, t)=1$ in (8) we have the condition (1). The condition (8) is equivalent to

$$\operatorname{Re}\left(\frac{1}{h(z,t)}\frac{\partial f}{\partial t}(z,t)\left(\frac{\partial f}{\partial z}\right)^{-1}(z,t)\right) = \left|\frac{\partial f}{\partial z}(z,t)\right|^{-2}g(z,\bar{z},t)$$

From the assumptions (3), (9), (10) and the univalence of f(z, t) in a neighbourhood of $\{|z| \le 1\}$ for all $t \in [0, T]$ we get the holomorphy of

$$rac{\partial f}{\partial t}(z,t) igg(rac{\partial f}{\partial z}igg)^{-1}(z,t)/h(z,t)$$

in $\{|z|<1\}$. Using (8) and the fact that every holomorphic function in $\{|z|<1\}$ with prescribed real part on $\{|z|=1\}$ is uniquely determined by the value for the imaginary part in z=0 we are able to formulate the additional condition

(11)
$$\operatorname{Im}\left(\frac{1}{h(z,t)}\frac{\partial f}{\partial t}(z,t)\left(\frac{\partial f}{\partial z}\right)^{-1}(z,t)\right)(0,t) = 0.$$

The application of the Schwarz formula leads to

(12)
$$\frac{\partial f}{\partial t}(z,t) - h(z,t)\frac{\partial f}{\partial z}(z,t)\frac{1}{2\pi i}\int_{|z|=1}\left|\frac{\partial f}{\partial \varrho}\right|^{-2}g(\varrho,\bar{\varrho},t)\frac{\varrho+z}{\varrho-z}\frac{d\varrho}{\varrho} = 0$$

for |z|<1. For our further investigations we need the space $\mathcal{H}(G_r)\cap C(\overline{G}_r)$, that is the space of all complex-valued functions defined and continuous in \overline{G}_r and holomorphic in $G_r = \{|z| < r\}$. In the same manner we introduce the spaces $\mathcal{H}(G_r) \cap C^{\alpha}(\overline{G}_r)$, $\mathcal{H}(G_r) \cap C^1(\overline{G}_r)$ and $\mathcal{H}(G_r) \cap C^{1,\alpha}(\overline{G}_r)$. **Lemma 1.** Let us suppose that $f(z,t) \in C^1([0,a_0), \mathcal{H}(G_1) \cap C^1(\overline{G}_1))$ is for each $t \in [0,a_0)$ a univalent function in $|z| \leq 1$ and in $G_1 \times (0,a_0)$ a solution of the problem (8), (11), (2) and (3), and equivalently, of the problem (12), (2) and (3). Then $v(z,t) = (\partial f/\partial z)^{-1} \in C^1([0,a_0), \mathcal{H}(G_1) \cap C(\overline{G}_1))$ is a solution of

(13)
$$\frac{\partial v}{\partial t} - hT_t(v)\frac{\partial v}{\partial z} + v\frac{\partial}{\partial z}(hT_t(v)) = 0 \quad for \ (z,t) \in G_1 \times (0,a_0),$$

(14)
$$v(z,0) = v_0(z) = (\partial f_0/\partial z)^{-1} \quad \text{for } z \in \overline{G}_1,$$

where $v(z,t) \neq 0$.

Here $T_t(v)$ denotes the non-linear operator

(15)
$$T_t(v) := \frac{1}{2\pi i} \int_{\partial G_1} |v(\varrho)|^2 g(\varrho, \bar{\varrho}, t) \frac{\varrho + z}{\varrho - z} \frac{d\varrho}{\varrho}$$

Conversely, let us suppose that $v(z,t) \in C^1([0,a_1), \mathcal{H}(G_1) \cap C(\overline{G}_1))$ is a solution of (13) and (14) with $v(z,t) \neq 0$ in $\overline{G}_1 \times [0,a_0)$. Then $f(z,t) = \int_0^z (d\varrho)/(v(\varrho,t))$ belonging to $C^1([0,a_0), \mathcal{H}(G_1) \cap C^1(\overline{G}_1))$ represents a locally univalent solution of (12), (2), and (3) and, equivalently, of (8), (11), (2) and (3) in $\overline{G}_1 \times [0,a_0)$.

Proof. Let f = f(z, t) as a univalent solution of (12), (2) and (3) satisfy the conditions of this lemma. Then $v = (\partial f/\partial z)^{-1}$ belongs to $C^1([0, a_0), \mathcal{H}(G_1) \cap C(\overline{G}_1))$. Differentiating (12) with respect to z, one obtains with $v = (\partial f/\partial z)^{-1}$

$$\frac{\partial (1/v)}{\partial t} - hT_t(v)\frac{\partial (1/v)}{\partial z} - \frac{1}{v}\frac{\partial}{\partial z}(hT_t(v)) = 0,$$

and hence,

$$\frac{\partial v}{\partial t} - hT_t(v)\frac{\partial v}{\partial z} + v\frac{\partial}{\partial z}(hT_t(v)) = 0 \quad \text{with } v(z,0) = (\partial f_0/\partial z)^{-1}.$$

Conversely, if $v \in C^1([0, a_0), \mathcal{H}(G_1) \cap C(\overline{G}_1))$ solves (13) and (14) with $v(z, t) \neq 0$ in $\overline{G}_1 \times [0, a_0)$, then 1/v belongs to $C^1([0, a_0), \mathcal{H}(G_1) \cap C(\overline{G}_1))$ and f belongs to $C^1([0, a_0), \mathcal{H}(G_1) \cap C^1(\overline{G}_1))$, where $\partial_z f(z, t) \neq 0$. Hence, f is locally univalent. The definition of f implies f(0, t) = 0 for $t \in [0, a_0)$. Furthermore,

$$f(z,0) = \int_0^z \frac{d\varrho}{v(\varrho,0)} = \int_0^z \frac{\partial f_0}{\partial \varrho} \, d\varrho = f_0(z) - f_0(0) = f_0(z).$$

Thus the conditions (2) and (3) are fulfilled.

If v solves (13), then the same reasoning as above gives

$$\frac{\partial}{\partial z} \left(\frac{\partial f}{\partial t} - hT_t \left(\left(\frac{\partial f}{\partial \varrho} \right)^{-1} \right) \frac{\partial f}{\partial z} \right) = 0.$$

For $t \in (0, a_0)$ the term in the brackets is holomorphic in G_1 , hence,

$$\frac{\partial f}{\partial t} - h \frac{\partial f}{\partial z} T_t \left(\left(\frac{\partial f}{\partial \varrho} \right)^{-1} \right) = k(t),$$

a constant depending on t. Inserting z=0, this shows that k(t)=0, hence (12) is satisfied.

Finally from the holomorphy of $(1/h)(\partial f/\partial t)(\partial f/\partial z)^{-1}$ we obtain (8) and (11).

Remark 1. An analogous statement is valid for $f \in C^1([0, a_0), \mathcal{H}(G_1) \cap C^{1,\alpha}(\overline{G}_1))$ and $v \in C^1([0, a_0), \mathcal{H}(G_1) \cap C^{\alpha}(\overline{G}_1))$ instead of $f \in C^1([0, a_0), \mathcal{H}(G_1) \cap C^1(\overline{G}_1))$ and $v \in C^1([0, a_0), \mathcal{H}(G_1) \cap C(\overline{G}_1))$.

The lemma of equivalence just proved makes it possible to restrict ourselves to the problem (13) and (14). This is a scale-type problem. Thus it remains to show how we can interpret the problem (13) and (14) as a special case of (4) (see Section 3).

There is a gap between Richardson's mathematical model and Lemma 1. In Lemma 1 we obtain in the converse direction merely the local univalence of f(z,t). But the following statement holds:

Suppose, that

(i) the initial value $f_0(z)$ from (2) is an analytic and univalent function in $\overline{G}_r, r>1$;

(ii) the family $\{f_t(z)\}$ of analytic functions belongs to $C([0,T], \mathcal{H}(G_{r'}) \cap C(\overline{G}_{r'})), r' < r.$

Then there exists a positive constant $T_0(r')$ such that $f_t(z)$ is univalent in $\overline{G}_{r'}$ for all $t \in [0, T_0(r'))$.

Using this statement the conditions

(i) univalence of the analytic function $f_0(z)$ in \overline{G}_r ;

(ii) $v \in C^1([0, a_0), \mathcal{H}(G_{r'}) \cap C(\overline{G}_{r'}))$ with $v(z, t) \neq 0$;

imply the univalence of f(z, t) for small t in a neighbourhood of $\{|z| \le 1\}$.

In Chapter 3 we shall prove the existence of such functions v=v(z,t) as solutions of a modified problem to (13) and (14).

2. About the action of an operator \widetilde{T}_t representing a continuation of T_t in some Banach spaces

Let v be in $C([0,T], H(G_r) \cap C(\overline{G_r}))$ with r > 1. Then $T_t(v)$ belongs to $\mathcal{H}(G_1)$

for each $t \in [0, T]$. But moreover $T_t(v)$ possesses an analytic continuation in a larger domain depending on G_r and K_b from (9).

Lemma 2. For an arbitrary $v \in \mathcal{H}(G_r) \cap C(G_r)$ the image $T_t(v)$ of the nonlinear operator T_t applied to v can be analytically continued into G_{r_0} with $r_0 = \min(b, r)$.

Proof. From (15) we get

$$\begin{split} T_t(v) &= \frac{1}{2\pi i} \int_{\partial G_1} |v(\varrho)|^2 g(\varrho, \bar{\varrho}, t) \frac{\varrho + z}{\varrho - z} \frac{d\varrho}{\varrho} \\ &= \frac{1}{2\pi i} \int_{\partial G_1} v(\varrho) \overline{v(1/\bar{\varrho})} g(\varrho, 1/\varrho, t) \frac{\varrho + z}{\varrho - z} \frac{d\varrho}{\varrho} \quad \text{for all } z \in G_1. \end{split}$$

The assumption $v \in \mathcal{H}(G_r) \cap C(\overline{G}_r)$ and (9) guarantee that the kernel of the integral is holomorphic in the set $\{1/r_0 < |\varrho| < r_0\} \setminus \{z\}$ for all $t \in [0,T]$ and $z \in G_1$. Consequently,

$$T_t(v) = \frac{1}{2\pi i} \int_{\partial G_a} v(\varrho) \overline{v(1/\bar{\varrho})} \, g(\varrho, 1/\varrho, t) \, \frac{\varrho + z}{\varrho - z} \, \frac{d\varrho}{\varrho}$$

for all $z \in G_1$ and $1 < a < r_0$. Obviously, the right-hand-side can be defined for all $z \in G_a$, and $T_t(v)$ possesses an analytic continuation

(16)
$$\widetilde{T}_{t}(v) = \frac{1}{2\pi i} \int_{\partial G_{a}} v(\varrho) \overline{v(1/\bar{\varrho})} g(\varrho, 1/\varrho, t) \frac{\varrho + z}{\varrho - z} \frac{d\varrho}{\varrho}$$

belonging to $\mathcal{H}(G_a)$. Since $G_{r_0} = \bigcup_{1 < a < t_0} G_a$ the operator \widetilde{T}_t maps $\mathcal{H}(G_r)$ into $\mathcal{H}(G_{r_0})$. For all $z \in G_1$ we conclude $\widetilde{T}_t(v)(z) = T_t(v)(z)$. Hence $\widetilde{T}_t(v)$ represents an analytic continuation of $T_t(v)$ for $v \in \mathcal{H}(G_r) \cap C(\overline{G}_r)$ into G_{r_0} .

There arises the question whether it is possible to estimate the action of T_t as a mapping of a Banach space B into itself. In the next lemma we shall give a positive answer for the case $B = \mathcal{H}(G_p) \cap C(\overline{G}_p), 1 .$

Lemma 3. (a) For every function v from $\mathcal{H}(G_p) \cap C(\overline{G}_p)$ the following estimate connecting the norms $\|v\|_p = \sup_{G_p} |v|$ and $\|\widetilde{T}_t(v)\|_p = \sup_{G_p} |\widetilde{T}_t(v)|$ holds:

$$\|\widetilde{T}_t(v)\|_p \le C(p,g) \|v\|_p^2$$

where the constant C is independent of $v \in \mathcal{H}(G_p) \cap C(\overline{G}_p)$ and $t \in [0,T]$. Moreover, we obtain for all $v_1, v_2 \in B$ with $||v_1||_p, ||v_2||_p < R$ the Lipschitz condition

$$\|\widetilde{T}_t(v_1) - \widetilde{T}_t(v_2)\|_p \le 2C(p,g)R\|v_1 - v_2\|_p$$

(b) The family of operators $\{\widetilde{T}_t(v)\}_{t\in[0,T]}$ depends continuously on $t\in[0,T]$. This means

$$\lim_{t_1 \to t_2} \|\widetilde{T}_{t_1}(v) - \widetilde{T}_{t_2}(v)\|_p = 0 \quad for \ all \ v \in \mathcal{H}(G_p) \cap C(\overline{G}_p).$$

Proof. (a) Let us remember that

$$\widetilde{T}_t(v) = \frac{1}{2\pi i} \int_{\partial G_p} v(\varrho) \overline{v(1/\bar{\varrho})} \, g(\varrho, 1/\varrho, t) \, \frac{\varrho + z}{\varrho - z} \, \frac{d\varrho}{\varrho}.$$

Using the holomorphy of $v(\varrho)\overline{v(1/\bar{\varrho})}g(\varrho, 1/\varrho, t)(\varrho+z)/\varrho$ in $\{1/p < |\varrho| < p\}$, we obtain for all $z \in \partial G_{p'}, p' \to p$, and $t \in [0, T]$

$$\begin{split} \widetilde{T}_{t}(v)(z) &= \frac{1}{2\pi i} \int_{\partial G_{1/p}} v(\varrho) \overline{v(1/\bar{\varrho})} \, g(\varrho, 1/\varrho, t) \frac{\varrho + z}{\varrho - z} \frac{d\varrho}{\varrho} \\ &+ \frac{1}{2\pi i} \int_{\partial \mathcal{U}_{a}(z)} v(\varrho) \overline{v(1/\bar{\varrho})} \, g(\varrho, 1/\varrho, t) \frac{\varrho + z}{\varrho - z} \frac{d\varrho}{\varrho}, \end{split}$$

where $\mathcal{U}_a(z)$ is a sufficiently small neighbourhood of z contained in G_p . From Cauchy's integral formula and a simple estimation it follows that

$$\begin{split} \widetilde{T}_{t}(v)(z) &| \leq \bigg| \frac{1}{2\pi} \int_{0}^{2\pi} v\Big(\frac{1}{p} e^{i\varphi}\Big) \overline{v(pe^{i\varphi})} g\Big(\frac{1}{p} e^{i\varphi}, pe^{-i\varphi}, t\Big) \frac{e^{i\varphi}/p + z}{e^{i\varphi}/p - z} \, d\varphi \\ &+ 2 \big| v(z) v(1/\bar{z}) g(z, 1/z, t) \big| \\ &\leq \|v\|_{p}^{2} \sup_{(z,t) \in \{1/p < |z| < p\} \times [0,T]} \big| g(z, 1/z, t) \big| \bigg(2 + \frac{|z| + 1/p}{|z| - 1/p}\bigg) \end{split}$$

for all $z \in \partial G_{p'}$. But the continuity of v in \overline{G}_p guarantees that the last inequality remains valid for all $z \in \partial G_p$. Hence, by the maximum principle

$$\|\widetilde{T}_t(v)\|_p = \sup_{z \in G_p} |\widetilde{T}_t(v)(z)| \le C(p,g) \|v\|_p^2$$

with

$$C(p,g) = \sup_{(z,t) \in \{1/p < |z| < p\} \times [0,T]} \left| g(z,1/z,t) \right| \left(2 + \frac{p^2 + 1}{p^2 - 1} \right).$$

By (9) and 1 the constant <math>C(p, g) is finite. The same reasoning leads to the Lipschitz condition.

(b) As in the proof of (a) one deduces

$$\|\widetilde{T}_{t_1}(v)(z) - \widetilde{T}_{t_2}(v)(z)\|_p \le \left(2 + \frac{p^2 + 1}{p^2 - 1}\right) \sup_{z \in \{1/p < |z| < p\}} \left|g(z, 1/z, t_1) - g(z, 1/z, t_2)\right| \le \varepsilon$$

for $|t_1-t_2|$ sufficiently small and all 1 , taking into consideration the uniform continuity of <math>g in $\{1/p \le |z| \le p\} \times [0, T]$.

Remark 2. It is possible to prove a corresponding inequality between $||v||_{p,\alpha}$ and $||\widetilde{T}_t(v)||_{p,\alpha}, 0 < \alpha < 1$, where $||v||_{p,\alpha}$ denotes the Hölder-norm of $v \in \mathcal{H}(G_p) \cap C^{\alpha}(\overline{G}_p)$. The proof of $||\widetilde{T}_t(v)||_{p,\alpha} \leq C(p,\alpha,g) ||v||_{p,\alpha}^2$ is omitted.

For proving a regularity result for $(\partial f/\partial z)^{-1}$ in the sense of the results in [3] the next lemma represents an essential tool. For the formulation of this lemma we choose the following family $\{E_r\}_{r>0}$ of Banach spaces of entire functions:

$$\{E_r\}_{r>0} = \left\{ v \in \mathcal{H}(\mathbf{C}) : \sup_{z \in \mathbf{C}} \left| v(z)e^{-r|z|} \right| = \|v\|_r < \infty \right\}_{r>0}.$$

Now we are choosing g=1 in (16).

Lemma 4. The operator

$$\widetilde{T}(v)(z) = \frac{1}{2\pi i} \int_{\partial G_a} v(\varrho) v(\overline{1/\bar{\varrho}}) \, \frac{\varrho + z}{\varrho - z} \, \frac{d\varrho}{\varrho},$$

 $z \in G_a$, a > 1 arbitrary, maps E_r into itself, where $\|\widetilde{T}(v)\|_r \leq \frac{11}{3} \exp(5r/2) \|v\|_r^2$.

Moreover, we obtain for all $v_1, v_2 \in E_r$ with $||v_1||_r, ||v_2||_r < R$ the Lipschitz condition $\|\widetilde{T}_t(v_1) - \widetilde{T}_t(v_2)\|_r \le \frac{22}{3}Re^{5r/2}||v_1 - v_2||_r$.

Proof. Supposing $v \in E_r$ the above-defined function $\widetilde{T}(v)(z)$ makes sense for all $z \in \mathbb{C}$. This follows from the fact that $v(\varrho)\overline{v(1/\bar{\varrho})}(\varrho+z)$ is holomorphic in $\mathbb{C} \setminus \{0\}$. Hence $\widetilde{T}(v)$ is an entire function.

Now let us fix $z_0 \in \mathbb{C}$ with $|z_0| \ge 2$. Then as in the proof of Lemma 3(a) we arrive at

$$\widetilde{T}(v)(z_0) = \frac{1}{2\pi i} \int_{\partial G_{1/b}} v(\varrho) \overline{v(1/\bar{\varrho})} \frac{\varrho + z_0}{\varrho - z_0} \frac{d\varrho}{\varrho} + 2v(z_0) \overline{v(1/\bar{z}_0)}$$

for an arbitrary $b > |z_0|$, and

$$\widetilde{T}(v)(z_0) \exp(-r|z_0|) = \frac{1}{2\pi i} \int_{\partial G_{1/b}} v(\varrho) \overline{v(1/\bar{\varrho})} e^{-r/|\varrho|} e^{r(1/|\varrho| - |z_0|)} \frac{\varrho + z_0}{\varrho - z_0} \frac{d\varrho}{\varrho} + 2v(z_0) e^{-r|z_0|} \overline{v(1/\bar{z}_0)}.$$

But this leads immediately to

$$\begin{split} \left| \widetilde{T}(v)(z_0) e^{-r|z_0|} \right| &\leq \frac{5}{3} \max_{\substack{|z|=1/b}} |v(z)| \max_{\substack{|z|=b}} |v(z)e^{-r|z|} |e^{-r(b-|z_0|)} \\ &+ 2 \max_{\substack{|z|=1/2}} |v(z)| |v(z_0)|e^{-r|z_0|} \\ &\leq \frac{11}{3} \max_{\substack{|z|=1/2}} |v(z)| \|v\|_r \end{split}$$

if one takes into account that

$$\frac{|z_0|+1/b}{|z_0|-1/b} \le \frac{|z_0|+\frac{1}{2}}{|z_0|-\frac{1}{2}} \le \frac{5}{3} \quad \text{for } |z_0| \ge 2, \ b > 0$$

and $e^{r(b-|z_0|)} \rightarrow 1$ for $|z_0| \rightarrow b$.

From the definition of $||v||_r$ we obtain

$$\max_{|z|=1/2} |v(z)| \le \|v\|_r e^{r/2} \quad \text{and} \quad \max_{|z|=2} |v(z)| \le \|v\|_r e^{2r}.$$

Thus it is possible to draw the following two conclusions:

$$\left| \widetilde{T}(v)(z_0) e^{-r|z_0|} \right| \leq \tfrac{11}{3} e^{r/2} \|v\|_r^2 \quad \text{for each } z_0 \in C \text{ with } |z_0| \geq 2,$$

 and

$$\left|\widetilde{T}(v)(z_0)e^{-r|z_0|}\right| \leq \max_{|z|=2} \left|\widetilde{T}(v)(z)e^{-2r}e^{2r}\right| \leq \frac{11}{3}e^{5r/2} \|v\|_r^2,$$

for each $z_0 \in C$ with $|z_0| < 2$.

But these conclusions yield $\|\widetilde{T}(v)\|_r \leq \frac{11}{3}e^{5r/2}\|v\|_r^2$.

The same reasoning gives the Lipschitz condition.

In this section we introduced the operator $\tilde{T}_t(v)$ and studied some of its properties as for example the relation between T_t and \tilde{T}_t . The results obtained are useful in examining the problem

(17)
$$\frac{\partial v}{\partial t} - h\widetilde{T}_t(v)\frac{\partial v}{\partial z} + v\frac{\partial}{\partial z}(h\widetilde{T}_t(v)) = 0, \quad v(z,0) = v_0(z) = (\partial f_0/\partial z)^{-1}.$$

The restriction of a solution $v \in C^1([0, a_0), \mathcal{H}(G_r) \cap C(\overline{G}_r))$ of this problem to $(z, t) \in \overline{G}_1 \times [0, a_0)$ represents a solution $v \in C^1([0, a_0), \mathcal{H}(G_1) \cap C(\overline{G}_1))$ of (13) and (14).

3. The problem (17) and (14) as a special case of (4)

To apply Theorem 1 to the problem (17) and (14), we only have to show that the conditions (5)–(7) are fulfilled. The assumptions concerning f_0 and h guarantee the existence of constants $1 < r_2 < b$ and R > 0 such that

$$R \leq |v_0(z)| = |(\partial f_0/\partial z)^{-1}| \quad \text{in } \overline{G}_{r_2},$$

and $h \in C([0,T], \mathcal{H}(G_{r_2}) \cap C(\overline{G}_{r_2}))$. For a fixed $1 < r_1 < r_2$ let us choose the Banach space scale

$$\{B_s, \|\cdot\|_s\}_{0 < s \le 1} = \{\mathcal{H}(G_{r_1 + s(r_2 - r_1)}) \cap C(\overline{G}_{r_1 + s(r_2 - r_1)}), \sup_{G_{r_1 + s(r_2 - r_1)}} |\cdot|\}_{0 < s \le 1}$$

Following Lemma 1 $(v(z,t)\neq 0)$ it is necessary to choose the sphere

$$\{w \in B_s : ||w||_s < R\}.$$

Introducing $w(z,t)=v(z,t)-v_0(z)$, this implies a homogeneous initial condition. Thus the problem (17) and (14) can be transformed to

(18)
$$\frac{\partial w}{\partial t} = \mathcal{L}_0(t, w) = -(w + v_0) \frac{\partial}{\partial z} (h \widetilde{T}_t(w + v_0)) + h \widetilde{T}_t(w + v_0) \frac{\partial}{\partial z} (w + v_0),$$

$$(19) w(z,0) = 0$$

Lemma 5. The operator \mathcal{L}_0 satisfies in the above-introduced Banach space scale $\{B_s, \|\cdot\|_s\}_{0 \le s \le 1}$ the conditions (5)–(7) of Theorem 1.

Proof. Every space B_s forms a Banach algebra. Consequently, from Lemma 3(a), $v_0 \in B_1$ and $h \in C([0,T], B_1)$ we conclude that $h\widetilde{T}_t(w+v_0) \in B_s$ for all $0 < s \leq 1$ and all $w \in B_s$. Using the result of Tutschke [8] that $\partial/\partial z$ is a bounded operator as the mapping of B_s into B'_s with $\|\partial/\partial z\|_{s \to s'} \leq ((r_2 - r_1)(s - s'))^{-1}$ one obtains $\mathcal{L}_0(t,w) \in B_{s'}$ for every $(t,w) \in [0,T] \times \{w \in B_s : \|w\|_s < R\}$. From Lemma 3(b) it follows that for a given $w \in B_s$ the term $\widetilde{T}_t(w+v_0)$ depends continuously on t. But this leads to $\lim_{t_1 \to t_2} \|\mathcal{L}_0(t_1,w) - \mathcal{L}_0(t_2,w)\|_{s'} = 0$ for all $t_1, t_2 \in [0,T]$ and all $w \in B_s$. This proves (5).

Let us further consider the difference

$$\begin{split} \mathcal{L}_0(t,w_1) - \mathcal{L}_0(t,w_2) &= -(w_1 - w_2) \frac{\partial}{\partial z} (h \widetilde{T}_t(w_1 + v_0)) - (w_2 + v_0) \frac{\partial}{\partial z} \left(h (\widetilde{T}_t(w_1 + v_0)) - \widetilde{T}_t(w_2 + v_0) \right) \right) \\ &- \widetilde{T}_t(w_2 + v_0) \right) + h (\widetilde{T}_t(w_1 + v_0) - \widetilde{T}_t(w_2 + v_0)) \frac{\partial}{\partial z} (w_1 + v_0) \\ &+ h \widetilde{T}_t(w_2 + v_0) \frac{\partial}{\partial z} (w_1 - w_2). \end{split}$$

A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane 111

Using

$$\left\| \frac{\partial}{\partial z} (w_1 - w_2) \right\|_p \le 2C(p,g)(R + \|v_0\|_1) \|w_1 - w_2\|_p$$

for all $w_1, w_2 \in \mathcal{H}(G_p) \cap C(\overline{G}_p)$ with $||w_1||_p, ||w_2||_p < R$ and all $t \in [0, T]$ the following estimates are valid in $\{B_s, \|\cdot\|_s\}_{0 \le s \le 1}$:

$$\begin{split} \|\mathcal{L}_{0}(t,w_{1}) - \mathcal{L}_{0}(t,w_{2})\|_{s'} &\leq \|w_{1} - w_{2}\|_{s} \|h\|_{1} \frac{\|T_{t}(w_{1}+v_{0})\|_{s}}{(s-s')(r_{2}-r_{1})} \\ &+ \frac{\|h\|_{1}\|w_{2}+v_{0}\|_{s}}{(s-s')(r_{2}-r_{1})} \|\widetilde{T}_{t}(w_{1}+v_{0}) - \widetilde{T}_{t}(w_{2}+v_{0})\|_{s} \\ &+ \|h\|_{1} \|\widetilde{T}_{t}(w_{1}+v_{0}) - \widetilde{T}_{t}(w_{2}+v_{0})\|_{s} \frac{\|w_{1}+v_{0}\|_{s}}{(s-s')(r_{2}-r_{1})} \\ &+ \|h\|_{1} \|\widetilde{T}_{t}(w_{2}+v_{0})\|_{s} \frac{\|w_{1}-w_{2}\|_{s}}{(r_{2}-r_{1})(s-s')} \\ &\leq \frac{\|w_{1}-w_{s}\|_{2}}{(s-s')(r_{2}-r_{1})} \|h\|_{1} (R+\|v_{0}\|_{1})^{2} 6C(r_{2},r_{1},g) \end{split}$$

with

$$C(r_2, r_1, g) = \sup_{(z,t) \in \{1/r_2 < |z| < r_2\} \times [0,T]} \left| g(z, 1/z, t) \right| \left(2 + \frac{r_2^2 + 1}{r_1^2 - 1} \right).$$

So, also (7) is proved.

Finally, in the same manner it can be verified that

$$\|\mathcal{L}_{0}(t,0)\|_{s} = \left\|v_{0}\frac{\partial}{\partial z}(h\widetilde{T}_{t}(v_{0})) - h\widetilde{T}_{t}(v_{0})\frac{\partial}{\partial z}v_{0}\right\|_{s} \leq K/(1-s)$$

with a certain constant K independent of s and t. Hence also (6) is true, which completes the proof of this lemma.

Now the application of Theorem 1 to the problem (18) and (19) yields one and only one solution

$$w \in C^1\left([0, a_0(1-s)), \mathcal{H}(G_{r_1+s(r_2-r_1)}) \cap C(\overline{G}_{r_1+s(r_2-r_1)})\right)_{0 < s < 1}$$

with $\sup_{G_{r_1+s(r_2-r_1)}} |w(z,t)| < R$ for all $t \in [0, a_0(1-s))$. But then $v(z,t) = w(z,t) + v_0(z)$ represents a solution

 $v \in C^1 \big([0, a_0(1-s)), \mathcal{H}(G_{r_1+s(r_2-r_1)}) \cap C(\overline{G}_{r_1+s(r_2-r_1)}) \big)_{0 \le s \le 1}$ of the problem (17) and (14) with $\sup_{G_{r_1+s(r_2-r_1)}} |v(z,t)| > 0$ for all $t \in [0, a_0(1-s))$.

The coincidence of the operators \tilde{T}_t and T_t for all $v \in \mathcal{H}(G_1) \cap C(\bar{G}_1)$ guarantees that the restriction of v(z,t) to $C^1([0,a_0), \mathcal{H}(G_{r_1}) \cap C(\overline{G}_{r_1}))$ is a solution of (13) and (14) with $\sup_{G_{r_*}} |v(z,t)| > 0$ for all $t \in [0, a_0)$. From this result together with Lemma 1, the end of Chapter 1 and the equivalence of (12) with (8) and (11) we get the following theorem concerning problem (8), (2) and (3).

Theorem 2. Suppose that

(i) the real-valued function $g=g(z, \overline{z}, t)$ is continuous in $\{|z|=1\} \times [0, T]$ and possesses a holomorphic extension into a circular ring $K_b = \{1/b < |z| < b\}$ for all $t \in [0, T]$;

(ii) the function h=h(z,t) belongs to the space $C([0,T], \mathcal{H}(G_{r_2})\cap C(\overline{G}_{r_2})), 1 < r_2 < b, G_{r_2} = \{|z| < r_2\}, \text{ where } h(0,t) = 0, h_z(0,t) \neq 0 \text{ and } h(z,t) \neq 0 \text{ for all } (z,t) \in \{0 < |z| \le 1\} \times [0,T];$

(iii) the function $f_0(z)$, $f_0(0)=0$, is holomorphic and univalent in \overline{G}_{r_2} .

Then for every $1 < r_1 < r_2$ there exist a positive constant $a_0(r_1)$ and a uniquely determined function f = f(z,t), holomorphic and univalent in \overline{G}_{r_1} , belonging to $C^1([0, a_0(r_1)), \mathcal{H}(G_{r_1}) \cap C^1(\overline{G}_{r_1}))$ and satisfying the conditions

$$\begin{split} \operatorname{Re} & \left(\frac{1}{h(z,t)} \frac{\partial f}{\partial t}(z,t) \overline{\frac{\partial f}{\partial z}(z,t)} \right) = g(z,\overline{z},t) \quad for \ all \ (z,t) \in \{|z|=1\} \times (0,a_0(r_1)); \\ & \operatorname{Im} \left(\frac{1}{h(z,t)} \frac{\partial f}{\partial t}(z,t) \overline{\frac{\partial f}{\partial z}(z,t)} \right) (0,t) = 0 \quad for \ t \in (0,a_0(r_1)); \\ & f(z,0) = f_0(z) \quad for \ z \in \overline{G}_{r_1}; \\ & f(0,t) = 0 \quad for \ t \in [0,a_0(r_1)). \end{split}$$

As a conclusion from Theorem 2 we immediately get a statement concerning the classical Hele-Shaw problem in the plane $(h(z,t)=z, g(z,\bar{z},t)=1)$.

Corollary 1. Under the assumption that the function $f_0(z)$, $f_0(0)=0$, is holomorphic and univalent in \overline{G}_{r_2} , for every $1 < r_1 < r_2$ there exist a positive constant $a_0(r_1)$ and one and only one holomorphic and univalent in \overline{G}_{r_1} function $f=f(z,t)\in C^1([0,a_0(r_1)),\mathcal{H}(G_{r_1})\cap C^1(\overline{G}_{r_1}))$ satisfying

$$\begin{split} \operatorname{Re} & \left(\frac{1}{z} \frac{\partial f}{\partial t}(z, t) \overline{\frac{\partial f}{\partial z}(z, t)} \right) = 1 \quad for \ (z, t) \in \{ |z| = 1 \} \times (0, a_0(r_1)); \\ & \operatorname{Im} \left(\frac{1}{z} \frac{\partial f}{\partial t}(z, t) \overline{\frac{\partial f}{\partial z}(z, t)} \right) = 0 \quad for \ t \in (0, a_0(r_1)); \\ & f(z, 0) = f_0(z) \quad for \ z \in \overline{G}_{r_1}; \\ & f(0, t) = 0 \quad for \ t \in [0, a_0(r_1)). \end{split}$$

Remark 3. In connection with the moment problem for holomorphic functions Gustafson [3] studied the conditions

$$\operatorname{Re}\left(\frac{1}{z}\frac{\partial f}{\partial t}(z,t)\overline{\frac{\partial f}{\partial z}(z,t)}\right) = \begin{cases} \cos n\varphi = (z^n + \bar{z}^n)/2\\ \sin n\varphi = (z^n - \bar{z}^n)/(2i) \end{cases} \text{ on } |z| = 1$$

A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane 113

instead of (1).

These conditions are special cases of (8), (9) and (10). The conditions (8)–(10) represent the most general conditions for a successful application of the non-linear abstract Cauchy–Kovalevsky Theorem due to Nishida [5].

Remark 4. Comparing (11) (h(z,t)=z) with Gustafsson's condition $f_z(0,t) > 0$, it is easy to see that this assumption leads to (11). Hence the solutions of Theorem 2 for the classical Hele-Shaw problem coincide with the solutions constructed by Gustafsson in [3]. On the other hand, since $h(z,t) \sim h_z(0,t)z$ as $z \to 0$, (11) is equivalent to the representation $f_z(0,t) = \exp(i\alpha) \exp(g(t))$ if we additionally suppose that $h_z(0,t)$ is real-valued (α is a real constant, g=g(t) a real-valued continuous function). Thus, (11) really generalizes the condition $f_z(0,t) > 0$.

Remark 5. From Theorem 1 applied to problem (18) and (19) one obtains the estimate $\sup_{\overline{G}_{r_1}} |(\partial f(z,t)/\partial z)^{-1}| \leq ||(\partial f_0/\partial z)^{-1}||_{r_2} + R$, where f = f(z,t) is the solution from Theorem 2 and R fulfills $||(\partial f_0/\partial z)^{-1}||_{r_2} \geq R$ for all $z \in \overline{G}_{r_2}$.

Taking account of Remarks 1 and 2 and the result of [8] that the operator $\partial/\partial z$ is bounded as a mapping of $\mathcal{H}(G_p) \cap C^{\alpha}(\overline{G}_p)$ into $\mathcal{H}(G_{p'}) \cap C^{\alpha}(\overline{G}_{p'})$; $(p' < p, 0 < \alpha < 1$ and $\|\partial/\partial z\|_{p \to p'} \leq C/(p-p')$, we are able to prove a result corresponding to Theorem 2 based on the scale of Banach spaces

$$\{B_s, \|\cdot\|_s\}_{0 < s \le 1} = \{\mathcal{H}(G_{r_1 + s(r_2 - r_1)}) \cap C^{\alpha}(\overline{G}_{r_1 + s(r_2 - r_1)}), \|\cdot\|_{s,\alpha}\}.$$

For in general a smaller interval $t \in [0, b_0)$ an upper bound for the Hölder-norm of $(\partial f(z, t)/\partial z)^{-1}$ in \overline{G}_{r_1} can be obtained by $\|(\partial f_0/\partial z(z))^{-1}\|_{r_2,\alpha} + R$ with the same R as in the case of the supremum-norms.

4. About the coincidence of the structures of $(\partial f_0/\partial z)^{-1}$ and $(\partial f(z,t)/\partial z)^{-1}$

Gustafsson proved in [3] that, if the initial value $f_0(z)$ is a univalent polynomial or a univalent rational function in a neighbourhood of $|z| \le 1$, then the solution of (1)-(3) is as a function of z of the same structure as $f_0(z)$, which means a univalent polynomial or a univalent rational function. In the polynomial case this coincidence of the structures can be expressed by the aid of the derivatives in the following form:

If $\partial f_0/\partial z$ is a polynomial which has no zeros in a neighbourhood of $|z| \leq 1$ then also $\partial f(z,t)/\partial z$ is a polynomial which has no zeros in a neighbourhood of $|z| \leq 1$ for t from a suitable right-sided neighbourhood of t=0.

Such a formulation cannot be deduced for the rational case from the results of [3].

Using $(\partial f_0/\partial z)^{-1}$ and $(\partial f(z,t)/\partial z)^{-1}$ the last statement concerning the derivatives $\partial f_0/\partial z$ and $\partial f(z,t)/\partial z$ gets a new formulation.

If $(\partial f_0/\partial z)^{-1} = 1/P(z)$, where P(z) is a polynomial without zeros in a neighbourhood of $|z| \leq 1$, then $(\partial f(z,t)/\partial z)^{-1} = 1/Q(z,t)$, where Q(z,t) is a polynomial in z without zeros in a neighbourhood of $|z| \leq 1$ for every t from a right-sided neighbourhood of t = 0.

In the following we are interested in the proof of a result of the same type. For this purpose, let us choose with arbitrary $0 < s_1 < s_2$ the Banach space scale of entire functions

$$\{B_s, \|\cdot\|_s\}_{0 < s \le 1} = \{E_{s_1 + (s_2 - s_1)(1 - s)}, \|\cdot\|_{s_1 + (s_2 - s_1)(1 - s)}\}_{0 < s \le 1},$$

where the spaces E_r were introduced in Section 2.

Theorem 3. In addition to the assumptions of Corollary 1 suppose that $(\partial f_0/\partial z)^{-1}$ is an entire function belonging to E_{s_1} . Then it is known that besides the statement of Corollary 1, there holds $(\partial f(z,t)/\partial z)^{-1} \in C^1([0,a_0(s_2)), B_{s_2})$ with $s_2 > s_1$ and a certain positive constant $a_0(s_2)$. In particular this means that $(\partial f(z,t)/\partial z)^{-1}$ is an entire function for all $t \in [0,a_0(s_2))$.

(In $[0, a_0(r_1, s_2)), a_0(r_1, s_2) = \min(a_0(s_2), a_0(r_1))$, both properties of f(z, t) are fulfilled.)

Proof. It remains to prove the statement for $(\partial f(z,t)/\partial z)^{-1}$, which follows from the application of Theorem 1 to the problem (18) and (19), equivalently, (17) and (14) with the scale $\{B_s, \|\cdot\|_s\}_{0 \le s \le 1}$.

From Lemma 4 the continuity of $\tilde{T}_t(v)$ as a mapping of B_s into itself is clear. Hence we only have to study the behaviour of the differential operator $\partial/\partial z$ and the multiplication operator z in the scale $\{B_s, \|\cdot\|_s\}_{0 \le s \le 1}$.

For the first let v be a function from E_r . Applying Cauchy's integral formula in a small neighbourhood $U_a(z_0)$ of a fixed point z_0 we obtain

$$\frac{\partial v}{\partial z}(z_0)e^{-rz_0} = \frac{1}{2\pi}\int_0^{2\pi}\frac{v(\varrho)e^{-r|\varrho|}e^{r(|\varrho|-|z_0|)}}{\varrho - z_0}\,d\varphi$$

with $\rho = z_0 + a \exp(i\varphi)$. Using $||\rho| - |z_0|| \le |\rho - z_0|$ this relation leads to

$$\left|\frac{\partial v}{\partial z}(z_0)e^{-r|z_0|}\right| \le \|v\|_r e^{ar}/a.$$

With a=1/r we have $\|\partial v/\partial z\|_r \leq er \|v\|_r$. Hence $\partial/\partial z$ is a bounded operator from E_r , respectively, from B_s into itself. In the second place let v be a function from

 E_r . Then it cannot be expected, that zv belongs to E_r . For example, let us choose $v = \exp(2z) \in E_2$. Then

$$\sup_{z \in \mathbf{C}} |ze^{2z}e^{-2|z|}| \ge \sup_{x \in R^+} |x\exp(2x)\exp(-2x)| = \infty$$

as x tends to infinity. But if we consider z as a mapping of E_r into $E_{r'}$ with r' > r, then

$$||zv||_{r'} = \sup_{z \in \mathbf{C}} |zve^{-r'|z|}| \le \sup_{z \in \mathbf{C}} |ve^{-r|z|}| \sup_{z \in \mathbf{C}} |z|e^{-(r'-r)|z|} \le ||v||_r \frac{1}{e(r'-r)}$$

Hence the multiplication operator z is a bounded operator in the scale $\{B_s, \|\cdot\|_s\}$ with $\|zv\|_{s'} \leq \|v\|_s/(e(s_2-s_1)(s-s'))$.

As in Lemma 5 one proves that the oprator \mathcal{L}_0 from (18) satisfies the conditions (5)–(7) from Theorem 1. The application of this Theorem to (18) and (19) with the scale $\{B_s, \|\cdot\|_s\}_{0 \le s \le 1}$ yields the statement for $(\partial f(z,t)/\partial z)^{-1}$. This completes the proof.

Remark 6. Using the scale $\{B_s, \|\cdot\|_s\}_{0 < s \leq 1}$ one can also get the univalence of f(z,t) from that of $f_0(z)$. Let us suppose $|(\partial f_0/\partial z)^{-1}| \geq R > 0$ in \overline{G}_{r_2} and fix the sphere $\|v - (\partial f_0/\partial z)^{-1}\|_s < R \exp(-r_2 s_2)$ around $(\partial f_0/\partial z)^{-1}$. Then the application of Theorem 1 to the problem (18) and (19) leads to

$$\|v(z,t) - (\partial f_0(z)/\partial z)^{-1}\|_s = \|(\partial f(z,t)/\partial z)^{-1} - (\partial f_0(z)/\partial z)^{-1}\|_s < Re^{-r_2s_2}.$$

But this means that

$$\max_{G_{r_2}} |(\partial f(z,t)/\partial z)^{-1} - (\partial f_0(z)/\partial z)^{-1}|e^{-(s_1 + (s_2 - s_1)(1 - s)|z|)} < Re^{-r_2 s_2},$$

and

$$\max_{\overline{G}_{r_2}} |(\partial f(z,t)/\partial z)^{-1} - (\partial f_0(z)/\partial z)^{-1}| < R.$$

Hence $\partial f(z,t)/\partial z \neq 0$ for all $z \in \overline{G}_{r_2}$ and all suitable $t \in [0, a_0(s_2))$. Then an upper bound for $\|(\partial f(z,t)/\partial z)^{-1}\|_{s_2}$ is $\|(\partial f_0(z)/\partial z)^{-1}\|_{s_1} + Re^{-r_2s_2}$.

But we point out that the restriction to the above-introduced sphere around $(\partial f_0/\partial z)^{-1}$ can reduce the interval of existence of the solution with regard to t from Corollary 1.

Note. The authors thank the referee for the information about a new reference which gives more of the history and the physical background for equations (1) till (3) and which also contains an up-to-date bibliography for it: S. D. Howison: Complex variable methods in Hele-Shaw moving boundary problems, preprint 1991 (Mathematical Institute, Oxford OX1 3LB, United Kingdom).

6 Michael Reissig and Lothar v. Wolfersdorf: A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane

References

- ATHANASSOULIS, G. A. and MAKRAKIS, G. N., A function-theoretic approach to a two-dimensional transient wave-body interaction problem, WMAG Technical Report 3-89, National Technical University of Athens, 106.82 Athens 42, Greece.
- DUCHON, J. and ROBERT, R., Estimation d'opérateurs intégraux du type de Cauchy dans les échelles d'Ovsjannikov et application, Ann. Inst. Fourier (Grenoble) 36 (1986), 83-95.
- 3. GUSTAFSSON, B., On a differential equation arising in a Hele-Shaw flow moving boundary problem, Ark. Mat. 22 (1984), 251–268.
- KANO, T. and NISHIDA, T., A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves, Osaka J. Math. 23 (1986), 389-413.
- 5. NISHIDA, T., A note on a theorem of Nirenberg, J. Diff. Geom. 12 (1977), 629-633.
- OVSJANNIKOV, L. V., The Cauchy problem in a Banach space scale of analytic functions, continuum mechanics and related problems of analysis, in *Conference* 23-29.9.1971 in *Tbilisi (Georgia)*, vol. 11, pp. 219-229, 1974. (Russian)
- 7. RICHARDSON, S., Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech. 56 (1972), 609–618.
- 8. TUTSCHKE, W., Solution of Initial Value Problems in Classes of Generalized Analytic Functions, Teubner, Leipzig, and Springer-Verlag, Berlin-Heidelberg, 1989.
- VINOGRADOV, YU. P. and KUFAREV, P. P., About a filtration problem, Prikl. Mat. Mekh. 12 (1948), 181-198. (Russian)

Received June 4, 1991

Michael Reissig Department of Mathematics Bergakademie Freiberg Bernhard-von-Cotta-Str. 2 0-9200 Freiberg Germany

Lothar v. Wolfersdorf Department of Mathematics Bergakademie Freiberg Bernhard-von-Cotta-Str. 2 0-9200 Freiberg Germany

116