
Commutators of Littlewood-Paley 
Carlos Segovia and Jos~ L. Torrea 

s u m s  

I n t r o d u c t i o n  

For every interval I c R  we denote by SI the partial sum operator: 

(siy)A=fxi. 

Given a sequence {Ij} of disjoint intervals and a function b, we form the square 
function 

[m,b]f(x): (~lb(x)SIjf(x)-Slj(bf)(x)12) 1/2. 
3 

We aim to prove inequalities of the type 

[1[/x, b]fllz,(~) ~ Cpl[f[Iz~(,~), 

for some classes of weights a,/3, depending on the family {Ij } and on the function b. 
See Theorem (3.2) and (3.5). 

Inequalities of the aforementioned type are new, even in the unweighted case, 
for general families of intervals {Ij}. In the case of the family of dyadic intervals 

some results are known see [ST2], for the smooth operators Sb ,  see Definition (3.11). 
We shall need a vector-valued commutator theorem (see Theorem (2.2)) for 

a kind of vector-valued Lr-Dini singular integrals. The use of these vector-valued 
Lr-Dini singular integrals in the Lit t lewood-Paley theory was introduced in the 
beautiful paper of J.L. Rubio de Francia [RF2]. 

To prove the commutator theorem, we shall need an extrapolation theorem (see 
Section 1) for pairs of weights a and/3 that  satisfy the relation a=uP/3, where u is 
a given positive function and a and/3 belong to Ap. For notation and the general 
theory of Ap weights, we indicate [GCRF] for instance. 
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Throughout  this paper we shall work in R, endowed with the Lebesgue measure. 
Given a Banach space E we shall denote by L~(R)  or L p the Bochner-Lebesgue 
space of E-valued strongly measurable functions such that  

R [[f(x)[IP E dx < +ec. 

Given a positive measurable function a(x) ,  we shall denote by LPE(a) the space 
of E-valued strongly measurable functions such that  

[If(x)[[ p a(x) dx < +oc. 

Given two Banach spaces E and F,  we shall denote by f~(E, F) the Banach 
space of all continuous linear operators from E into F.  

1. An  e x t r a p o l a t i o n  t h e o r e m  

Let l < p < c c  and l<A_<p. Let ~ be a measurable function. We shall say that  
a weight (positive measurable function) w belongs to A (') if p,A 

E Ap/;~ and vP~ E Ap/~. 

If A--1 we shall write A(p "). Observe that  A (') - A  ('~) p , ) t - -  p / A  " 

Now we list the basic properties of the classes 4(") See [ST1]. "~p,A" 

(1.1) The class 4(~) is not empty if and only if v~EA:.  *p,A 
, - -  4 ( u )  (1.2) Given , r 4 ( ' )  there exists e > 0  such that  i f p < q < p §  then . . . .  q ~. ~ ' ~ p , A ~  

(1.3) Given ,=4(") A<p, there exists ~>0 such that  co belongs to A (~) for ~" ' -  ~ ~p,A ~ q,A 
p - r  

�9 1 - p / A  (1.4) (Factorization). The weight w belongs tu- ~p,~A(~) if and only if w =w0wl , 

where w0EA~ "~) and wlCA~" x). 

The classes 4(~) also satisfy extrapolation results. We are interested in the 
following theorems (see [ST1]). 

(1.5) T h e o r e m .  Let S be a sublinear operator defined on C ~ ( R )  with values 
in the space of measurable functions and 1< A < oc. If the operator satisfies 

for every co such that aJ-;~cA1 and (uco)-~cA1, then 

IISflI~,(~) -< C~]lfllL,(~) 

holds for every ,=4(") and p> A. 
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(1.6) T h e o r e m .  Let S be a sublinear operator defined on C~ with values in 
the space of measurable functions. Let l < / k < r < c ~ .  If the operator satisfies 

liS filL~<~) <<- C~IIflIL~(~), 

for every ,,-a(') then for every p, )~<p<cr 

IlSfllL,(~o) _< C~llfllL,(~) 

holds for every ,~ a(u) 

2. Singular integrals and commuta tors  

Let E be a Banach space, b an E-valued measurable function, and ~ a positive 
function. We shall say that  b is in BMOE(~) if for any interval I 

flI Ilb(x)-b'llE dx <_ Cu(I) = C f~ u(x)dx, 

where bi=(1/lII) f1 b(y)dy. 
The following lemma is an easy consequence of the definition of BMOE (u). 

(2.1) L e m m a .  Let I be an interval and Ik=2kI. Then, if bEBMOE(,)  it 
follows that 

Ilbx -blk lIE ~-- CkvI~(k) , 

where Ii(k) is the interval Ii such that 

--~ I n a x  P l i .  /2Ii(k) l < i < k  

(2.2) T h e o r e m .  Let E , F  be Banach spaces. Let T be a bounded linear op- 
erator from L~(R)  into LP(R) ,  for s'<p<c% s > l .  Assume that there exists an 
s E, F)-valued kernel K ( x, y) satisfying: 

(K.1) For any compactly supported f ,  we have, 

T f (x )  = / K(x,  y)f(y) dy, for x • supp f. 

C o ~  (K.2) There exists a sequence { -~}m=l such that 

E mCm < A-(X), 
m-~-  i 
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(• [[(a'K(y'x)-I((z'x))[[Sz*dx) 1/s<Ccm[[a[[F*[Im(y'z)[-1/s'' 
~xm(y,z) 

for any integer m>> l and any y, zER,  where 

xm(y, ~) = { x :  2 m l y - z l  < I z - z l  _ 2 m§ }. 

Let l--*[ be a bounded linear mapping from s E) into E(F, F), such that 

[Tf(x) = T(lf)(x),  I e s E), x e R, 

and 
K(x,  y)l = [K(x, y), I e s  E). 

Then, if ~ is an A2 weight and bEBMOL(E,E)(y), the commutator 

Cbf(x) = [)(x)Tf(x)-T(bf)(x) ,  

is bounded from LPE(a) into LP(/3) for a=,P/3 and 3eA(v;~,. 
Proof. The main idea is to obtain the estimate 

(2.3) (Cbf)#(x) < Ul (llT fllF)(x)+Ue(l[fllE)(X) 

where the operators Sl(g)--Ul( , - lg)  and S2(g)=U~(,-lg) are sublinear operators 
satisfying Theorem (1.5). Then, by the sharp maximal function theorem for vector- 
valued function (see [RFRT]), we have, 

IICbIIIL~(Z) <_ CIl(Cbf)#NLp(Z) 

_~ C { [[U1 ([[TI[[F)[[ Lv(13) ~-[[U2([[I[IE)][ LP(13) } 

=c { [[S,(~[ITfl]~)[[L,(~) +[[S2(~llfllE)[IL,(~) } 
< c { ll'fJT f ll~ fl.(~) + C2 rf fir ir.~ II.(~) } 
- - c  {IrTfll~(.)+llfllL~(~)}_< Cllfll~(~). 

In the last inequality we have used the fact that T is bounded from LPE(a) into 
LPF(a) for neAp,s, (see [RFRT]). 
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Now we shall show how to obtain (2.3). Let x0 be a point in R and I be an 
interval with center at x0. Given a smooth and compactly supported function, f ,  

we define 

fl(x)=f(x)X2i(x), and f 2 = f - f l .  
Let ci---T((bi-b)f2)(Xo). Then if xeI,  we have, 

II Cbf(x) -- ci II F <_ II (b(x) - [~I)TI(x)I] F + IIT((b~ - b)fl)(x)II F 
+llT((bi -b)f2)(x)-T((bi --b)f2)(xo)HF 

: O'I(X)Ji-O'2(X)~-Cr3(X ) . 

If we denote 

Nr(g)(z)=sup( l f i  ~l/r zcI ~ (lIb(x)-bIIIg(x))" dx) ' 

it is clear tha t  

1// ii--~[ ch(x)dx< ~[ IIb(x)-bi]l IlTf]lFdx<Nl(llTfHF)(xo). 

On the other hand, by the boundedness properties of T, we have for r '  > s '  that  

l ~ ~2(x) dx < (~I] f i  - ~F dX) 1/r' 

(1I < C -~ (llb(x)-bxll IIf(x)llE)"'dx]/~' 

<_ C(NT, (LIflIE)(Xo)). 

Now we shall est imate cr3(x). 
Let g(x) be an arbi trary F*-valued function with ]lg(x)[IF. <1 for all x e I .  

Then we have 

cr3(x)=sup ;g(x), 421 (K(x,y)-K(xo,y))(b(y)-bi) f(y)dy).  

Given xCI, there exists a j ,  depending on x, such that  

2-J-llII < [x-xol ~ 2-JlII. 

Therefore, 

[rn(X,Xo)-~- { y:2mlx--Xo[ < ly--Xo[ ~ 2 m+I[x -x01  } 

C { y: 2m-j - l [ I[  < ly--xo[ <_ 2m- j+l I I  I } C J~rn-jq-1; 
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in particular, [I,~ (x, xo)l"~ 2 "~-y I I] ~ [Im-j+l I" 
Now, for each g and each xEI, we use condition (K.2) and we get 

J~v~21 [ (g(x), (K(x, y) - K(xo, y))((b(y) - bi)f(y))) ] dy 

-< ~r I] {g(x), K(x, y)-K(xo, Y)}[IE* I](b(Y)-bz)f(y)]]E dy. 

If y r then ]y- x0] > ]I] > 2 j Ix-  x0], therefore the last integral is less than 

jfly_~ol>2il~_~o I I1 {g(x), K(x, y)-K(xo, Y)}]IE* H (b(Y)--bI)f(Y)]lE dy 

< E ]'I Ilig(x)'K(x'y)-K(x~ 
,~>_j ,~(x,xo) 

<- E II (g(x), K(x, y)-K(xo, y))]]~E* dy) 
m~_j m(X,Xo) 

• ]l(b(y)--br)f(y)llSE dy) 
m(~,~o) 

C E Cmlim(X' x~ I ] ( b ( y ) - b I ) f ( y )  I~E dy) 
m~_j ,n(x,xo) 

< C E Crallm--j+ll--1/s' (llb(y)-b~ll [If(y)llE) 8' dy)  
m>_j ra--j+l 

<_ C E c m  IIm-j+l1-1 (]lb(y)-bIm-r I] II.f(Y))IE) ~' dy) 
m~_j m-j+1 

( / +C E eml[bI-bl'~-~+~ tl IIm--j+l1-1 Hf(Y)H~ dy . 
m>j .~-~+1 

By Lemma (2.1) this is less than 

C E cmN~'([IfNE)(X~ 
m>j 

+ Z I•247 IIf(y)ll  dy) . 
rn>j m-j+1 

But 
.~ / s' 
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where M is the Hardy-Littlewood maximal operator, so that 

~1/s' 
m~>_jCm(m--jq-X)Vl,(m-~+a) (llm-j+l[-l flm_j+l llf(Y)l'SEdY ) 

1 
< E Cm.m.  (M( f ~E)(X)) 1/~ u(x) dx m>_j li(m--jq-1) I (m-j+1) 
<- E cm'mM((M(l[fllg))l/~ u)(x0) 

m>j 
< CM((M(IIflIg)) 1/s' ~') (z0). 

Therefore (2.3) is proved if we take 

Ux(g)(x) : Nl(g)(x), and 

U2(g)(x) = CiNr, (g)(x)q-C2Ns, (g)(x) 

+C3M( ( M(g~' ) )x/ J u)(x). 

These operators appeared in [ST1]. Then it follows that the operators Si, 
(i=1, 2), defined at the beginning of this proof, satisfy Theorem (1.5). 

(2.4) Remark. If the condition (K.2) is substituted by: 
(K.2') if Ix-y[>21y-z I then 

I I g ( y , x ) - g ( z , x ) [ I  < C Ix-y l  
- ly_xl2,  

then the conclusion of Theorem (2.2) remains valid for M1 uEA2, c~=uP/3 and 
/3=A(p ~), l<p<c~ ,  (see [ST2]). 

(2.5) Remark. The theory of vector-valued Calder6n-Zygmund operators can 
be applied in Theorem (2.2), and T is a bounded operator from L~(c~) into L~(a) 
for aeAp/~,, (for aeAp in the case of Remark (2.4)). See [RFRT]. 

3. Application to Lit t lewood-Paley  theory 

For every interval I c R  we denote by $I the partial sum operator: 

(s ir)  A = f x i .  

Given a sequence of disjoint intervals Ij, we form the square function 

( ~  /'1/2 
A f ( x ) =  ISijf(x)l 2) . 

3 
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When Ij is the sequence of dyadic intervals 

{[2 j, 2J+l], - [2  j, 2J+1], j e Z} 

it is well known that, for 1 < p < o c ,  the following inequality holds, (see [LP]): 

(3.0) IIAfllp ~ CpNfllp. 

When all the intervals have the same length, then inequality (3.0) holds for 
2<p<c% and this is the best possible result, see [C]. 

Rubio de Francia proved in [RE2] that for every sequence {Ij} of disjoint in- 
tervals, the inequality (3.0) holds for 2<p<cx~. The constant Cp is an absolute 
constant not depending on the sequence {[j }. 

(3.1) Remark. Weighted versions of inequality (3.0) are also known. In the 
case of dyadic intervals A maps LP(w) into LP(w) for wCAp, l < p < ~ .  See [K]. In 
the general case A maps LP(~) into LP(w) for ~EAp/2, 2 < p < ~ .  See [RF1], [RF2]. 
It is also well-known that for any sequence of intervals {Ij} and any p, l < p < c ~ ,  
the following inequality is true 

2 \1/2 2 1/~ (ZlS,,fjl) (ZlfJl)  cAp. 
The main results of this section are Theorems (3.2) and (3.5). Before stating 

them we introduce a definition. Given a weight u, a function bEBMO(u) and a 
sequence of disjoint intervals we form the square function 

( E  . \1/2 [A, b]f(x) = I[Ssj, b]f(x)l 2) 
3 

where 
[$5, b]f (x) = b(x)Sij f ( x ) - S  b (b f )(x). 

(3.2) T h e o r e m .  Let ~, a,/3 be positive functions, such that L, cA~ and Ol-=wP/3. 
Let b be a function in BMO(~) and J be a family of disjoint intervals. Then the 
inequality 

OI[A, bJfllLp(;~) _< CpO]fllLp(~) 
holds in the following cases: 

(a.a) y is the family of dyadic intervals, l<p<oc , /3eA(v  "). 
(,) 

(3.4) .7 is an arbitrary family, 2<p<oc , /3EAp,  2. 

This theorem has the following consequence: 
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(3.5) T h e o r e m .  Given a weight v in A2 and a function b, the following con- 
ditions are equivalent: 

(i) beBMO(~,). 
(ii) For the family of dyadic intervals, we have, 

IlIA b]fllL,(~ ) <_ CpllfllL~(~l, 

for l < p < c ~ ,  c~=uP/3 and/3CA(p ~). 
(iii) For any family of disjoint intervals, we have, 

II[A, blfllL,(~) <_ C~llfllL,(~), 

where 2<p<oc ,  c~=uP/3 and ~=4(~) ~ , ~ - ~ l p ,  2 �9 

(iv) If H denotes the Hilbert transform, then 

II[g, b]fllL,(~) < C;'IIf[IL,(~) 

for l < p < o e ,  c~=t,P/~, and 13C A(p "). 
The constants Cp, Cp and Cp ~ depend on a, • and [Ibl]BMO(,). 

Proof of Theorem (3.5). That  (i) --4- (ii) and (i) ~ (iii) are contained in 
Theorem (3.2). On the other hand (iv) ==~ (i) is known and due to Bloom, see [S]. 
Let us prove first that (iii) implies 

(iv') I][H, b]f]lLp(Z ) <_ CpllfllLp(a), 

for 2<p<oc ,  a=~P~  and ~ 4 ( ~ )  ~' ~- ~*p,2" 

We shall use the following fact: 
(3.6) If h is a function in LI(R)  and its Fourier transform h is compactly 

supported in [ -R,  R], denoting SR=S[-R,R], we have 

gh(x )  = --i { e27riR~ SR(e-27riR'h(.) ) (x)--e-  2~iRxSR(e27riR" h(.) )(x) }. 

In particular 

[g, b]h(x) =- --i { e2~iR~[SR, b](e- Z~iR" h(.) )(x)--e-2~iR~[sR, b](e2~iR" h(.) )(x) }. 

Therefore, if we assume (iii), we have 

I][H, b]hl]L.(Z) < ][[SR, bl(e-2~iR'h('))NL.(Z) + II[SR, bl(e2~iR'h(.))llL.(~) 

_< C;IIhlILp(,~). 
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Since ~(v)CA(p~), then by Bloom's theorem, see [B], we get that  (iv') implies (i). ~1p,2 
Therefore, (iii)implies (i). 

On the other hand, if we assume (ii) and I is any dyadic interval, we have 

]] [SI , bJI]Lp(Z ) _< Cpl]f ]]Lp(~ ) . 

If we denote by I + R ,  R>0,  the interval ( x : x - R C I } ,  then 

S l + R f  =  2 iRxSi(e-2 iR' f ( . ) ) (x) ,  

and therefore 

]]SI+Rfl]Lp(Z) <-- Cpllfl]Lp(~) 

holds for l < p < c ~ ,  any dyadic interval I and any R>0.  Now we can continue as in 
the case (iii) ~ (iv'), showing that  (ii) ~ (iv) and therefore (ii) ~ (i). 

Now we state some lemmas that  we shall need for the proof of Theorem (3.2). 

(3.7) L e m m a .  Let l < p < c o  and ~ be an A2-weight. Given an arbitrary se- 
quence of intervals {/j} and a function beBMO(~), we have 

2\1/2 2~1/2 

provided that a=uP/3 and t3CA(p "). 

Proof. The operator [g, b] is bounded from n~2 (a) into n 5 (/3) see [ST2] for 
details. Therefore (3.8) holds due to the following fact: 

(3.9) If Ij---(aj, cj), we have, 

1 {e2~i~XH(e_2~ri~j S b f ( x  ) = ~ " f ( ' ) ) ( x ) - e -2"~XH(e2~J ' f ( ' ) ) ( x ) }  �9 

(3.10) Definition. Given an interval I we shall say that a function ~f is adapted 
to I if ~I is a Schwartz function with Fourier transform ~I such that  ~ i ( ( )=1 ,  ~CI 
and ~i(~)-=0, ( ~ N I ,  for some fixed natural number N. 

(3.11) Definition. Given an interval I and an adapted function ~1, let us denote 

S I f  = : z * f .  

Given a family of disjoint intervals Ij ,  we define 
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and 

where as usual 

(~j \112 
[G, b]f(x) = I[SIr blf(x)l 2) , 

[SIj,  blf(x) = b(x)S/j f ( x ) - S I j  (bf)(x). 

(3.12) L e m m a .  Given a weight u and a function b in BMO(u), we have that 
for any smooth function f and any interval I,  the equalities 

(3.13) [Si, b]f = S I ( [ S I ,  b]f)+ [S,, b](Sif) 

and 

(3.14) [SI , b]f = Ss([SI , b]f ) + [Si, b]( Si f ) 

hold. 

Proof. Observe that  S I S I = S I S I = S I .  

(3.15) L e m m a .  Let ~,a, and f be positive functions, such that ucA2 and 
a=uPf .  Let b be a function in BMO(~) and f f  be a family of disjoint intervals. 

The inequality 
H [~, b]filLP(~) <-- CpllfHLP(a) 

holds in the following cases: 
(3.16) f l  is the family of dyadic intervals, l < p < e %  flEA(p "). 
(3.17) ,7 satisfies E s e S  Xss(X)<_C, 2 < p < e c ,  fEA(;~.  

Proof. The proof of (3.16) can be found in [ST2]; we shall give here a brief 
idea. 

Let • be a test function, ~ E S ( R ) ,  such that  its Fourier transform satisfies 
7 (0 )=0  and ~(~)=1,  ~e[ 1, 1]; define V)j(X)=2J~(2JX), and 

T f ( x )  -- {~ j* f (x )} j .  

Then T is a bounded linear operator from LP(R) into L~2(R) with kernel 
satisfying (K.2') of Remark (2.4). 

Consider the linear map 1--+[ from R into/2(l 2, 12) given by [{tj } = {Itj }. Then, 
by Remark (2.4), the operator 

Cbf(x) = b(x)(qoj* f ) ( x ) -  qoj (bf)(x), 
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is bounded from LP(a) into L~2(~), that is to say [~, b] maps LP(a) into LP(t3). 
The proof of (3.17) runs parallel to the proof of (3.16). It is enough to show 

that  a family ~j of functions adapted to the intervals Ij of J can be found in such 
a way that  the operator 

Tf(x) = { ~ j * f ( x ) b  

be a bounded linear operator from L2(R) into L~2 (R) with a kernel satisfying condi- 
tion (K.2). This was done by Rubio de Francia in his celebrated paper, (see [RF2]), 
where he showed that  we may take Cm=2 -5/6m. Therefore Theorem (2.2) can be 
applied, which finishes the proof of the lemma. 

Now we can prove part (3.3) of Theorem (3.2). We observe that  part (3.4) can 
be proved at this moment assuming that the family J satisfies 

E "~2I(X) ~__ C. 

If this is the case we divide each interval I into seven consecutive intervals of 
equal length 

I=I(')UI(~)U...UI(7), IS(~)l = ISl/7, 
so that 8I (i) C2I. It suffices to prove the theorem for each one of the families, 

{ I (i) : I C initial sequence }, 1 < i < 7. 

Therefore, we can assume that  the family satisfies ~Xss(X)<_C. Now the proofs 
for the two parts are the same. By using Lemma (3.13), we have, 

1/3 - 2-, 1/2 

(EIsj([  ,b]f)l + (El[Sj,b]sjfI ) 
t j / IILP(f~) \ j 

= I+II .  

Now we apply Remark (3.1) and Lemma (3.15), and we get 

I< Cp (~i ][~j' b]f]2)l/~ LP(~) ~ CPHfHLP(a)" 

On the other hand applying Lemma (3.7) and Remark (2.5) we get 

II_< G ( ~ '  - 2 \~/2 J ISjfl ) z,(~) -<Cpllfllz'(~) 
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We need to do some additional work in order to prove part (3.4) of Theo- 
rem (3.2) completely. We follow closely the ideas of Rubio de Francia, see [RF2]. 

Given an interval I,  we define the Whitney decomposition W(I) of I to be the 
construction, invariant under translations and dilations, such that  if I=[0,  1], then 
W(I) consists of the intervals 

{[ak+l, ak]}k~=0, [�89 w {[1--ak, 1--ak+ll}k~=0, 

where ak=2-k /3. 
The intervals of W(I) form a disjoint covering of I, 2 H c I  for every HCW(I) 

and ~gew(1) X2H(X)<5 for all x. 

(3.18) L e m m a .  Let ~, (x, and 3 be weights such that or=uP~3, and b be a 
function in BMO(u). Let {Ij} be an arbitrary family of disjoint intervals. Then for 
l < p < o c  and/3eA(p ~), we have 

2\1/2 
(EI[~IJ 'b]fl ) LP(3) ~Cp ( E  E I[~H/'b]f'2/1/2 

3 j HJEW(Ij) / I'LP(t3) 

+c; (E E 2 ~1/2 
J HJeW(I3)ISH~fl ) L.(~)" 

Taking this lemma for granted, observe that the proof of (3.4) can be easily 
deduced since the family {{HJ}HJeWUs)}j satisfies ~ "~2HJ ~5, and then we can 
apply to the first summand in the lemma the reduced and proved part of (3.4) and 
to the second summand, the result of Rubio de Francia mentioned in Remark (3.1). 

Proof of Lemma (3.18). Observe that  [Sis,b]=EHJcW(b)[SHJ,b]. Then by 
using (3.14), we have 

3 HScW(b) 

( j ~  f 2~1/2 
+ E [SHs'b]SHJ =I+I I .  

HJEW(Ij) / LP(t3) 

Now for any j we consider the sequence of/2-valued functions 

Fj = {f.~ }~J~w(ij), 

5 - Arkiv f'6r matematik 
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and we define the operator 

T; F, = Z S j f j 
HJEW(Ij) 

This operator is the transpose of an/2-valued operator 

Tj f = {SHJ f}H~ eW(b), 
that  can be handled as the case of Tg={S~kg}k when {Ik} are the dyadic intervals; 
in particular, for each Ij the operator Tj is bounded from n 2 (w) into L22 (w),w e A2. 
The operators Tj are uniformly bounded in j ,  therefore by the extrapolation theorem 
for dp weights (see [RF3], [GC]) we have, 

(~j llTjfjll") x/2 L,(~) -<Cp (~j lfJ[2) x/2 LP(~o)' 
for l < p < o o ,  wCAp. 

On the other hand, by (3.3) the operator [Tj, b] is bounded from L2(a) into 

L~2 (3), c~ = vu3,/3 c A~ ~) . The operators [Tj, b] are uniformly bounded in j ,  therefore, 

by the extrapolation theorem for A (") weights, see Theorem (1.6), we have, 

2,,1/2 

for l<p<oc,/3CA(p "), a=vP/3. 
Therefore the following inequalities are true: 
(3.19) Given l < p < o c ,  wEAp, we have 

2,1/2 
(~j [T;FjI2)I/211Lp(w)~-CP (~j IlFjlll2) Lp(w)" 

(3.20) Given l<p<ec, /3EA(p v), o~=vP3, we have 

2,1/2 

Now, if we take Fj={[SH~, b]f}ns in (3.19), we get that  

.,,1/211 

I<Cp ~_,ZI[SHJ blfl 2~ , 
-- j H3 ' ) LP(~)" 

and if we take Fj={SHJI}HJ in (3.20) we have 

. 

HJ / IILP(a) 
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4. G e n e r a l i z a t i o n s  to  s e q u e n c e s  o f  c o m m u t a t o r s  

Given a sequence of arbitrary intervals {Ij } and a sequence of functions b = {bk } 
we shall study the boundedness of the operator 

( k ~  2'1/2 
[A,b]f(x)= I[Sij,bdf(x)] ) �9 

,3 

We shall need the following theorem 

(4.1) Theorem.  Let Ei and Fi , i=l ,2  be Banach spaces. Let T i , i=l ,2  be 
bounded linear operators from L)~(R) into L P ( R )  for s' <p<cc, s > l .  Assume that 
there exist E(Ei,Fi)-valued kernels Ki(x,y), i=1 ,2  satisfying (K.1) and (K.2) of 
Theorem (2.2). Let l--*[ be a bounded linear mapping from E(E1, E2) into E(F1, F2), 
such that 

[Tlf(x) = T2(I f)(x) 

and 
[ K I ( X  , y)  : K 2 ( x ,  y) l .  

If u is a weight in A2, and bcBMOc(E~,E2), then the operator 

Bbf(x) = b(X)Tlf(x)-T2(bf)(x),  

and ~CAp,s,. is bounded from LPl (c~) into LPF2(/3) for o~-vP/~ (v) 

Proof. The proof follows the lines of the proof of Theorem (2.2) with some 
technical changes. Let x0CR and let I be an interval with center at x0. Given an 
El-valued function with compact support we define fl  and f2 as in the proof of 

Theorem (2.2). 
Let ci--T2((bi-b)f2)(xo). Then if xe I ,  we have 

Bbf(x)  = b (x )T l f ( x ) -  T2(b f ) (x)  

= ( b ( x )  - DI )T1  f (x) ~- T 2 (bi f ) (x)  - T2 (bf)(x) 

= ([~(x)-bi )Tl f (x)+T2((b , -b) f ) (x) .  

Therefore for xEI,  we have, 

[IBbf(x)--crllF'2 <_ ]]([~(x)-bi)Tlf(x)]lF2 +]lT2((br-b)fl)(X)HF2 

+]]T2((bi-b)f2)(x)-T2((bI-b)f2)(Xo)]]F2. 

Now the proof follows that of Theorem (2.2). 

An application of this result will be the following theorem: 
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(4.2) T h e o r e m .  Let u, a, and/3 be positive functions, such that uEA2 and 
a--uP/3. Let b={bk} be a sequence of functions in BMOz~(u) and ,7 a family of 
disjoint intervals. The inequality 

I[[A, b]fllL ( ) - C llfllL ( ) 

holds in the cases (3.3) and (3.4) of Theorem (3.2). 

For the proof we shall need some versions of Lemmas (3.7), (3.15) and (3.18). 

(4.3) L e m m a .  Let l < p < c c  and u be an A2-weight. Given an arbitrary se- 
quence of intervals {Ij} and a sequence of functions b={bk}eBMOz2(u), we have 
that 

(4.4) (~j,k '[Sj'bk]fJ[2) 1/2 Lp(~) ~ Cp (~j [fj[2) 1/2 LP(a) 

holds, provided a=L'P/3 and/3EA(p ") . 

Given a sequence of functions b={bk} and a family of intervals Ij, we shall 

write 

[~,b]f(x)= (~j,k [[Slj,bk]f(x)[2)l/2, 

where $I is defined in (3.11). 

(4.5) L e m m a .  Let u, a, and/3 be positive functions, such that uEA2 and 
a--uP/3. Let b--{bk} be a sequence of functions in SMOz2(u) and ,7 be a family of 
disjoint intervals. The inequality 

1116, b]fll/p(z) -< Cpllfl]Lp(.) 

holds in the cases (3.16) and (3.17). 

Proof of Lemma (4.3). Let T1 be the extension of the Hilbert transform to a 
bounded operator from Ll~(j ) p into Lt2(j), p defined as Tl({ f j (x)})--{Hfj(x)} ,  and 
T2 the extension of the Hilbert transform to a bounded operator from Lt2(j,k ) p  into 

L~V2(j,k), defined by T2({fj,k(X)})={Hfj,k(X)}; let b(x)={bk(X)}eBMOz~(k)(u). 
The space BMO12(k)(u) can be considered as a subspace of the space 

BMO~(t~(j),z~(j,k))(u) by the identification b(x)({Aj})={bk(x)Aj}. Then, if we ap- 
ply Theorem (4.1) with the already defined T1 and T2, EI=E2=12(j), 
FI=F2=I2(j, k), and b(x)=b(x) ,  we get the lemma. 
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Proof of Lemma (4.5). Let T1 be the operator 

Tlf(x)  = {~j*f(x)},  

bounded from L p into LI2(j),P and T2 be the operator 

T2A(x) -- ~j * A(x) ,  

bounded from L72(k ) into L p t2(j,k). 
The mapping that sends {Ak}El2(k) to the element of s  12(k)) defined by 

A--*{AkA} is a Banach space isomorphism. Therefore, if 

{bk(x)} = b(x) e BMOz2(k)(U) 

then it can be considered as an element of BMOL(c,t2(k)). Let b be the element of 
BMOs given by 

~,{~j} = {bk(x)Aj}. 

Then by Theorem (4.1) with E1--C, F1 =12(j), E2 =12(k), and F2 =12(j, k) we obtain 
the lemma. 

(4.6) Lemma.  Let u, a, and/3 be weights such that a=uP~, and b={bk} 
a sequence of functions, bcBMOl2(u). Let {Ij} be an arbitrary family of disjoint 
intervals. Then for l < p < c ~  and/3EA(p ~) we have 

2\1/2 LP(~) 

j , k  *' " j , k  g ~ e w ( I j )  

2\1/2 

Proof. As in the proof of Lemma (3.21), we have 

e\I/2 
___~ SHJ[Shj ,bk]f  ) LP(Z 

j ,k  H ~ E W ( b  ) 

y k H 3 e g ( I s )  Lp(j3) 

Now for each j we consider the operator 

UjFj---ESH~fHJ,  Fj={fHJ}H~. 
HJ 
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For each j ,  Uj is a vector-valued Calderdn-Zygmund operator defined on 
/2(HJ)-valued functions, and Uj is bounded from LP2(Hj)(w) into LP(w), l < p < o o ,  

wEAp. We consider also the/2(k)-valued extension of Uj, that is 

SH~gH~ where G j  = , - { g I - I ,  } i - r J , k .  

Vj are vector-valued Calder6n-Zygmund operators bounded from L~2(H j,k) (w) 
into L~(k)(w), l < p < o c ,  a~eAp, uniformly on j. Therefore by the extrapolation 
theorem for Ap weights (see [GC]) we have that 

( 2 ~,/2 
(~,,vjc.,.l,~(,~)) '/2 L.(~)<_C. \~"aJll,~(H~)) L,<,,.,) 

for l < p < c ~  and wEAp. This means that 

- k ~ 1 / 2 1 1  \1/211 

for l < p < o o ,  cocAp. 
On the other hand, for each j, if we apply the first part of Theorem (4.2) 

(case (3.3)) taking TI=Uj, T2=Vj and 

(bk ) E BMOL(c,12(k)) C BMOs k)), 

we get that the operators 

[Uj, b] = {bk(UjFj)-U3(bkFj)}k, 

are bounded, uniformly in j, from P Ll2(Hj)(ct ) into L~(k)(r l < p < o o ,  a=uP/~, and 

/TEA~ "). Therefore, by the extrapolation theorem for A(p ~) (see Theorem (1.6)) we 
have that 

"d/21v 2 \,/2 

holds for l < p < o e ,  a=uP~,  r that is 

, 2)1/2 ( 3~. 2,1/2 
(4.8) (Z~ Z [  ~.' bdf., <_c. ~lfi-i,I ) .(o), 

j k HS I LP (,6) HJ 
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for l < p < r  O~=/]P~ and ~ e A  (v). 

Now if we take gkHj----[SHJ, bk]f in (4.7) we get that  

(j.~k 2\1/2" 
I< Y~l[SHJ,bk]fl fl L,(~)' 

, HJ 

and taking fHJ = S H ~ f  in (4.8), we get that  

2~1/2 

Now, the proof of (4.2) continues as the proof of Theorem (3.2). 
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