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The area integral and its density 
for BMO and VMO functions 

Rodrigo Bafiuelos(1) and Jean Brossard 

0. I n t r o d u c t i o n  

Let f be an integrable function in R"  and let u be its harmonic extension to 
R~_ +1 = R ' •  R+.  The (conic) area integral of f at the point 0 E R  ~ is defined by 

A2 (O) = JQ (o) Yl--~'IVU(X' Y)12 dx dy 

where Fa(0) is the cone with vertex at 0 and aperture a. That  is, 

to(0) = {(x, v) e a ; + ~ :  Ix-Ol < ay}. 

We also define the Lit t lewood-Paley square function of f ,  (the complete area inte- 
gral of f ) ,  by 

g~,(o) = [ ypo(x,y)lVu(x,y)12dx dy 
JR ;+1 

where Po is the Poisson kernel of the half space. That  is, if z =  (x, y)E R~_ +1 then 

C~y 
po(z) = (ix_012+y2)(~+l)/2 

where C~ is a constant depending on u. 
For 1 <p < co, the Lit t lewood-Paley theory asserts (see Torchinsky [16]) that  the 

LP-norm of Aa is equivalent to the LP-norm of f (under some normalization of f at 
infinity) and the same is true for g, provided 2 < p < c c .  This result is no longer valid 
for p = ~  as the example f(x)=X(o,1)(x) will show. However, a substitute for L ~ in 
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the Li t t lewood-Paley theory is the space of functions of bounded mean oscillation, 
BMO. It  was proved in Meyer [12] that  if f is in BMO then the Lit t lewood-Paley 
g2 function is also in BMO unless it is identically equal to infinity. Kurtz  [11] and 
Qian Tau [14] have shown more recently the same result for Aa and g, (not their 

squares). 
The aim of this paper  is to extend these results in two directions. First we 

prove that  A 2 and g,2, as well as their versions formed with more general kernels 
than the Poisson kernel, are in VMO if f is in VMO (see definitions below). Second, 
we extend the BMO and VMO results to the so called "maximal density of the area 
integral" first introduced by Gundy [9]. Finally we will also obtain some BMO 
and VMO results for the functional D r (the density of the area integral) when f 
satisfies some very general hypotheses which include positivity and BMO. All our 
results concerning VMO are new, as are our results concerning the density of the 
area integral for BMO functions. We also prove similar results for the g-function, 
the radial area integral. Both the BMO and VMO results for g are new. 

The space of functions of vanishing mean oscillation, VMO, and the density of 
the area integral do not seem to be as well known as BMO and the area integral. 

As a consequence we first say a few words about  these two objects. 

The space VMO is the closure in BMO of the space of all uniformly continuous 

functions (other equivalent definitions will be detailed in Section 1 below). In an 
appropriate sense VMO has the same relation to BMO that  the space of uniformly 
continuous functions has to L ~ .  For example, Sarason [15] proved in the case 
of the disc that  the harmonic conjugate of the Poisson extension of a continuous 

function is the Poisson extension of a VMO function. It  was also proved by Coifman 
and Weiss [6] that  the Hardy space H 1 is the dual of a variant of VMO (Coifman 
and Weiss defined VMO as the closure of the continuous functions with compact 

support) .  
The density of the area integral D r at a point r E R  is the equivalent notion in 

analysis of the Brownian local t ime and it can be defined as the area integral except 
that  the measure IVu(z)12(dz) (which is Au2(dz) due to the harmonicity of u) is 
replaced by the positive measure Alu-rl(dz ). More precisely, for r E R  and 0 E R  n 

we define 

D~(O) = / yl- 'Alu-rl(dz ), 
ar~(e) 

where z = (x, y) E R~_ +1. 

We also define the maximal density by 

D~(O) = sup D~a(O). 
r c R  
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These operators were introduced by Gundy [9] (our definition of D~(O) here is from 
Gundy-Silverstein [10]), where it was also proved that  

A2a(O) = ./R D~(O)dr, 

hence the name "density of the area integral". Since the measure Alu-rl(dz ) is 
supported on the set {u-=r}, D~(O) is a way to measure the oscillation of u around 
r in the cone Fa(0). If r - -0 ,  it measures, in some sense, the positivity default of u 
in the cone since if u > 0  in Fa(0) then of course 90(0)=0. It  has been used in this 

manner by Brossard and Chevalier in [4] and [5]. The maximal density was used by 
Gundy [9] and by Gundy and Silverstein [10] to provide a different characterization 
of the H p spaces. In Bafiuelos and Moore [1] sharp good-)~ inequalities are proved 
for the maximal density leading to laws of the i terated logarithm of the Kesten type. 

We can now explain more precisely our results and how the paper  is organized. 
In Section 1, we explain our notation and recall the main definitions of BMO and 
VMO. We devote Section 2 to prove the BMO and VMO results for several ver- 
sions of the area integral. As we explained earlier, the BMO result is not new; 
it is a consequence of the H L B M O  duality theorem and the fact that  H 1 can be 

defined by convolution with other kernels besides the Poisson kernel (see Fefferman 
and Stein [7]). We shall, however, give a new proof of these results which is very 
elementary and does not use these two difficult theorems. Our proof, although el- 
ementary, will work for any kind of area integral including the most general ones, 
not defined with the gradient of the harmonic extension of the function f but with 
the convolution of f with a Lit t lewood-Paley function. Our arguments will allow us 
to obtain the same results for VMO, which as we said before, are all new. Another  
advantage of our method is that  it provides the BMO and VMO results also for the 
"radial area function", tha t  is, the usual g-function for which even the BMO result 

was not known and for which the duality argument does not work. To the best of 
our knowledge the only known result is the weaker result of Wang [17] which says 

that  if f is in BMO, then g (and not its square) is in BMO. These new theorems 
are also presented in Section 2. In Sections 3 and 4, we prove similar results for the 
density of the area integral and the maximal  density. We obtain two types of re- 
sults: The first results in Section 3 say tha t  if the Green potential  r of the measure 
Alu-rl(dz ) is bounded for some r (and hence for all r),  then the several versions 
of the density of the area integral D r are in BMO, and if the potential  goes to 
zero uniformly at the boundary  then the different versions of D r are in VMO. The 
hypothesis that  r is bounded has already been used by Brossard and Chevalier [5] 
in a different context and it is satisfied for example by a BMO or positive function. 

The second results in Section 4 are about  the maximal density or more precisely, 
about  the different versions of the maximal density. Theorem 6 says that  if f is in 
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BMO then so is D* and Theorem 7 says the same for VMO. As we said earlier, 
our results for D r and D* are new even for BMO. These results are in the same 
line as the results of Gundy [9], Gundy and Silverstein [10], Bafiuelos and Moore [1] 
and Moore [13]. In comparison with the results of Section 2, they provide one more 
confirmation tha t  the D*-functional is a good functional for theorems related to 
the Li t t lewood-Paley theory. Finally we mention that,  mutatis  mutandis, all the 
results we give in this paper  are true for the ball of R ~ (rather than the half-space) 

and many of the arguments are even simpler. 

1. N o t a t i o n  a n d  d e f i n i t i o n s  

We shall denote by z = ( x ,  y) the generic point of R~_ +1 and by B(x, r) the ball 
of R v with center x and radius r. If  f is a real function in R v we will write Pz ( f )  

for the Poisson extension of f at the point z. Tha t  is, 

Pz(f) = Jrt~ po(z)f(O)dO 

where po(z) is as in the introduction. A function f is in BMO (bounded mean 
oscillation) if there is a constant C such that  for all cubes Q in R ' ,  

(1.1) fQ I f ( x ) - f Q I m Q ( d x )  < C 

where mQ is the normalized Lebesgue measure on Q and 

fQ =/Q f(x)mQ(dx), 

the mean of f on Q. The smallest constant C for which (1.1) holds is the BMO- 
norm of f which we shall write as Nfllc,*. It  is well known (and easy to prove) 
that  the measure mQ can be replaced by the Poisson kernel and this provides an 
equivalent norm on BMO. More precisely, if we define 

(1.2) Hfllpl , ,= sup P~(If-Pz(f)l) 
zCR~_ +1 

then there are constants C1 and C2 such that  

(1.3) Clllfllc,, <-Ilfllpl,. _< c21lfllc,.. 
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Also it follows from the John-Nirenberg theorem, (see Torchinsky [16]), that  we may 
replace the Ll-norm above by any LP-norm and obtain an equivalent BMO-norm. 
In particular if we define 

(1.4) a(z)  = Pz ((f_p~(f))2). 

Then Ilfllp2,.= sup a(z)  1/2 provides an equivalent norm for BMO. If we apply 
zERO_ +1 

the Green formula (note that l [Vu[2=A(u2))  we see that  

(1.5) a(z)= ~ 71 ~(z,z')lVu(z')12dz ' 

where G(z, z r) is the Green function for R~_ +1. This last formulation is the main tool 
in our study of the relation between BMO and the area integral. It also provides 
the connection with Brownian motion. In a similar manner, if we define for r E R  

(1.6) r = P~ ( [ ( f - r ) - [ P ~ ( f - r ) ]  D, 

it can be shown that  (see Srossard and Chevalier [5]) 

(1.7) Ilfl[pl,,= sup Or(z) 
zcR~_ +1 

r c R  

and as with c~(z), Green's theorem implies that  

(1.8) Cr(z) = [ G(z, zr)Alu-rl(dz' ). 
JR 

Once again, (1.7) and (1.8) are the main tool in our study of BMO and the density 
of the area integral. 

We shall now define VMO. For 6>0 we let Ilfllc,*~ be the supremum of the left 
hand side of (1.1) over all cubes Q which have edge length less than or equal to 6. 
The space VMO (vanishing mean oscillation) is the subspace of BMO consisting of 
those functions for which lim Ilfllc,.~=0. As before, we may define 

&--*0 

(1.9) Ilfllp2,.e-- sup ~(z) ~/2 
zER"  x (0,~) 

and 

(1.10) Ilfllpl,.a = sup Cr(z). 
~cR ~ x (o,~) 

r c R  
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It is easy to show that  VMO is also the subspace of BMO consisting of those 
functions for which the quantities of (1.9) or (1.10) go to 0 as 5 goes to 0 (see 
Garnet t  [8], Theorem 5.1). 

We now define the more general variants of the area integral Aa and the 
Litt lewood-Paley g.. Let ~ be a nonnegative integrable function in R"  satisfy- 
ing the following: 

(H) There exist two constants C > 0  and E>0 such that  for all x E R  ", 
Q(x)~Cpo(x, 1) and such that  for all r e R ,  

1 /R IQ(x-v)-~(x)ldxdv <- Cr~" 
r v v xB (0 , r  ) 

This is a weaker condition than the following one which is easier to understand: 
(H') There exists a constant C > 0  such that for all x 0 e a ' ,  e(x0)_<Cp0(z0, 1) 

and 

Rv IQ(x-x~ <- C]xol. 

For example, if Q is a C 1 function such that both ~ and 1~7~1 are majorized by 
Cpo(x, 1) (in particular P0 (x, 1) itself or any C 1 function with compact support) then 
it clearly satisfies (H') and hence (H). The function Q(x)=XB(O,a)(X) also satisfies 

(H'). 
For 0 E R  ~ and z=(x,y)CR~+ +1, define 

and 

A2~(O) = f y ~o(z)lVu(x, y)12dx dy. 
dR yl 

2 _ _  2 2 2 Notice that  if Q(X)=XB(O,a)(X) then Ae-A a and if Q(x)=po(x, 1) then Ae=g.. Thus 
the classical area functions are particular cases of A~. We shall also need the 
following bilinear form version of AQ defined by 

h](~) = f y Qo(z)(Vu(z), Vv(z))dx dy A~[f, 
dR 

where u and v are the Poisson extension of f and h respectively and (., .) denotes 
the usual inner product in R "+1. 
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We have defined above the density D~. The complete density (which plays the 
role of g,) is defined by 

Dr(O) = JR%+ 1 ypo(z)A[u-rl(dz)  

and the analogue of A 2 is defined by 

Oo(O ) = f Y Qe(z)Alu-rl(dz) 
J R  

where t) satisfies (H). The maximal density associated to Do(O ) is D*o(O)=supD~o(O) 
r E R  

with a similar definition for n*(o) (the case Q(x)=po(x, 1)). 

2. The area integral for BMO and V M O  functions 

The most convenient BMO-norm for the study of the area function is [l" lip2,.. 
To simplify notation we shall write I[" I[* instead of [[. lip2,, throughout this section. 
The aim of this section is to prove the following theorem and corollaries: 

Theorem 1. Let BMO0 denote the space of BMO functions whose area func- 
tion is not identically infinite. The mapping (f, hi is continuous from 
BMO0 • BMO0 into BMO. 

Corollary 1. If f EBMOo, then A~, g2. and A~ are in BMO with a BMO-norra 
majorized by a constant (independent of f )  times the square of the BMO-norm of f . 

Corollary 2. If f E V M O  and its area integral is not identically infinite, then 
A 2, g2 and A 2 are also in VMO. 

As mentioned earlier, the g,2-result in Corollary 1 was first proved by Meyer [12]. 
Of course, Corollary 1 implies that  the square root of all the area integrals are also 
in BMO, a result proved by Kurtz [11] and Qian Tao [14]. 

The proof in Meyer [12] is based on the H1-BMO duality. Indeed, if f is a BMO 
function, then ylVu(x,y)12dxdy is a Carleson measure. The Littlewood-Paley g,2 
function is its balayage and by a duality argument it is easy to show that  g,2 is in 
BMO; (see Torchinsky [16], p. 273). The same proof can be done with A~ and A~ 
using the fact that H 1 does not depend on the kernel used to define it and that  
A 2 and A~ are the balayage of y[Vu(x, y)12dx dy with respect to other kernels. The 
proof we shall give below is quite elementary and does not use these two difficult 
theorems; the H1-BMO duality and the independence of H 1 upon the kernel. 
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Before proving Theorem 1, let us explain how Corollary 2 follows from it. Let 
fy (x)= Pz (f) where z = (x, y ) e  R~_ +1. By Theorem 5.1 in G arnett  [8], f e VMO if and 
only if fy--+ f in the BMO-norm as y-~ 0. It is easy to see that  the area integral of fy, 
Ae(fy ) is uniformly continuous. Since A2o(f)-A2o(fy)=Ae[f - fy, f]+ A[f , f - fy], 
Theorem 1 implies that if f c V M O  then A2o(f) is the limit in the BMO-norm of 
A~(fy) as y--+0. Thus A e ( f ) e V M O  whenever f e V M O  which proves the corollary. 

Theorem 1 follows immediately from the following proposition. 

P r o p o s i t i o n  2.1. Let f and hEBMO0. Let Qo be the unit cube in R '~ centered 
at O. There exists a constant CQo such that 

/Q IAO[f, h](O)-CQo ImQo(dO) <_ CIIfll,llhll, 
o 

where C is a constant independent of f and h. 

The idea for the proof of Proposition i is to use a continuity argument to control 
the oscillation of the "upper part" (Lemma 2.3 below) and only an L2-estimate for 
the "bottom part".  We first start with a lemma (which is an amelioration of a 
classical lemma; we do not pretend it is new) to control ylVu I. 

L e m m a  2.2. If z=(x,y)ER~+ +1 and u(z)=Pz(f) is the harmonic extension 
of f ,  then 

ylVu(z)J <_ ClJfJl. 
where C is a constant independent of f and z. 

Pro@ If h is a harmonic function in the unit ball B of R "+1, then there exists 
a constant C depending only on v such that  

(2.1) fVh(0)l ~ <_ C fo B Ih(O)-h(O)12da(O) 

where da is the normalized surface measure on OB. Let h(z)=u(zo+YoZ) whose 
z0=(x0, Y0) is a fixed point in R~_ +1. Applying (2.1) to this h we obtain, (with B' 
the ball centered at z0 and radius Y0), 

y2lVu(zo)l 2 < C f lu(O)-u(zo)}2da(O) < Ca(zo) < 2 2 _ _ C l l f f l , 2 , ,  = c l l f l [ , ,  
Jo B I 

by the subharmonicity of the function (u(z)-u(zo)) 2 and the definition of Ilfllp2,*. 

We are now ready for the proof of the control of the upper part. Let us call 
U(O) the part of the integral defining Ao[f, h] which is above 1. That  is, 

U(O) = JRf. y~o(z)(Vu(z), Vv(z))dx dy. 
• (l~oQ) 
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L e m m a  2.3. 

Proof. 

There exists a constant C such that if U(O) < oo then 

fQo IV(O)-U(O)lmQ~ <- C I I f l l * l l h l l * "  

183 

frt~ po(z)po(O, 1)dO < C y - l g  (z, (0, 1)). 

f~ y (~,o(z)- Qo(z)) <W,(z), W(z)>dz I U ( O ) - u ( o ) l  = "• 

< [ yloo(z)-~o(z)l IVu(z)l IVv(z)ldz 
JR ,.' x(1,oo) 

<_ C I I f l l , l l h l l ,  fR~• IP~176 

where the last inequality follows from Lemma 1. Integration in 0 gives 

fQ0 IV(0)-  V(0)lmQo (dO) 

< Cllvll,llhll, /eo (frt~ x(,,o~)Io~176 me~176 

and so we only need to estimate the last integral. For any r>0 ,  let rQo be the cube 
concentric with Qo and with side length r times the side length of Q0. By Fubini's 
theorem and a change of variables, 

x 

E < C y-O+~)dy < oo 

where the last inequality follows from hypotheses (H) applied with r=l / y .  This 
completes the proof. 

For the control of the bottom part we will use the following 

L e m m a  2.4. If ~ satisfies hypothesis (H) and z = ( x , y ) e R  ~ x (0, 1), then 
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Proof. Fix Zo = (Xo, Yo) E R" x ( 0, 1). By (H) and the semigroup property of the 
Poisson kernel, 

/R~ Qo(zo)Po(O, 1)dO<_ C s po(zo)po(O, 1)dO=Cpo(xo,yo+l). 
Then we only need to prove that 

(2.2) yoPo(Xo, Yo + 1) = YoPxo (0, Yo + 1) ~ CG (zo, (0, 1)) 

for a suitable constant C independent of Zo. To do this define the harmonic function 
in R"  x (Yo, c~) by 

H(z) -- CG(zo, z)-yoPxo (x, yo +y).  

We wish to prove that if C is a suitable constant, (independent of Zo), H(0, 1)_0. 
Since limlzl~ ~ H(z )=0 ,  by the maximum principle, it suffices to prove that the 
inequality holds when z E R  ~ x{yo}, that is, when Y=Yo. However, since we have 
explicit formulas for both G and Pc, it is easy and elementary to check that 

inf (G(Cx~ -Y~ (x' Y-~ ~ /G((0,1) ,  (x, 1)) ) = inf > 0 

and (2.1), and hence the lemma, follows. 

We are now ready to estimate the bottom part. Define 

B(O) = / yoo(z)iVu(z), Vv(z))dz. 
JR ~' X(0,1) 

L e m m a  2.5. There exists a constant C which depends only on v and ~, such 
that 

Qo [B( O)[mQ~ ( dO) <- C[[f ]],[]h[],. 

Proof. By Fubini's theorem, Lemma 2.4, and the fact that the measure mQo 
can be majorized by pe(0, 1), we have 

Oo [B(O)lma~ <- C/i t .  [B(O)[po(O, 1)dO 

Oo(z)po(O, X)dO) y[(Vu(z), Vv(z))[dz 

<_ cj.~• G(~, Co, 1))l(vu(z), Vv(z))ldz 

< C ( s  x(o,1) G(z'(O'l))'Vu(z)'2dz) 1/2 

( / I t  ] \1/2 x ~ (z, ( 0, 1))IVv(z)12dz} 
~x(0,1) 

< C[Ifll.llhl[. 
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by (1.4) and (1.5). 

We are now ready to finish the proof of Proposition 2.1. First, if for some 
point 0 the area integral is finite, Lemmas 2.3 and 2.5 imply tha t  it is finite a.e. in 
the unit cube centered at 0 and hence almost everywhere in R v. Let CQo--U(O). 
Since Ao[f, h](O)=g(O)+B(O) we have 

/Qo IA~176 <- /Qo ]U(O)-U(O)'mQ~ /Qo IB(O)lmQ~ 

<_Cllfll,llhll,, 

by Lemmas 2.3 and 2.5. 
Proposit ion 1.1 and a scaling argument (apply the proposition to the function 

focr where a is a homothety which sends Q0 onto Q) show that  for any cube Q 
there is a constant CQ such that  

~ lAo[f, h](O)--CQlmo(dO) <_ CIIfll,llhll, 

where C is the constant of Proposit ion 1.1. Since 

~ lAo[f,h](O)-(Ao[f,h])qlmQ(dO ) <__ 2 ~ IAo[f, hl(O)-CQImo,(dO ). 

Theorem 1 follows. 
Next, we derive the corresponding results for the Li t t lewood-Paley g-function. 

This is the radial area function defined by 

/0 g2 (0) -= y[Vu(O, y)12dy 

whereas before u is the harmonic extension of f .  As before we define 

g[f, hi(0) = y(Vu(O, y), Vv(O, y)>dy 

where u and v are the harmonic extensions of f and h respectively. We have 

T h e o r e m  2. The mapping (f, h)---~g[f, h] is continuous from BMO0 xBMO0 
into BMO. 

C o r o l l a r y  3. Suppose fEB MO0.  Then g2 c B M O  with BMO-norm majorized 
by a constant (independent of f) times the square of the norm of f. 
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C o r o l l a r y  4. I f  f E V M O  and its g-function is not identically infinite, then 
g 2 r VMO. 

The proof of Theorem 2 is essentially contained in the proof of Theorem 1. As 
before define the upper part and bottom part of g[f, h] by 

f l  ~176 
u(o) = y(W(o, u), Vv(O, v)idy 

and 

fO B(O) = y(Vu(O, y), Vv(O, y))dy. 

We have the following analogues of Lemmas 2.3 and 2.5 from which Theorem 2 
follows. 

L e m m a  2.6. There exists a constant C such that if U ( 0 ) < ~ ,  then 

Qo IU(O)-U(O)[mQ~ ~ CIIfll.llhl].. 

L e m m a  2.7. There is a constant C such that 

Qo [B(O)[mQ~ <- C[[f[I,IIh[I,. 

Proof of Lemma 2.6. First, we notice that  if we denote by Dnu any derivative 
of u of total order n, then by the proof of Lemma 2.2, 

(2.3) ynlD%(z)l ~ CIIfll., 

where C is a constant independent of z and f ;  (simply notice that (2.1) holds if 
we replace Vh(0) by Dnh(O)). Using (2.3) with n=2  and the elementary identity 
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I(a, b) - (ao, bo}l = [(a ~ ao, b) + (ao, b -  bo)[, we have for 0 �9 Qo that 

IU(O)-U(O)I < yl(Vu(O,y),Vv(O,y))-(Vu(O,y),Vv(O,y))ldy 

<_ yl(W(O,y)-Vu(O,y),Vv(O,y))ldy 

S + yl(Vu(O,y),W(O,y)-Vv(O,y))ld~ 

_< ylW(O, y)t IW(O, y)-W(o, y)ley 

+ yLw(o, y)l IVv(O, y ) - w ( o ,  y)ley 

/; _< CIIhLI. IVu(O,y)-Vu(O,y)ldy 

+ClIIII. IVv(O, y)-Vv(O, y)ldy 

fl ~ dy <_ Cllfll.llhll. -fi <_ CIIf]l.llh]l.. 

Integrating we find that 

Qo IU(O)-U(O)]mQ~ <- C[If]l*]]h[l* 

which is the assertion of Lemma 2.6. 
We now recall that since the partial derivatives of u are also harmonic, we have 

Ou ]'R Ou 
Oxi(O,2Y) = Po(x,Y)~xi(X,y)dx. 

If we first apply Jensen's inequality and then sum we find that 

IVu(O' 2Y)12 -< fR~ p0(x, y ) IW(x ,  y)12dx. 

Multiplying both sides by y and integrating we get that 

f 1 / 2  1 / 2 / R  y]Vu(0, 2y)12dy < / ypo(z)lVu(z)]2dz 
JO JO u 

which after changing variables gives 

(2.4) ~olYlVu(O,y),2dy< 2 i l  jR ypo(z),Vu(z)12dz. 
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Lemma 2.7 now follows from (2.4) and Lemma 2.5. Thus we have proved Theorem 2. 

We shall conclude this section with some remarks concerning other types of 
area integrals usually used in Littlewood-Paley theory. Let r be a Littlewood- 
Paley function in R v. That is, an integrable function satisfying 

(HL-p) (b) forallxCR',[r 1) 
where a > 0 is fixed and 

(c) [ Ir162 ~ where 7 > 0  is also fixed. 
JR 

The condition (b) is generally written as [r -(~+~). We prefer to 
write it this way; it implies that  r (l+([x-Oi)/y)l-~pe(x, y) which fa- 
cilitates some of our arguments. 

We define the more general area integral. For y E R + ,  let Cy(X)----y-'r 
and replace yVu(x, y) by Fr y ) = r  We define the general area integral 
by 

S~,r =/a~+ 1 y-lQo(x, y)[Fr y)[2dx dy 

and its associated bilinear form by 

S~,r h](0) = /R~+ ' y-lQe(z)Fr162 

where He (z) =r  h(x). 
Then Theorem 1 as well as its corollaries remain true for S~,r and Se,r If, h]. 

More precisely we have 

T h e o r e m  3. The map (f, h)--~S~,r h] is continuous from BMO0 • BMO0 
into BMO. 

Coro l l a ry  5. Suppose fEBMO0.  Then S2,r with a BMO norm ma- 
jorized by a constant (independent of f)  times the square of that of f .  

C o r o l l a r y  6. If f E V M O  and its area integral is not identically infinite, then 
S~,r E VMO. 

The proofs are essentially the same as above except that  Lemmas 2.2 and 2.5 
have to be replaced by the following two lemmas whose proofs will be very briefly 
indicated. 
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L e m m a  2.8. 

L e m m a  2.9. 

Suppose r satisfies (HL-p).  Then IFr Y)I ~CIIfl l . .  

Suppose that Q satisfies (H) and r satisfies (HL-p).  Define 

B(O) =/R Y-l Qe(z)lFr 
v •  

There exists a constant C (which depends only on u, Q, and r  such that 

fQ B(O)mQo(dO) ~_ C][f[[, 2. 
o 

Proof of Lemma 2.8. By our assumption (HL_p) and the remark following it 
we have that for any constant Co, 

IFr x, Y)I = .[,(f(O)-Co)r 

~C/Rv [f(O)-Co[(l~-[XyO[)l-apo(z)dO 
+ \(1--a)q ,~l/q 

g C ( J . .  ,f(O)-OoiPpo(z)dO) II" (i.. (1 ,x-Oi)y po(z)dO) 

where llp+l17=l , p and q>l. The first term is majorized by the BMO-norm if 
we take Co=Pz(f), (by (1.4) and p replacing 2). The second term is bounded as 
soon as ( 1 - a ) q < l .  This completes the proof. 

Proof of Lemma 2.9. As in the proof of Lemma 2.5, 

(2.5) /Qo B(O)mQ~ ~ C ~olfR~, po(x,y+ l)[r f(x), 2dxdy �9 

Next, we explain how to bound the last integral by the square of the BMO-norm 
of f .  First, by the Harnack inequality, P0 (x, y + 1) < Cpo (x, 1). If we let 

c~  
I ( r )  = (r2 + 1)(~+1)/2 

we find that 

po(x, 1)=_ fx~ i,(r)dr=Cv f ~176 rdr 
Jl~cl (r2 H-l) (~+3)/2 
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and the expression in (2.5) is dominated by, (after applying Fubini's theorem), 

L ~ L l  fB(O,r)[r dr 
(2.6) 

io Joll  = c .  i r  2 dx dy r 
(0,r) y (r 2+1)(-+3)/2dr" 

Since [r 2dxdy is a Carleson measure with Carleson norm smaller than or 
Y 

equal to ell f[[, 2, (see Torchinsky [16], p. 373), we have that the right hand side is 
dominated by 

( L ~  ( l + r )  "r  (1-[-r2) ("+3)/2 ' 2  c. dr)Ilfll, -< C . I l f l l .  2 

and the proposition is proved. 

3. T h e  d e n s i t y  of  t h e  a r ea  in tegra l  for 
B M O ,  V M O  an d  func t ions  b o u n d e d  b e l o w  

To deal with the density of the area integral, the BMO norm which is most 
convenient is ][. ]]pl,, which is defined in (1.7). To simplify notation, we shall again 
write throughout this section []. ][, instead of ][. ]lpl,,. 

We shall also deal in this section with versions of the density of the area integral 
for which the truncation is not too rough, that is, we shall assume that ~) satisfies 
the hypothesis 

(H") & is C 1 with Q and [Vo[ both majorized by Cpo(x, 1). 

In particular, p0(x, 1) which gives D and any C 1 function of compact support 
which gives the version first studied by Gundy and Silverstein [10] and Bafiuelos 
and Moore [1], satisfy hypothesis (H"). 

T h e o r e m  4. If f is such that r (the Green potential of A[u] as defined in 
(1.8)), is bounded, (in particular, if f E B M O  or if f is positive or bounded below), 
then Do, D r belong to BMO. 

T h e o r e m  5. Let r be a fixed real number. If f is such that Cr(x, y) is bounded 
and goes to 0 uniformly in x as y l O, (in particular if f c VMO ), then Do, D r belong 
to VMO. 

To prove these theorems we again use a continuity argument to control the 
"upper part" of D 0 and this time an Ll-argument to control the "bottom part". 
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Define 

L e m m a  3 . 1 .  

OEQo we have 

f 
u~(o) = I u Oo(z)Alu-rl(dz). 

JR ~ x(1,oo) 

There exists a constant C such that if U~(O)<oo then for all 

IU~(O)-U~(O)l ~ c ~ t-2r t) dt. 

Pro@ 

IU~(~176 = s215 y (~~176176176 Alu-rl(dz) 

<- fR~• Y Ioo(z)-Oo(z)l Alu-rl(dz). 

But if OcQo, 

IQo(z)-Q~ lOI sup 1 (y  ~) 

1 
< -  sup po(x-AO, y)<_C 
- Y Ae[0,1] -~ po(x, y )  

J~f 2Y dt ~ dt <C po(x,t) -~ <_C po(x,t) -~. 

The first inequality above follows from the mean value theorem the second by hy- 
pothesis (H") and the third and fourth by the Harnack inequality. And so we 
obtain, 

,ur(o)_u (o)h<c ff  

<_011 
=C fl ~ 

P 
t-2 __JR. • t)Alu-rl(dz)dt 

t -2 f ypo(x, t)Alu-rl(dz)dt 
J R v • (o,t) 

t-2 JRfv• G(z, (0, t))Alu-rl(dz)dt 

t-2r t)dt 

where the last inequality follows from the fact that for y < t, YPo (x, t)<_ Cpo(x, y+t) 
(by the garnack inequality) which in turn is less than or equal to C~(z, (0, t)) by 
inequality (2.1) used with zo=z/t and scaling. 
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To control the bottom part of D~o(O) define 

mR Y~ B(O) = ~ x(o,i) 

We have 

L e m m a  3.2. There exists a constant C (which depends only on ~ and Q) such 
that 

Qo Br ( O)mQ~ ( dO) <- COr(0, 1). 

Proof. Applying Fubini's theorem and Lemma 2.4 we get 

ioo B~(O)mo~ <- C in .  B~(O)p~ 1)dO 

=C s215 ( s  Oo(z)Po(O, 1)dO) yAlu-r[(dz) 

C [ G(z, (0, 1))Alu-r[(dz) <_ 
JR ~' • (0,1) 

_< Cr 1). 

The next proposition is an immediate consequence of Lemmas 3.1 and 3.2. 

P ropos i t i on  3.3. Suppose f belongs to BMO0. Then we can find a constant 
CQo such that 

i<,o ID;(o)-C<,o I moo(dO)_< c+.(o. 1)+C il~176162 
where C is a constant independent of f and g. 

Proof. Take CQo=U~(O). Then by the above lemmas, 

SQo ID~~176 l mQ~ < s IUr (O)-U" (O)lmQ~ j;o Br (O)mQ~ 

C . f  ~176 t-2 r t)dt +Cr 1) _< 

and the proposition is proved. 

To prove Theorems 4 and 5 we remark that if Q is any cube centered at xQ 
and with length 1Q, then by scaling (as in the proof of Theorem 1), 

(3.1) io [Do(O)-CQI mQ(dO)<_ C ~ t-2r162 
Thus if r is bounded we immediately get that D~EBMO which proves Theorem 4. 
Theorem 5 also follows from (3.1) by the Lebesgue dominated convergence theorem 
and our remark following (1.10). 
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4. T h e  m a x i m a l  d e n s i t y  o f  t h e  area  
integra l  for B M O  and  V M O  f u n c t i o n s  

In this section we shall prove that  the maximal density of the area integral is 
a good functional for BMO and VMO and this completes the results of Gundy [9] 
who showed that  this functional is in L p if f is in H p. More precisely, we prove 

T h e o r e m  6. If  f EBMO and D* is not identically infinite, then D*~, D* belong 
to BMO with the BMO-norm majorized by a constant (independent of f )  times the 
BMO-norm of f .  

T h e o r e m  7. If f cVMO and D* is not identically infinite, then D~, D* belong 
to VMO. 

As before, we control the "bottom part" of D~ and its "top part". We remind 
the reader that  Q satisfies hypothesis (H") defined in w Let us set 

f 
B* (e) = sup _ I Y ~o(z)A]u-rl(dz)" 

r C l : t a R  x (0,1) 

L e m m a  4.1. There exists a constant C (which depends only on ~ and ~) such 
that: 

Qo B*(O)mQ~ <- C[[f[IP2'*l +Cl[f[[Pl'*l 

where [[f[[pl,.1 and Hfl[p2,.1 are as defined in (1.9) and (1.10). As before, Qo is the 
unit cube in R ~ centered at the origin. 

Proof. Let 

Br = sup f ~ ypo(z)Alu-rl(dz ) 
r~RJ(R \2Qo)x(o,1) 

and 

f 
B~(O) = sup I YPo(z)Alu-rl(dz)" 

rER J2QoX(0,1) 

By our assumption (H) we have B*(O)<_B;(O)+B~(O). If OeQo, x e R ' \ 2 Q 0  and 
y < l ,  then po(z)<_Cpo(z) and ypo(z)<_G(z, (0, 1)). Thus 

(4.1) B~(O) <_ C sup ~(R G(z, (0, 1))Alu-r l (dz  ) 
~c~t ~\2Qo)x(o,1) 

_< C sup r 1) < Oil flip1,,1 
r C R  
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and so we have the correct bound for B~. 
For B~(O) we use the Barlow-Yor [2] n2-estimate. Let Bt, t<r be Brownian 

motion in R~_ +1 until its exit time 7. Then u(Bt), t<T,  is a local martingale. Let 
L r. { t , r e R ,  t<~-} be its local time. Then, (by Brossard [3]), 

(4.2) e L r _ 1 / R  Ezo[ ~] po~zo) ;+1 ~(zo, z)po(z)Alu-r[(dz) 

where E~o denotes the expectation of Brownian motion starting at z0 and condi- 
tioned to exit at 0; (the Doob - h  process associated with h(z)=po(z)). 

From (4.1) and the fact that  for z = (x, y) E 2Q0 • (0,1) and z0 = (0, 1), G(z0, z) > 
Cy, we have for OEQo, 

B~ (0) _< C sup Ezeo [L;] _< VEto [L*]. 
rER  

Integrating we obtain, 
(4.3) 

IQo B~(O)mQ~ <-C iR~ B~(O)po(O, 1)dO <_ C JR" EOz~176 1)dO 

= CEzo [L*] < C (Ezo [L*] 2) 1/2 < C (Ez o [u(B~)-u(z0)[ 2) 1/2 

= C(OL(Zo)) 1/2 ~ CHfllp2,.1. 

In the first equality above we used the fact that  po(zo)dO is the law of B ,  given that 
B0 =z0. We also used the result of Barlow and Yor [2] to bound the L2-norm of L* 
by the L2-norm of u(B~)-u(zo). Lemma 4.1 now follows from (4.1) and (4.3). 

Theorems 6 and 7 follow from the following proposition as before. 

P r o p o s i t i o n  4.2. Suppose fEBMOo.  There exists a constant CQo such that 

J'Qo ID;(o)-cQo I mQo(dO)_< cIIfll~l,.~ +cIIfli.2,.l+C/1 ~176 Ilfll.,,.,dt 

where C is a constant independent of f . 

Proof. By Lemma 3.1 and (1.10) we have 

S /? IU~(O)-U~(O)l<c t-2r t-2ilfllpl,,tdt 

and taking supremum over r we obtain, with U*(O)=supg~(o), 
rEI:t 

/1 Ig*(o)-g*(o)l <_ c t-211fllp~,,tdt. 
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To prove the proposition, take CQo =U*(0)  and write 

ID;(O)-CQol <_ ID;(O)-U*(O)I+IU*(e)-CQol < B*(O)+IU*(e)-U*(O)I 

// <_B*(O)+C t-211fllpl,.tdt. 

Integrat ing over Q0 and using Lemma 4.1 gives the proposition. 
For a general cube Q centered at XQ and length lQ, scaling again as before 

gives 

/Q ]D*~(O)--CQI mQ(dO) < cIIflI~,,~Q -,-Cllfll~,,z~ §  ~11 ~ t-21lfHpl,,zQtdt 

and Theorems 6 and 7 follow from this. 
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