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Special results in adjunction 
theory in dimension four and five 

Mauro C. Beltrametti  and Andrew J. Sommese 

In troduc t ion  

Let L A be a very ample line bundle on an n-dimensional projective manifold 
(X A, L^). Assume n = d i m  X A >3. In [1], Beltrametti,  Fania, and Sommese give a 
very explicit structure theory for pairs (X A, L ̂ ) as above, and such that  the Ko- 
daira dimension x(Kx,, +(n-3)LA)<n and n->6. Moreover, if n->6 and x(KxA+ 
(n--3)L A) = n  it is shown there is a very simple birational morphism f:XA---* X with 
X having at most 2-factorial isolated terminal singularities, and Kx + ( n - 3 ) L  nef 
and big where L=(f.LA) ** is at worst 2-Cartier. 

Partial results are given for dimensions n=3 ,  5 by Beltrametti,  Fania, and Som- 
mese [1] and for n = 4  by Fania and Sommese [4]. 

In this paper we extend the structure theory of Beltrametti,  Fania, and Som- 
mese [1] to n = 5  in the same form as the structure theorem when n->6. See (1.1) 
and (1.2) for a statement. We also extend the structure theorem if n =4 ,  to cover 
pairs (XA,L A) where x(3Kx^+4LA)<4. If ~(3Kx^+4LA)=4 there is a very 
simple morphism r XA--~ Z with Z having at most Gorenstein, 2-factorial, isolated 
terminal singularities, and 3Kz+4L nef and big where L = ( r  ** is at worst 
2-Cartier. See Theorems (2) and (2.5) for a complete statement. 

We would like to thank the Max-Planck-Institut fiir Mathematik in Bonn for its 
support. This paper was conceived and mainly worked out during the authors stay 
at the Max-Planck-Institut in July, 1991. The second author would like to thank 
the National Science Foundation (NSF Grant DMS 89-21702) for its support. 

After this paper was finished we received a preprint of T. Fujita, On the Ko- 
daira energy and adjoint reduction of polarized manifolds, (which will appear in 
Manuscripta Math.) that  overlaps with our paper. In particular T. Fujita has 
shown that  in case (1.1.2) of Theorem (1.1), (X, ~ )  is the projective cone over the 
Veronese 4-fold, (p4, 0p4(2)).  
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0. Background material 

(0.1) N o t a t i o n .  We work over the complex field C. By variety we mean an 
irreducible and reduced projective scheme, V. We denote its structure sheaf by (-gv. 

Basically we use the standard notation from algebraic geometry. We almost 
always follow the notation of Beltrametti, Fania, and Sommese [1]. We refer to 
it, to Beltrametti-Sommese [2] and to Kawamata, Matsuda, and Matsuki [6] for 
definitions of the following: Q-divisor, Q-Cartier divisor, Q-factorial, numerically 
effective (nef, for short), big, numerical equivalence (denote by N), linear equivalence 
(denote by ~)  of Q-divisors, intersection of cycles, canonical divisor, terminal and 
canonical singularities. 

We say that  a normal variety V is r-Gorenstein if rKv  is a line bundle, where 
K v  is the canonical divisor. The smallest positive integer, r, such that  rKv  is a 
line bundle is called the index of V. 

For a reflexive sheaf E of rank 1, we denote by IE[ the complete linear system 
associated to E and by F(/~) the space of the global sections of E. We say that s is 
spanned if it is spanned by F(/~). 

Linear equivalence classes of Weil divisors on a normal variety and isomorphism 
classes of reflexive sheaves of rank 1 are used with little (or no) distinction. Hence we 
shall freely switch between the multiplicative and the additive notation for divisors. 

(0.2) N e f  values.  We state the following result in the case of terminal sin- 
gularities which occur in the adjunction theory (see e.g. Beltrametti, Fania, and 
Sommese [1]), even though it holds true in the more general case of log-terminal 
singularities (see Kawamata, Matsnda, and Matsuki [6], 4.1). 

(0.2.1) K a w a m a t a  r a t i o n a l i t y  t h e o r e m .  Let V be a normal variety of di- 
mension n with terminal singularities and let r be the index of V. Let ~: V--* S be 
a projective morphism onto a variety S. Let L be a 'C-ample line bundle on V. If 
K v  is not r then 

T := min{t E R,  K v + t L  is C-her} 

is a positive rational number. Furthermore expressing r t - u / v  with u, v positive 
coprime integers, we have u<_r(b+ l) where b=maxs~s{dimr 

With the notation as in (0.2.1) we say that the rational number ~- is the C-her 
value of (V, L). If S is a point, T is called the nef value of (V, L). Note also that, 
if S is a point, then Kv+'zL is nef and hence by the Kawamata-Shokurov base 
point free theorem (Kawamata, Matsuda, and Matsuki [6], w we know that for 
rn>>0 with mT integral and rim , Im(Kv+vL)l  is base point free, and defines a 
morphism, r with connected fibers onto a normal variety, which we call the nef 
value morphism of (V, L). 
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Note that the definition of nef value given here differs from that one, say ~_r, 
given by Beltrametti, Fania, and Sommese [1], (1.1). In fact, ~-=I/T'. 

(0.2.2) Remark. Let (V,L) be as in (0.2.1). Let T be the nef value of (V,L) 
and let r be the nef value morphism of (V, L). Then 

w = min{t C R,  Kv  +tL is nef} : min{t E R,  K v  +tL is r 

That is, 7- coincides with the e-her value of (V, L). 

(0.2.3) L e m m a  (Beltrametti-Sommese [2], (0.8.3)). Let Y be a normal variety 
with terminal singularities. Let L be an ample line bundle on V. A rational number 
T is the nef value of (V, L) if and only if Kv+~-L is nef but not ample. 

(0.3) R e d u c t i o n s  (Sommese [9], (0.5), Fania and Sommese [4], w and nel- 
trametti, Fania, and Sommese [1], w Let X A be a smooth connected variety of 
dimension n > 3  and let L A be a very ample line bundle on X A. We say that a pair 
(X',  L') with X '  smooth is a (first) reduction of (X A, L A) if L' is ample and 

(i) there exists a morphism 7r: X A-~X expressing X A as X '  with a finite set B 
blown up, L' := (Tr.L)**; 

(ii) L A :Tr*L'-[71 " - 1  (B)] (equivalently KxA + (n-- 1)L A ~Tr*Kx, + ( n -  1)L'). 
Except for an explicit list of well understood pairs (X A, L A) we can assume that 

(see Sommese [9], Sommese and Van de Ven [10], and Fania and Sommese [4]): 
(a) KxA + ( n - 1 ) L  A is spanned and big and Kx,  + ( n - 1 ) L '  is ample. Note that 

in this case such a reduction (X', L') is unique up to isomorphism. We will refer to 
this reduction, (X', L'), as the reduction of (X A, LA). 

(b) K x , + ( n - 2 ) L '  is nef and big. 
Then from the Kawamata-Shokurov base point free theorem (Kawamata, Matsuda, 
and Matsuki [6], w we know that Im(Kz, + ( n - 2 ) L ' ]  gives rise to a morphism for 
some m>0 ,  say ~:X'--*X, and for m large enough we can assume that F has 
connected fibers and normal image. Thus there is an ample line bundle E on X 
such that ~*IC~Kx, + ( n - 2 ) L ' .  The pair (X, E) is known as the second reduction 
of (X A, L^). The morphism ~ is very well behaved (see Sommese [8], Fania [3], 
Fania and Sommese [4], and Beltrametti, Fania, and Sommese [1]). Let us recall 
the following results we need. 

(0.3.1) P r o p o s i t i o n  ([1], (0.2.4)). Let (XA,LA), (X ' ,L ' )  and (X,I~) be as 
in (0.3) with n>3. Then X has isolated rational terminal singularities. If n=3 ,  
X is 2-Gorenstein while, for n>4, X is 2-factorial and it is Gorenstein in even 
dimensions. 
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(0.3.2) P r o p o s i t i o n  ([1],(0.2.6) and [2], (4.4)). Let (X  ̂ ,LA), (X' ,L')  be as 
in (0.3) with n>3 and (X,]C), p:X'---~X be the 2nd reduction of (X A,LA). Let 
L:=(~ .L ' )** .  Let 7- be the nef value of (X, ]C) and let r X--+W be the nef value 
morphism of (X, ]C). Then we have: 

(0.3.2.1) L is a 2-Cartier divisor and ]C~Kx+(n-2 )L;  

(0.3.2.2) L is C-ample; 

(0.3.2.3) the r value of 2L is ~-(2L)='r(n- 2)/(2(~-+ l)). 

(0.3.3) L e m m a .  Let (X, ]C), L be as in (0.3.2). Then aKx +bL is a line bundle 
if b -an  is even. 

Proof. Note that aKxTbL~alC+(b-a (n -2 ) )L .  We are then reduced to show- 
ing that (b-  a ( n -  2))L is a line bundle. If b -  an is even, then so is b -  ( n -  2)a. Then 
by (0.3.2.1) we are done. [] 

For further details and properties of the 2nd reduction, (X, ]C), we refer to 
Beltrametti,  Fania, and Sommese [1], (0.2). See also Beltrametti  and Sommese [2] 
for a partial extension to the case when L A is merely ample. 

(0.4) Spec ia l  var ie t ies .  Let V be a normal r-Gorenstein variety of dimension 
n, L an ample line bundle on V. We say that  V is an r-Gorenstein Fano (or simply 
an r-Fano) variety if - r K v  is ample. We say that (V, L) is a Del Pezzo variety 
(respectively a Mukai variety) if r Ky  , ~ - ( n - 1 ) r  L (respectively r Ky  ~ - ( n -  2 )r L ). 

We also say that  (V, L) is a scroll (respectively a quadric fibration; respectively 
a Del Pezzo fibration; respectively a Mukai fibration) over a normal variety Y of 
dimension m if there exists a surjective morphism with connected fibers p: V--~Y, 
such that  r ( K y + ( n - m + l ) L ) ~ p * s  (respectively r ( K y + ( n - m ) L ) ~ p * f ;  respec- 
tively r ( K v + ( n - m - 1 ) L ) ~ p * s  respectively r ( K v + ( n - m - 2 ) L ) ~ p * s  for some 
ample line bundle s on Y. 

(0.5) A part of Mori's theory of extremal rays will be used throughout the 
paper. We will use freely the notion of extremal ray, as well as the basic theorems 
as Cone theorem and Contraction theorem. We refer the reader to Mori [7] and 
Kawamata, Matsuda, and Matsuki [6]. 

In particular if V is a normal variety with canonical singularities we will denote 
by ~=contR: V-+Y the morphism given by the contraction of an extremal ray R. We 
will denote by E(R) ,  or simply by E, the locus of R, that is the locus of curves whose 
numericM classes are in R. Equivalently, E:={vCV, Q is not an isomorphism at v}. 

For any further background material we refer to Beltrametti,  Fania, and Som- 
mese [1] and Beltrametti  and Sommese [2]. 
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1. T h e  c a s e  n ~ - 5  

Let X A be a smooth connected projective variety of dimension n=5 and let 
L ̂  be a very ample line bundle on X ^. Let (X,t : ) ,  t : ~ K x + 3 L ,  be the second 
reduction of (X A, L A) as in (0.3). In this section we study the nefness and bigness 
of K x  + ( n - 3 ) t : = K x  + 2]C. Note that,  since ( n - 2 ) ( K x  + ( n - 3 ) L ) ~ K z  +(n-3) t : ,  
the nefness and bigness of Kx+2t :  is equivalent to that  of Kx+2L.  

(1.1) T h e o r e m .  Let (XA,LA), (X,t:) ,  L be as above. Let T be the nef value 
of (X, t:). Then Kx+2 t :  is nef unless either: 

(1.1.1) ~-=5 and either (X, t:)~(Q, (.QQ(1)), Q a hyperquadric in p6 or (X, t:) 
is a scroll over a smooth curve C. In the latter case X is a p4 bundle over C and 
the restriction t:p4 oft:  to a fiber is isomorphic to (.9p4(1); 

(1.1.2) T= 7 and X is a singular 2-Gorenstein Fano 5-fold with LA5=121, 
2 K x ~ - 7 t :  and 2L~3t : .  

Proof. From Beltrametti, Fania, and Sommese, [1], (4.2), we know that  
K x + 3 ~  is nef unless (X, t : )  is either as in (1.1.1) or (1.1.2). Thus we can as- 
sume T<__3. Let r  be the nef value morphism of (X.t:). We assume that  
the index of X is 2 since the argument is parallel but simpler if the index is one. 

Step I: "1-<3. By the above we can assume T----3. Therefore 

(1.1.3) K x  +3t :  ~ 4Kx + 9 L  ~ r 

for some ample line bundle H on W. Since (4,9)=1, there exist positive integers 
(a, b)--(7, 3) such that  4 a - 9 b =  1. From Lemma (0.3.3) we know that  s : = 3 K x  + 7L 
is a line bundle. Note also that s is ample since 4Kx+9L  is nef and 7>9 .  By 
(1.1.3) we have 

K x + 9 s  = 28Kx+63L = 7(4Kx +9L) .~ r 

hence K x + 9 s  is nef but not ample. It thus follows that  8=9 is the nef value 
of (X, s (and r is the nef value morphism of (X, s Then by the Kawamata 
rationality theorem (0.2.1) we know that  20=p/q for some coprime positive integers 
p, q such that  p_<2(n+l). This leads to the contradiction p=18<12.  

Step II: 7-_<2. By the above we can assume 2<T<3.  From the rationality 
theorem we know that  27=u/v for some coprime positive integers u, v such that  
u< 2 ( n+ l ) - -12 .  We also have 4<u/v<6. This shows that  v<2,  otherwise u>12. If 
v = l ,  then u--5. If v=2,  then 8<u<12 .  Since ( u , v ) = l ,  then either u = 9  or u=11. 
Thus the only possible cases are (u, v)=(5,  1), (9, 2), (11, 2). Recall that  by (0.3.2.3) 
the r value of 2L is T(2L)=3T/(2('r+I)) and by (0.2.1), 2"r(2L)=a/b where a, b 
are coprime positive integers with a < 2(max~ew {dim r (w)} + 1) = 12. 
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If (u, v)=(5,1),  we have 7=  5 and 2T(2L)=~ .  This contradicts the bound 
a_<12. 

If (u, v)=(9,  2), we have T-- - 9  and 2T(2L)= 23 y~. This contradicts again the 
bound a < 12. 

Let (u, v) - - ( l l ,  2). Since T coincides with the r value morphism of (X, IC) 
(see (0.2.2)), we have in this case 2 T = ~  with l l_<2(max~cw{dimr  
Therefore, since n = 5, the morphism r contracts X to a point so that  K x  + TIC~ Ox, 
o r  

4Kx + 11IC ~ 3(5Kx + 11L) ~ Ox. 

Hence in particular 3 (5(2Kx) + 11(2L)) ~ Ox. By Lemma (0.11) of Beltrametti and 
Sommese/2] it thus follows that 5 ( 2 K x ) + l l ( 2 L ) ~ O x  and 2Kx .~-11M,  2L~5M 
for some ample line bundle M on X. Let 

p(t) := x(tM).  

Since t M - K x ~ ( t + I ~ ) M  is ample for t > - ~ ,  we see by the Kodaira vanish- 
ing theorem that p(t)=h~ for t > - ~  so that  p( t )=0 for t = - 1 , . . . , - 5  and 
p(0) = 1. Therefore we have 

p ( t )  = ( t  + l )  ... ( t + 5 ) / 5 ! .  

Hence in particular the coefficient c1(M)5/5[ of the leading term is 1/5! or 
Cl(M) 5 = 1. Furthermore, we have h ~ (M)=p(1)=  6 =dim X + 1. Thus we conclude 
by Fujita [5], I, (1.1) (see also Seltrametti and Sommese [2], (1.2)) that (X, M ) ~  
( p 5 0 e ~  (1)). Then the relation 2 K x ~ - l l M  leads to a numerical contradiction. 
This completes the proof of Step II and hence of the theorem. [] 

(1.2) P r o p o s i t i o n .  Let (X A, L/X), (X, IC), be as in (1.1). Assume Kx+2IC to 
be nef. Let r be the nef value morphism of (X, ic). Then K x  + 2IC is also big unless 
either: 

(1.2.1) (X, IC) is a scroll under r over a normal 4-fold and in particular the 
restriction ICF of IC to a general fiber F is Opl(1); 

(1.2.2) (X, IC) is a quadrie fibration under r over a normal 3-fold; 
(1.2.3) (X, IC) is a Del Pezzo fibration under r over a smooth surface; 
(1.2.4) (X, IC) is a Mukai fibration under r over a smooth curve; or 
(1.2.5) X is a 2-Gorenstein Fano 5-fold with 2Kx~-4IC.  

Proof. Let v be the nef value of (X,K).  If K x + 2 K  is not big, then not am- 
ple, we have T=2. Hence in particular r is the morphism given by IN(Kx+2K)I 
for N>>0. If d i m e ( X ) > 0  we have the cases (1.2.1), (1.2.2), (1.2.3), (1.2.4). If 
d i m e ( X ) = 0  we fall in case (1.2.5). [] 
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2. T h e  case n = 4  

Let X A be a smooth connected projective variety of dimension n = 4  and let L A 
be a very ample line bundle on X A. Let iX, It), l C ~ K x + ( n - 2 ) L ,  be the second 
reduction of (X ̂ , L A) as in (0.3). In this section we show (2.2) and (2.3). The result 
(2.2) states that  if Kx+31C is nef and big there is a first reduction, (Z, IC(Z)), of 
(X,/C), that is closely related to (X, IC) and such that  Kz+31C(Z) is ample. The 
result (2.3) states that  under the same conditions Kz+2IC(Z) is neff Recall also 
that  X is Gorenstein since n=4.  

We need the following result due to Fania and Sommese. 

(2.1) T h e o r e m  ([4], (1.1)). Let (X/\,LA), (X,/C), L be as above. Let'; be the 
nef value of (X,/(7). Then Kx+3IC is nef and big unless either: 

(2.1.1) ~-:5, (X,K:)~(P4, Op4(1)), L~Op4(3);  
(2.1.2) ~-:3, X is a Gorenstein Fano 4-fold with -Kx..~3IC and - 4 K x . ~ 6 L ;  
(2.1.3) ~-:3, there exists a holomorphic map r X--+C, where C is a smooth 

curve, 4Kx  + 6 L ~ r  for some ample line bundle H on C. Furthermore the gen- 
eral fiber o f t  is (Q, OQ(2)), Q a hyperquadric in p4. Note that K x + 3 ~ b * H ,  
i.e. (X,/E) is a quadric fibration over C; 

(2.1.4) ~-:3, there exists a holomorphic map r where S is a smooth 
surface, 4 K x + 6 L ~ b * H  for some ample line bundle H on S. Furthermore the 
general fiber ore  is (p2,Op~(2)). Note that Kx+3IC~b*H,  i.e. (X, lC) is a scroll 
over S. 

By the above we can assume that  Kx+31C is nef and big. We can prove now 
the following result. 

(2.2) T h e o r e m - D e f i n i t i o n  (Structure theorem for the 2�89 reduction). Let 
(XA,LA), (X,/C), I C ~ K x + 2 L  be as in (2.1). Assume that Kx+31C is nef and 
big. Then there exists a normal variety Z and a morphism with connected fibers 
f: X---+ Z such that 

(2.2.1) f expresses X as the blowing up of Z along a finite set BCreg(Z);  
(2.2.2) K x + 3 ~ f * ( K z + 3 l C ( Z ) )  where ~(Z):=(f,]C)** is an ample line bun- 

dle and K z + 3 ~ ( Z )  is ample; 
(2.2.3) ]C(Z)~Kz+2L where L:--(f,L)** is a 2-Cartier divisor on Z. 
Note that (Z ,~ (Z ) )  is the first reduction of (X,)~). We call (Z, 1C(Z)) the 2�89 

reduction of (X A, LA ). 

Proof. If K x  + 3~ is ample, then by taking Z : =  X and f as the identity map one 
has the result. Therefore we can assume without loss of generality that  K x  +31C 
is nef and big but not ample. Let r be the nef value of ( X,/(7). In this case, 
by Lemma (0.2.3), we have ~-=3. Let r  be the nef value morphism of 
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(X, ](:). Then r is a birational morphism which contracts some curve. From stan- 
dard results of Mori's theory (see e.g. Beltrametti and Sommese [2], Lemma (0.4.3)) 
we know that  there exists an extremal ray, R, such that  (Kx+3IC).R=O. Let 
Q=contR: X--~Y be the contraction of R. Then r factors through Q, r Let E 
be the locus of R. Since K x + 3 ~  is nef and big and Kx+31~r for 
some ample line bundle H on W, Proposition (1.5) of Beltrametti and Sommese [2] 
applies to give (E, K:E) - (P  3, Op3 (1)), where/CE denotes the restriction of/C to E. 
Hence in particular Q(E) is a point and KXIE,~--3~E. Let LE be the restriction of 
L to E. Then LE~--Op3(a) for some integer a. From 

Op3 (1) ~ ]~E ~ KXIE + 2LE ..~ -- 31~E -b 2LE ~ Op3 (2a-- 3) 

we find a=2,  i.e. LE-~Op3(2). 

(2.2.4) Cla im.  X is factorial along E ~ P  3. 

Proof (of the Claim). Let (X', L') be the first reduction of (X ̂ , L A) and let 
~: X'--~X be the 2nd reduction map as in (0.3). Assume that  there exists a point 
x c E  such that  X is not factorial at x. Then by Beltrametti, Fania, and Sommese 
[1], (0.2) (see in particular (0.2.2)) we know that  

(2.2.5) ~ - l ( x )  ~- P3; A/'X3 ' ~ Op3 ( - 2 ) .  

We also know that  

(2.2.6) L',~ ~*L-~-a(B2) -  (~9--1 (~1)/2, 

where B1 := set of points x E X  which satisfy the conditions (2.2.5) and B2 :--B-B1 
where B is the algebraic subset of X, with dim B_< 1, such that  ~ is an isomorphism 
outside of B. Let 1 be a line in E-~P 3 containing x and no other singular points of 
X. Let l' be the proper transform of 1 under ~. Note that l ~ intersects transversely 

l(x)-~P3 at a single point. Indeed if either l' intersects ~ - l (x )  in more than 
one point or l' is tangent to p - l (x )  at a given point, then the restriction, ~l, of 
to l' would not be a biholomorphism and l would be singular. Thus l ' .~- l (x)=l  
and hence ~-~ (B~).l'--1. Note also that  L.l=2 since LE ~Op3 (2). Therefore from 
(2.2.6) we get 

2n'.l '= 2~*L.I'-~-I(B~). l'-29~-1 (B2).l' 

or 
2L'.l' = 2L . I -~- I (B1) . l ' -  2~-1 (B2).l' -- 3-2~-1(B2) . l ' .  

This leads to a parity contradiction. 



Special resul ts  in ad junc t ion  theo ry  in d imens ion  four and  five 205 

Note that  since d i m X = 4  and r is the morphism given by IN(Kx+3KS)I for 
N>>0, r is in fact the 1st reduction map for the pair (X, KS). Then, in view of the 
claim above, the proof of Theorem (3.1) of Beltrametti and Sommese [2] applies 
with no changes to say that r X--~W is the simultaneous contraction to distinct 
smooth points of divisors Ei-~P 3 such that  EiCreg(X),  OE~(Ei)-~Op3(--1) for 
i=1 ,  ..., t, where KSEI denotes the restriction of KS to Ei. In particular W has the 
same singularities as X. 

Now, let KSt:=(r the double dual. Since KS is ample and r is an iso- 
morphism outside of a finite set of points, KS~ is ample. The fact that  Kx+3KS.~ 
r ~) simply follows by noting that  r expresses X as the blowing up of W 
along a finite set, B, of points with BCreg(W). Hence in particular Kw+3KS ~ is 
ample since Kx+3KS.."~r for some ample line bundle H on W. Thus we have 
shown (2.2.1) and (2.2.2) of the theorem by taking Z : = W ,  f : = r  and KS(Z):=KS'. 

The decomposition KS(Z)~Kz+2L, where L : = ( f . L )  ss, follows immediately 
from KS~Kx+2L and the fact that  f is an isomorphism outside of a finite number 
of points. Note that  L is a 2-Cartier divisor on Z since L is a 2-Cartier divisor 
on X (see (0.3.2.1)). [] 

The following is the main result of this section. 

(2.3) T h e o r e m .  Let (X^ ,L^) ,  (X, KS), KS~Kx+2L, (Z, KS(Z)), f:X--+Z be 
as in (2.2). Then Kz+2KS(Z) is nef. 

Proof. Let 7-(Z) be the nef value of (Z, KS(Z)). By (2.2.2) we know that  
Kz+3KS(Z) is ample so we have T(Z)<3 by (0.2.3). Since we have to show ~-(Z)<2, 
let us assume that  2<T(Z)<3.  By the Kawamata rationality theorem (0.2.1) we 
know that  7(Z)=u/v for some coprime integers u, v such that  u < n + l = 5 .  We also 
have 2<u/v<3. This clearly shows that  v>2  as well as v<2,  otherwise we con- 
tradict the bound u_<5. Then the only possible case is (u, v)=(5,  2). Since T(Z) 
coincides with the f-nef  value of (Z, KS(Z)) (see (0.2.2)) we have in this case 

u = 5 < maff{dim f - 1  (z)} + 1. 

Therefore, since n--4, the morphism f contracts Z to a point, so that  2Kz + 5E (Z) 
Oz. By Lemma (0.11) of Beltrametti and Sommese [2], it thus follows that  Kz~ 
- h M ,  KS(Z)~2M for some ample line bundle M on Z. By the Kobayashi-Ochiai 
result (see e.g. Beltrametti and Sommese [2], (1.3)) we conclude that  (Z,M) ~- 
(P4,Op4(1)), KS(Z)~Op4(2). Let L:=(f.L)** and recall that  KS(Z)~Kz+2L. 
Then L~-Op4(a) for some integer a. Thus the condition KS(Z)~Op4(2) leads to 
the numerical contradiction 2 = - 5 +  2a. [] 

2 -  935212 Arkiv fl6r matematik 
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(2.4) Example (of non-trivial 21 reduction). Let /2 be a very ample line bun- 
dle on a 4-fold X with (Z,/2), rr:X--*Z, a non-trivial first reduction, 7r not an 
isomorphism. Then Kz+3/2..~Tr*(Kz+3/2) and Kz+3/2' is ample. Let L:=2/2, 
IC:=Kx+2L, L':=(Tr.L)**, /2':=(7r./2)**, 1C(Z):=Kz+2L'=Kz+4/2'. If E---P 3 is 
contracted to a point under 7r we have 

KXIE~--3/2E~Op3(--3); ]CE~-.KxIE+4/2E~Opa(1); LE~Op3(2). 

Moreover, 

Kx +3/(: = 4Kx + 12/2 = 4(Kx +3/2) ~ 7r* (4Kz + 12/2') = 7r* (Kz +3]C(Z)). 

1 reduc- Thus we conclude that  (Z, ~(Z))  is the first reduction of (X, tS), i.e. the 2~ 
tion of (X,L). The nef value, T(Z), of (Z,~(Z)) is ~-(Z)<3 since Kz+31U(Z)= 
4(Kz+3s is ample and the nef value, 7, of (X,/C) is ~-=3 since Kx+3tC is nef 
and big but not ample (because X is not isomorphic to Z). 

(2.5) P r o p o s i t i o n .  Let (X A, LA), (X, 1C), IC~Kx+2L be as in (2.1). Assume 
Kx  +31C is nef and big and let (Z, IC(Z)), f: X---+Z, be the 2�89 reduction of (X A, LA). 

Let L:=(f .L)**.  Let r be the nef value morphism of (Z,]C(Z)). Then Kz+2]C(Z) 
is nef and it is also big unless either: 

(2.5.1) (Z, IC(Z)) is a Mukai 4-fold, Kz~-21C(Z) (i lL is a line bundle, then 
(Z, ]C(Z))~(Q, OQ(2)), Q a hyperquadrie in pb), or 

(2.5.2) r Z---+C is a surjective morphism onto a smooth curve C with general 
fiber F ~ P  3, the restriction of IC(Z) to F isomorphic to Op3 (2) and LF~Op3(3) .  

Proof. By (2.3) we know that  Kz+IC(Z) is nef. Let T:=T(Z) be the nef value 
of (Z,/C(Z)). If Kz+21C(Z) is not big, then not ample, we have 7=2. Hence in 
particular r is the morphism given by IN(Kz+21C(Z~I for N>>0. 

If d ime(Z)=0 ,  we are in case (2.5.1). Note that  L is ample in this case since 

(2.5.3) Oz ~ Kz + 2/C(Z) ~ 3Kz + 4L 

and -Kz~21C(Z) is ample. Note also that if ~, is a line bundle, by (2.5.3) and by 
Lemma (0.11) of Beltrametti and Sommese [2], we get Kz ~ - 4 M ,  L..~3M for some 
ample line bundle M on Z. By the Kobayashi-Oehiai result (see e.g. [2], (1.3)) this 
implies that (Z, M)~(Q, OQ(1)), Q a hyperquadrie in p5. Then 1C(Z)~Kz+2L~ 
oz(2). 

If d ime(Z)>0 ,  let F be a general fiber of r Note that  F is smooth since Z 
has only isolated singularities. Let /C(Z)F, LF be the restriction of tb(Z), L to F 
respectively. We have KF+21C(Z)F,~3KF+4LF"~OF. Note that  LF is an ample 
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line bundle on F since --KF,.~2IC(Z)F is ample. Therefore there exists an ample 
line bundle A on F such that  KF~-4A, LF~3A. This implies that  d i m F > 3  
or d i m E = 3  (see again [2], (0.11)). Hence by the Kobayashi-Ochiai result we get 
(F, A ) ~ ( P  3, Op3(1)), LF~-Op3(3) and ~(Z)F,~(Kzq-2L)F~Op3(2). [] 
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